拉深件各个计算

合集下载

带凸缘筒形件拉深工序计算

带凸缘筒形件拉深工序计算

例:图示带凸缘筒形件拉深工序计算。

分析:零件具有双耳凸缘,拉深时应拉出圆形凸缘,拉深后再用冲裁方法加工出凸缘所要求的形状,并完成冲孔。

凸缘直径mm d f 806268=⨯+= 相对凸缘直径7.14680==d d f 零件属于宽凸缘拉深件,且零件高度大于直径,可采用缩小直径增加深度的拉深方法。

拉深件圆角半径较小,拉深时凸、凹模圆角取合理的数值,拉深后采用整形的方法使圆角半径达到要求。

工序件尺寸计算按零件图所标注的尺寸进行计算。

1. 确定修边余量修边余量为3mm ,则凸缘直径mm d f 862380=⨯+=2. 计算毛坯直径)2.135(13614644.360464863.44dR-dh 4d D 22t =⨯⨯-⨯⨯+=+=3. 判断能否一次拉深4. 决定实际采用的毛坯直径考虑到相对板料厚度较小,为了防止后续拉深出现拉破现象,决定首次拉深按表面积计算多拉入3%的材料,在后续拉深中再将多拉入的料返回到凸缘根部,就可防止再拉深时因凸缘区材料再流入凹模而出现拉破现象。

实际采用的毛坯直径为:mm D D 13813603.103.11=⨯==5. 计算首次拉深直径 设2.11=d d f由表查得m t =0.53,则首次拉深直径为:7313853.011=⨯=⨯=D m d t验算所选取的m t 是否合适。

6. 计算再拉深工序件的直径m 2=0.78、m 3=0.80、m 4=0.827. 确定各次拉深的圆角半径8. 计算各次工序件的高度首次按表积计算多拉入了3%的料,如果后两次拉深每次按表积计算返回到凸缘根部为1.5%的料,则后两次拉深的毛坯直径为:mm D D mmD D 1361371360015.1015.132===⨯==工序件的高度:n d p d p n fn n d r r r r d d D h n n n n 222214.0)(43.025.0-+++-=h 2=54h 3=63。

拉深(拉延)

拉深(拉延)

把凸模的作用力传递到平面法兰A‘B’F‘E’部分,侧壁部分是单向拉应力状态 (图2-25)。 平面法兰部分A‘B’F‘E’(图2—24b)是拉深时的主要变形区。它在径向拉应力作用 下产生塑性变形,并向中心移动,逐渐进入凸、凹模之间的间隙而形成圆筒形侧壁。 变形区在向模具中心移动时,圆周方向上的尺寸随之减小,由于受相邻材料的作用, 在圆周方向上产生切向压应力。因此,变形区处于径向受拉和切向受压的应力状态(图 2—25)。变形区在切向产生压缩变形,其外边缘由初始长度 R0α 缩小为 dα/2 (图 2—24);变形区在径向产生伸长变形,由毛坯的初始尺寸 R0 一d0 /2 变为圆筒形的 高度 H (H> R0 一d0 /2)。 在拉深时,板料的厚度也发生变化(图2—26)。 在圆筒形拉深件的侧壁上部厚度 增加最多,这是因为变形区的材料除了向径向延展外,在切向压应力作用下还向厚度 方向流动,越靠毛坯外缘,加厚的趋势越大。在侧壁下端靠圆角处的厚度减小量最大, 这是由于这个部位受拉应力作用的持续时间最长。这里是最容易被拉裂的危险断面。
补2-24-4
拉深变形特点
补2-24-1
一、直壁类零件的拉深
1、 圆筒形零件拉深的变形分析 圆筒形零件的拉深是平板毛坯在凸模的作用于逐渐被压入凹模而形成圆筒的形状。 下面来分析拉深前平板圆形毛坯上的一个扇形部分(图2—24a)在拉深过程中的变形特 点。 扇形毛坯的OC0 D0部分在全部拉深过程中都与凸模端面相接触,始终保持其平面 形状,基本上不产生塑性变形或只产生很小的塑性变形,最终成为圆筒形的底部。这 个部分在拉深过程中把凸模的作用力传递给圆筒侧壁,起到传递拉深力作用。它本身 处于两向拉应力状态(切向、径向,图2—25)。 在拉深过程中形成的圆筒形侧壁部分C'D'F'E'(图2—24b)是平板毛坯扇形的C0 D0 F0 E0部分变形而成的,它是结束了塑性变形的已变形区。在以后的拉深过程中,这个 部分起传递拉深力作用,

冲裁、弯曲、拉深力计算

冲裁、弯曲、拉深力计算

P= 1.3K380(N)797810(N)1.概略计算一般形状弯曲件弯曲力P:0.25σbtB注:P--弯曲力,10kN σb --材料抗拉强度,Mpat--材料厚度,mm B--弯曲线长度,mm2.弯曲力和校正力的经验计算V形自由弯曲力P:Bt²σb弯曲力计算P=P=P 1=冲裁力:在冲裁过程中,通过冲模使板料分离所需的最小压力。

P=1.3KLt τ (N)P ——冲裁力 (N);K ——修正系数,对于平口剪刃冲K=1,对于斜刃口当α≥4°时,K=0.4~0.7; L ——冲裁件周边长度 (mm); t ——冲裁件材料厚度 (mm); τ——材料的抗剪切强度 (MPa);冲裁力计算V形校正弯曲力P:U形用弹顶器不校正弯曲力P:1.8Bt²σb U形用弹顶器加校正弯曲力P:P=P 1+Q=1.8P 1=注:P--弯曲时总弯曲力,N Q--最大弹顶力,Q=0.8P1 P1--弯曲力,N P2--校正力,NL--弯曲线长度,mm t--材料厚度,mmA--材料校正部分投影面积,mm²σb--材料抗拉强度,Mpa q--校正弯曲时单位压力,见下表3.顶件力或压料力P3:P3=(0.3~0.8)P1注:P3--顶件力或压料力,NP1--自由弯曲力,N4.压力机压力的确定自由弯曲时:P公≥P1+P3校正弯曲时:P≥P2注:P公--压力机公称力,N P1--弯曲力,NP2--校正力,N P3--顶件力或压料力,N拉深力计算1.用压边圈的第一次拉深力P1:2.以后各次拉深时的力Pn:3.变薄拉深时的力P:4.方(矩)形件拉深力Py:P y=(0.5~0.8)Ltσb注:L--拉深件横断面周长(按中径计算),mmt--料厚,mmσb--材料抗拉强度,Mpad cp--拉深件中径σ--材料变形抗力,σ=nσb,黄铜n=1.6~1.8,钢n=1.8~2.25 t n-1、t n--拉深前、后壁厚,mmK1、K2--系数5.压边力计算任何形状零件拉深时的压边力Q:圆筒形件第一次拉深时的压边力Q1:圆筒形件以后各次拉深时的压边力Qn:注:d1…d n-1,d n--第一次…第n_1次,第n次拉深直径,mmR凹1…R凹n--第一次…第n次拉深凹模圆角半径,mmD--毛坯直径,mmq--单位压边力6.按计算拉深力直接选用压力机6-1.单动压力机:(1.8~2)*∑P≤P 公注:∑P--拉深力、成形力和压边力之和 P 公--压力机公称力6-2.双动压力机:(1.8~2)P≤P 公,内 Q≤P 公,外注:P--拉深、成形等工序冲压力 Q--压边力P 公,内--双动压力内滑块公称力7.按压力机负荷曲线选用冲压设备casa=2(1-h/R)(1+1/λ)+(h/R)²79.781(T)。

拉深毛坯计算公式

拉深毛坯计算公式

一.1.修边余量查表4-4,h 69.5d 20h/d= 3.48修边余量查表得δ=6二. 2.毛坯直径查表4-7D=毛坯直径 D=78√d1²+4d2h1+6.28rd1+8r²表4-4 无凸缘圆筒形拉深件的修边余量δ圆筒形件的拉深工d1=12d2=20h=69.5r=4t=1(厚度)三.确定是否用压边圈毛坯相对厚度=t/D×100毛坯相对厚度=1.28t=1(毛坯的厚度)D=78(毛坯的直径)查表4-80 所得:采用压边圈不采用压边圈四.确定拉深次数表4-80 采用或不采用压边圈的条件采用查表法,查表4-18最大相对高度=h/d (包括修边余量后h的值)毛坯相对厚度=t/D×100最大相对高度= 3.7750毛坯相对厚度= 1.2769拉深次查表得:3五.确定各次拉深直径1.确定各次拉深直径:由表4-15或m1 =0.55各次拉深直径为:m2 =0.75m3 =0.80m4 =m5 =表4-18 无凸缘圆筒形拉深的最大相最大相对高度= 3.7750毛坯相对厚度= 1.2769表4-15 无凸缘筒形件用压边圈拉深时表4-16 无凸缘筒形件不用压边圈拉深六.r凹=0.8√r凹=(0.6~即半成品底部的圆角半径为:r1= 5.93652481r2= 3.281537559r3=0r4=0r5=#REF!七.选取各次拉深高度1.由表4-19的有关公试计算得h1=27.50h2=40.84497448h3=h4=h5=选取各次半成品底部的圆角半径拉深工序计算件最大相对高度 h/dd1 =43.07d2 =32.31d3 =25.84d4 =0.00d5 =0.00拉深时的拉深系数圈拉深时的拉深系数。

圆筒件的拉深系数

圆筒件的拉深系数

若某相邻两阶梯直径比值dn/dn-1小于相应圆筒 形件的极限拉深系数时,则由直径dn-1到dn按 凸缘件的拉深办法,其拉深顺序由小阶梯到大 阶梯依次拉深。
若mΣ>m(极限拉深系数),则该零件只 需拉深一次,否则必须多次拉深。
多次拉深时,拉深次数的确定:
取首次拉深系数为m1,则m1=d1/D,故d1=m1D 取第二次拉深系数为m2,则m2=d2/d1
故d2=m2d1=m1m2D … 第n次拉深时,工作直径则为:dn=m1m2m3……mnD 因而mΣ=m1m2m3…mn
工序图:
二、有凸有凸缘圆筒形件的拉深将毛坯拉深至某一时刻 达到零件所要求的凸缘直径dt时不再拉深。
毛坯直径为 :D d2t1 4d1h1 3.44d1r
当圆角半径rd=rp=r时,第一次拉深 系数为 :
m1
d1 D
1
d t1 d1
2
h1 4
d1
3.44 r d1
对于中小型零件(d t<200mm), 采用减小圆筒形部分直径、增加 高度来达到,而圆角半径rp和rd 在整个变形过程中基本保持不变。
用此方法制成的零件,表面质量较差, 容易在筒壁部分和凸缘上残留有中间工 序中形成的圆角部分弯曲和厚度的局部 变化的痕迹,所以最后要加一道整形工 序。
2.改变圆角半径并减小圆筒形直径
当工件的相对拉深高度h/d>h1/d1时,则该 工件就不能用一道工序拉深出来,而需 要两次或多次才能拉出。
以后各次拉深的拉深系数为mn=dn/dn-1。
(二)窄凸缘圆筒形件拉深
对 dt / d 1.11.4 之间的凸缘件称为窄凸缘件。
这类零件因凸缘很小,可以当作一般圆筒形件 进行拉深,只在倒数第二道工序时才拉出凸缘 或拉成具有锥形的凸缘,而最后通过校正工序 压成水平凸缘。

一落料、首次拉深复合(复合模)及 计算各次拉深的工序件尺寸

一落料、首次拉深复合(复合模)及 计算各次拉深的工序件尺寸

一 罩盖坯料展开尺寸的计算
(1)确定修边余量△h
由h/d=46.36/40=1.16, 查表3-1得:△h=2.5
(2)计算拉深件坯料尺寸(表3-3)
由于零件材料厚度小于1,所以可直接按零件图中的标注尺寸计算,代入公式得: 2256.072.1)(4r dr h H d d D --∆++= =2225.034072.1)5.236.46(40440⨯-⨯⨯-+⨯+
=96mm
二 确定拉深次数
结论:此零件需3次拉深。

三 计算各次拉深的工序件尺寸
结论:此零件需3次拉深。

三 计算各次拉深的工序件尺寸
四工序件设计尺寸的计算
五拉深工艺方案的确定
方案一:落料→首次拉深→第二次拉深→最后一次次拉深(单工序冲模)→切边
方案二:落料、首次拉深复合(复合模)→第二次拉深→最后一次拉深→切边
方案1 模具结构简单,压力机吨位可较小,但需要五副模具才能完成零件的加工,生产率低,难以满足大批量生产要求。

方案2 采用落料、首次拉深复合模,所需压力的的吨位较大,用四副模具即可完成加工,操作方便,生产率高,能满足大批量生产要求。

结论:采用方案2
第三组:廖忠景。

圆筒形拉深件工序件尺寸计算

圆筒形拉深件工序件尺寸计算

例:试对图所示圆筒形件进行拉深工艺计算,材料为L3,壁厚0.5mm 。

圆筒形拉深件解:1.确定修边余量Δh 该件H =90mm ,H/d =1.8,查表2-37得Δh =5mm 。

则拉深高度H =90+5=95mm 。

2.计算毛坯直径由于板厚t 小于1mm ,故计算毛坯直径可直接用工件图所注尺寸计算,不需按中心层尺寸计算。

D =2222256.072.14r rd H d d --+=225.056.0505.072.19550450⨯-⨯⨯-⨯⨯+=146.53.确定拉深次数按毛坯相对厚度t/D =0.5/146.5=0.34%和工件相对高度H/d =95/50=1.9,查表4-15得拉深次数n =3。

初步确定需要三次拉深。

考虑到工件圆角半径为0.5mm ,故需增加一次整形工序。

4.计算各次工序件直径考虑到板料为软铝l3,拉深系数按表4-11中值减小1.5%计算,初步确定三次拉深的拉深系数分别为:m 1=0.54,m 2=0.77,m 3=0.79,初步计算各次拉深工序件直径为:1.489.6079.09.601.7977.01.795.14654.023312211=⨯===⨯===⨯==d m d d m d D m d第三次拉深直径已小于工件的直径,需调整各次的拉深系数,取m 1=0.55,m 2=0.78,m 3=796.078.055.05.1465021=⨯=m m D d因此得各次拉深工序件直径为:508.62796.08.626.8078.06.805.14655.023312211=⨯===⨯===⨯==d m d d m d D m d5.选取凸模与凹模的圆角半径An Tn Ai Ai A r r r r t d D r )8.0~7.0()8.0~7.0(5.55.0)505.146(8.0)(8.011===⨯-=-=-计算各次拉深凸模与凹模的圆角半径并取整结果为:mm r mmr mmr mmr mmr mmr T T T A A A 345456321321======6.计算各次工序件的高度将D =146.5;d 1=80.6、r 1=5;d 2=62.8、r 2=4;d 3=50、r 3=3分别代入如下公式: )56.072.1(4122n n n n n n d r r d d D H ++-=可计算出:H 1=48.6mmH 2=71.5mmH 3=96.1mm计算拉深工序件的高度是为了设计再拉深模时确定压边圈的高度,再拉深模压边圈的高度应大于前道工序件的高度。

拉深件展开计算公式

拉深件展开计算公式

拉深件展开计算公式
【原创版】
目录
1.拉深件的定义和重要性
2.拉深件展开计算公式的概述
3.拉深件展开计算公式的推导过程
4.拉深件展开计算公式的应用实例
5.拉深件展开计算公式的优缺点分析
正文
1.拉深件的定义和重要性
拉深件是一种将金属板材通过压力作用下,使其产生塑性变形,从而形成所需形状的零件。

拉深件在各类机械、电子、汽车等行业中有着广泛的应用,是金属加工领域的重要研究内容。

2.拉深件展开计算公式的概述
拉深件展开计算公式是用于计算拉深件在展开状态下的尺寸的公式。

通过该公式,可以方便地计算出拉深件在展开状态下的尺寸,从而为后续的加工提供依据。

3.拉深件展开计算公式的推导过程
拉深件展开计算公式的推导过程涉及到较复杂的数学运算,其基本思想是根据拉深件在展开状态下的尺寸,通过一系列的数学变换,推导出拉深件在展开状态下的尺寸与原始板材尺寸之间的关系。

4.拉深件展开计算公式的应用实例
例如,假设我们有一块边长为 a 的正方形金属板,希望通过拉深工艺将其制成一个底面直径为 b,高为 h 的圆柱形零件。

我们可以通过拉
深件展开计算公式,计算出在展开状态下,正方形金属板的尺寸,从而为后续的拉深加工提供依据。

5.拉深件展开计算公式的优缺点分析
拉深件展开计算公式的优点在于,它可以方便地计算出拉深件在展开状态下的尺寸,为后续的加工提供准确的依据。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3)凸、凹模工作部分尺寸及公差 对于最后一道工序的拉深模 当零件尺寸标注在外形时,以凹模为基准,工作部分尺寸为:
D A ( D max 0 . 75 )
A 0
D T ( D max 0 . 75 Z )
0
T
当零件尺寸标注在内形时,以凸模为基准,工作部分尺寸为:
正反拉深比较:
1)反拉深时,材料的流动方向与正拉深相反,有利于抵消拉深时 形成的残余应力。 2)反拉深时,材料的弯曲与反弯曲次数较少,加工硬化也少,有 利于成形。 3)反拉深时,毛坯与凹模接触面比正拉深大,材料的流动阻力也 大,材料 不易起皱。 4)反拉深时,其拉深力比正拉深力大20% 。 5)反拉深的拉深系数不能太大,否则凹模壁厚过薄,强度不足。 反拉深主要用于板料较薄的大件和中等尺寸零件的拉深,反拉深后 圆筒的最小直径为(30-90)t,圆角半径r>(2-6)t。
当拉深工作行程较大,尤其落料拉深复合时,应使工艺
力曲线位于压力机滑块的许用压力曲线之下。 在实际生产中,可以按下式来确定压力机的公称压力 F g : 浅拉深 深拉深
F g (1 . 6 ~ 1 . 8 ) F z
F g (1 . 8 ~ 2 . 0 ) F z
D d
2
h 6 mm
4 d ( H h ) 1 . 72 dr 0 . 56 r
2
代已知条件入上式得D=98.2mm
(2)确定拉深次数 坯料相对厚度为
t D

2 98 . 2
100 % 2 . 03 % 2 %
按表可不用压料圈,但为了保险,首次拉深仍采用压料圈。 根据t/D=2.03%,查表6-6得各次极限拉深系数m 1 =0.50, m2=0.75,m3=0.78,m4=0.80,…。
三、圆筒形件拉深的压料力与拉深力
1. 压料装置与压料力 压料装置产生的压料力FY大小应适当: 在保证变形区不起皱的前提下,尽量选用小的压料力。 理想的压料力是随起皱可能性变化而变化。 任何形状的拉深件: FY= Ap 式中 A――压料圈下坯料的投影面积; p――单位面积压料力,p值可查表6.13;
二、拉深模间隙
盒形件拉深模圆角部分的间隙确定方法: 当零件尺寸标注在内形时,凹模平面转角的圆角半径为:
r AZ 0 . 414 r 0 . 1t 0 . 414
当零件尺寸标注在外形时,凸模平面转角的圆角半径为:
rTZ 0 . 414 rn 0 . 1t 0 . 414
式中
r rTZ Z / 2
F d i t b K 2
以后各次拉深
(i=2、3、…、n)
不采用压料圈拉深时
首次拉深
F 1 . 25 ( D d 1 ) t
b
以后各次拉深
F 1 . 3 ( d i 1 d i ) t
b
(i=2、3、…、n)
(2)压力机公称压力 单动压力机,其公称压力应大于工艺总压力 Fz。 工艺总压力为 F F F z Y 注意:
Hale Waihona Puke 三、拉深次数与工序件尺寸1.拉深次数的确定 当 m 总 >[m]时,拉深件可一次拉成,否则需要多次拉深。 其拉深次数的确定有以下几种方法: (1)查表(表6-9)法 (2)推算方法 (3 )计算方法
(3)计算方法
拉深次数
n 1
lg d 1 gm 1 D lg m 均
式中 d——冲件直径; D——坯料直径; m1——第一次拉深系数; m均——第一次拉深以后各次的平均拉深系数。(6-8)
D2 r 0 . 43 1 d 1 0 . 32 r1 h1 0 . 25 d1 d1 d1 D2 r2 h 2 0 . 25 d d 2 0 . 43 d d 2 0 . 32 r2 2 2 ... D2 r h n 0 . 25 d n 0 . 43 n d n 0 . 32 rn d dn n
第六章 拉深工艺与拉深模设计
概述
拉深: 又称拉延,是利用拉深模在压力机的压力作用下,将
平板坯料或空心工序件制成开口空心零件的加工方法。 它是冲压基本工序之一。可以加工旋转体零件,还可加工 盒形零件及其它形状复杂的薄壁零件。 拉深
不变薄拉深
变薄拉深
拉深模: 拉深所使用的模具。
拉深模特点:结构相对较简单,与冲裁模比较,工作部分有较 大的圆角,表面质量要求高,凸、凹模间隙略大 于板料厚度。
(i=2、3、…、n)
以上计算所得凹模圆角半径不应小于制件底部圆角半径。
2) 凸模圆角半径的确定 拉深凸模除最后一次应取与零件底部圆角半径r相等 的数值外,中间各次拉深可以取与凹模圆角相等或略小一些 的数值,且各次拉深凸模圆角半径应逐次减少。 拉深凸模可取: rT 1 ( 0 . 7 ~ 1 . 0 ) r A 1 但零件圆角半径如果小于拉深工艺性要求时,则凸模圆角 半径应按工艺性的要求确定(即rT≥t),然后通过整形工序 得到零件要求的圆角半径。
压料装置与压料力(续) 圆筒形件首次拉深
FY

4
D
2
( d 1 2 rA1 )
2
p
2
圆筒形件以后各次拉深
FY

4
d
2
i 1
( d i 2 r Ai )
p
(i=2、3、…、n)
2.拉深力与压力机公称压力
(1)拉深力 采用压料圈拉深时 首次拉深
F d 1t b K 1

d1=m1D=0.50×98.2mm=49.2mm
d2=m2d1=0.75×49.2mm=36.9mm d3=m3d2=0.78×36.9mm=28.8mm d4=m4d3=0.8×28.8mm=23mm 此时d4=23mm<28mm,所以应该用4次拉深成形。
筒形件在以后各次拉深时的特点及方法
1)筒形毛坯的壁厚及机械性能是不均匀的; 2)凸缘变形区保持不变,拉深终了以前,逐渐缩小; 3)拉深力在整个拉深过程中一直都在增加,直到拉深的最后阶段 才由最大值下降至零; 4)破裂常发生在拉深的终结阶段; 5)外缘有筒壁刚性支持,稳定性较好,在拉深最后阶段,才易起 皱; 6)极限拉深系数要比首次拉深大得多 。
(3) 半成品筒底圆角半径的确定 拉深时筒底内圆角半径由凸模圆角半径决定. 1) 凹模圆角半径的确定 首次(包括只有一次)拉深凹模圆角半径可按下式计算:
rA1 0 . 8 ( D d ) t
以后各次拉深凹模圆角半径应逐渐减小,一般按下式确定:
r Ai ( 0 . 6 ~ 0 . 8 ) r Ai 1
d T ( d min 0 . 4 )
0
T
d A ( d min 0 . 4 Z )
0
A
对于多次拉深,中间各工序的凸、凹模尺寸可按下式计算:
DA D
0
A
DT (D Z )
0
T
二、拉深模间隙
1.无压料圈的拉深模 其拉深间隙为: Z / 2 (1 ~ 1 . 1) t max 2.有压料圈的拉深模 其拉深间隙为: Z/2=(0.9~0.95)t 3.盒形件拉深模的间隙 当尺寸精度要求高时:Z/2=(0.9~1.05)t; 当精度要求不高时: Z/2=(1.1~1.3)t。 末道拉深取较小值。 最后一道拉深:圆角部分的间隙比直边部分大0.1t。
rn r AZ Z / 2
例1
求图所示筒形件的坯料尺寸及拉深各工序件尺寸。材料为10
钢,板料厚度t=2mm。 解:因t>1mm,故按板厚中径尺寸计算。
(1)计算坯料直径
根据零件尺寸,其相对高度为
H d 76 1 30 2 75 28 2 .7
查表6.2得切边量
坯料直径为
2.各次拉深工序件尺寸的确定
(1)工序件直径的确定
确定拉深次数以后,由表查得各次拉深的极限拉深系数,
适当放大,并加以调整,其原则是:
1)保证m1m2…mn= d D 2)使m1<m2<…mn 最后按调整后的拉深系数计算各次工序件直径: d1=m1D
d2=m2d1
dn=mndn-1
(2)工序件高度的计算 根据拉深后工序件表面积与坯料表面积相等的原则,可得 到如下工序件高度计算公式。计算前应先定出各工序件的底部 圆角半径
相关文档
最新文档