幂函数的性质与图像
幂函数图像及性质总结幂函数九个基本图像幂函数比较大小的方法

幂函数•冥函数的定义:一般地,函数y=xα叫做幂函数,其中x是自变量,α是常数。
幂函数的解析式:y=xα幂函数的图像:•幂函数图像的性质:所有幂函数在(0,+∞)上都有定义.①α>0,图像都过定点(0,0)和(1,1);在区间(0,+∞)上单调递增;②α<0,图像都过定点(1,1);在区间(0,+∞)上单调递减;③当O<a<l时,曲线上凸,当a>l时,曲线下凸.④当a=l时,图象为过点(0,0)和(1,1)的直线.⑤当a=0时,表示过点(1,1)且平行于x轴的直线(除去点(0,1)) 。
幂函数图象的其他性质:(1)图象的对称性:把幂函数的幂指数a(只讨论a是有理数的情况)表示成既约分数的形式(整数看作是分母1的分数),则不论a>0还是a<0,幂函数的图象的对称性用口诀记为:“子奇母偶孤单单;母奇子偶分两边;分子分母均为奇,原点对称莫忘记”,(2)图象的形状:①若a>0,则幂函数的图象为抛物线形,当a>l时,图象在[0,+∞)上是向下凸的(称为凸函数);当O<a<l时,图象在[o,+∞)上是向上凸的(称为凹函数).②若a<0,则幂函数y=x“的图象是双曲线形,图象与x轴、y轴无限接近,在(0,+∞)上图象都是向下凸的。
幂函数的单调性和奇偶性:对于幂函数(a∈R).(1)单调性当a>0时,函数在第一象限内是增函数;当a<0时,函数在第一象限内是减函数.(2)奇偶性①当a为整数时,若a为偶数,则是偶函数;若a为奇数,则是奇函数。
②当n为分数,即(p,q互素,p,q∈Z)时,若分母q为奇数,则分子p为奇数时,为奇函数;分子p为偶数时,为偶函数,若分母q为偶数,则为非奇非偶函数.。
幂函数图像与性质

证明: 任取x1, x2 [0,),且x1 x2 ,则
f (x1) f (x2)
x1
x2
(
x1
x2 )(
x1
x2 )
x1 x2
x1 x2 x1 x2
因为0 x1 x2 ,所以x1 x2 0, x1 x2 0,
所以f ( x1 ) f ( x2 ) 即幂函数f ( x) x在[0,)上的增函数.
(4)
1
y x2
(5)
y x1 (6) y x2
函数 y x的图像
定义域: R 值 域: R
奇偶性:在R上是奇函数 单调性:在R上是增函数
函数 y x2 的图像
定义域: R
值 域:[0,)
奇偶性:在R上是偶函数
单调性:在[0,)上是增函数 在(,0]上是减函数
6 α <0,在(0,+∞)上为减函数.
-1
(-1,-1)
-2
3、α为奇数时,幂函数为奇函
数,
-3
α为偶数时,幂函数为偶函
数.
-4
练习:利用单调性判断下列各值的大小。
(1)5.20.8 与 5.30.8
(2)0.20.3-2与 0.30.3-2
(3) 2.5 5 与2.7 5
解:(1)y= x0.8在(0,∞)内是增函数,
∵5.2<5.3 ∴ 5.20.8 < 5.30.8 (2)y=x0.3在(0,∞)内是增函数
∵0.2<0.3∴ 0.20.3 <0.30.3
(3)y=x-2/5在(0,∞)内是减函数
∵2.5<2.7∴ 2.5-2/5>2.7-2/5
幂函数的性质与像

幂函数的性质与像幂函数是一种数学函数,形式为f(x) = ax^n,其中a是常数,n是整数。
幂函数是数学中常见且重要的函数之一,具有多种性质和特点。
一、定义与基本性质幂函数的定义域是实数集,即对于任意实数x,都可以计算出幂函数的函数值。
在定义域内,幂函数具有以下基本性质:1. 如果n是正偶数,则当x趋近于正无穷时,幂函数趋近于正无穷;当x趋近于负无穷时,幂函数趋近于正无穷。
2. 如果n是正奇数,则当x趋近于正无穷时,幂函数趋近于正无穷;当x趋近于负无穷时,幂函数趋近于负无穷。
3. 如果n是负偶数,则当x趋近于正无穷时,幂函数趋近于0;当x趋近于负无穷时,幂函数趋近于0。
4. 如果n是负奇数,则当x趋近于正无穷时,幂函数趋近于正无穷;当x趋近于负无穷时,幂函数趋近于负无穷。
二、图像和对称性幂函数的图像通常具有一种对称性。
对于正指数函数(即n为正数),当a>0时,图像关于y轴对称;当a<0时,图像关于原点对称。
对于负指数函数(即n为负数),当a>0时,图像关于x轴对称;当a<0时,图像既不关于x轴对称也不关于y轴对称。
三、单调性和极值点幂函数的单调性与指数n的正负性有关。
当n为正数时,随着x的增大,幂函数会逐渐增大;当n为负数时,随着x的增大,幂函数会逐渐减小。
当指数n为偶数时,幂函数具有一个最小值点;当指数n为奇数时,幂函数既不具有最大值点也不具有最小值点。
四、渐近线和交点幂函数的图像通常会与x轴和y轴有交点,并且具有一条或两条渐近线。
对于正指数函数(即n为正数),当a>0时,幂函数与y轴交于点(0, a);当a<0时,幂函数与y轴交于点(0, a)。
当指数n为偶数时,幂函数具有一条水平渐近线,斜率为0;当指数n为奇数时,幂函数具有一条斜率为正(n为正数)或负(n为负数)的水平渐近线和一条斜率为正负相对的垂直渐近线。
五、函数图像的平移对于幂函数y = ax^n,若将x平移h个单位,则x变为x-h,函数变为y = a(x-h)^n。
幂函数图像及性质

幂函数图像及性质什么是幂函数?幂函数是指在极坐标或复平面上将某一点按某一规则移动,使其形成一种函数。
这种函数是关于某一点的未知函数,这一点可以表示为一个复数,且该复数可以表示某一点的坐标。
幂函数也可以用复数表示,其中一个具体的形式为:z =r^n*cos(θ+2πm) + ir^n*sin(θ+2πm),其中r 为极径,θ为极角,m为整数,n为实常数。
幂函数的图像是一条曲线,所以它也被称为曲线函数,它的图像可以根据x,y轴的定义方法来确定。
在极坐标系中,幂函数的形状一般是环状曲线,并且其形状受n值的影响很大,比如当n=1时,图像的形状为单个圆;当n=2时,图像的形状为集中的双圆;当n=3时,图像的形状为三角形;当n=4时,图像的形状为集中的四方形;当n=5时,图像的形状为五角星状等。
幂函数的性质可以用幂函数的微积分形式来说明,即dz/dr=n*r^(n-1),其中n 为实常数,r 为极径,z为极坐标系的一点的坐标,推导出dz/dr的值,可以用于表示幂函数的形状及特性。
此外,还可以用基本物理运算来说明,所谓幂函数是指坐标变换时r和θ之间存在一定的关系,此关系可以表示为r=f(θ),其中f(θ)是幂函数,这里的幂函数可以通过幂函数的大小因子或者指数来表示,而指数n就是幂函数的性质,只有当n>0或者n<0时,才能使幂函数表达出不同的性质。
幂函数在物理学中也被广泛使用,例如,在声学领域,幂函数可以用来描述声波的传播规律,这就是为什么音量大小是一个幂函数的原因。
此外,在光学领域,幂函数可以用来描述光的传播规律,例如,可以用来计算光的反射系数或者折射系数。
而在数学中,幂函数不仅表示曲线的性质,还可以用来研究复数的性质,以及形成更复杂的曲线。
以上就是我们关于幂函数图像及性质的简单介绍,幂函数是一种非常有趣的曲线函数,它在物理学,数学及光学领域有着重要的应用。
虽然它看起来很复杂,但它所提供的知识却是非常有价值的,只要我们多多使用幂函数,就能够获得丰富的经验和数学知识。
2.3 幂函数图像与性质

(指数函数)
y x1
(幂函数)
y 3x
(指数函数)
1
y x2
(幂函数)
y 5x
(指数函数)
y5 x
(幂函数)
幂函数的图象及性质
对于幂函数,我们只讨论 =1,2,3,1 , 2
-1时的情形。
五个常用幂函数的图像和性质
(1) y x (2) y x2 (3) y x3
2
(4,2)
1
(-1,1)
(1,1)
y=x-1
2、在第一象限内, k >0,在
4
6 k <0,在(0,+∞)上为减函数.
-1
(-1,-1)
-2
3、k为奇数时,幂函数为奇函数,
k为偶数时,幂函数为偶函数.
-3
-4
4、幂函数图像不过第四象限。
例3
若m
4
1 2
23 4
3 4… 27 64 …
3 2…
1
y=x 2
x
函数 y x3 的图像
定义域: R 值 域: R
奇偶性:在R上是奇函数 单调性:在R上是增函数
1
函数 y x 2 的图像
定义域:[0,)
值 域:[0,)
奇偶性:非奇非偶函数
单调性:在[0,)上是增函数
4
3
2
1
(1,1)
-6
意
2、定义域与k的值有关系.
例1、下列函数中,哪几个函
数是幂函数? 答案:(1)(4)
(1)y = 1
x2
(3)y=2x
(2)y=2x2
(4)y=
1 x
(5) y=x2 +2
幂函数的图像和性质

幂函数的图像和性质幂函数的图像和性质是指关于某一变量x的多项式形式为y=ax^n(a≠0)的函数,其中a是实数,n∈Z,称为幂函数。
由于幂函数有着独特的形式,它的图像和性质也有许多独特之处。
一、图像1. 对于任意实常数a>0,n>0,y=ax^n的图像是一条以原点为极坐标的曲线;2. 对于任意实常数a>0,n<0,y=ax^n的图像是一条以x轴上的无穷远点为极坐标的曲线;3. 对于任意实常数a<0,n>0,y=ax^n的图像是一条以y轴上的无穷远点为极坐标的曲线;4. 对于任意实常数a<0,n<0,y=ax^n的图像是一条以原点为极坐标的曲线。
二、性质(1)当n>0时,y=ax^n的图像在x轴上的对称轴是x=0,且函数值y随x的增加而不断增大,直至无穷大;(2)当n<0时,y=ax^n的图像在x轴上的对称轴是x=0,且函数值y随x的增加而不断减小,直至无穷小;(3)当n=0时,y=ax^n即为常数函数y=a,其图像是一条水平线;(4)当n>0时,y=ax^n在x轴上的渐近线是y=0,其图像开口向上;(5)当n<0时,y=ax^n在x轴上的渐近线是y=0,其图像开口向下;(6)对于任意实数m,y=ax^n的图像关于y=m的对称轴是x=(m/a)^(1/n);(7)当n>0时,在y轴上截取y=ax^n的图像时,可以得到一段区间[0, +∞],在这段区间内,函数值y 随x的增加而增大;(8)当n<0时,在y轴上截取y=ax^n的图像时,可以得到一段区间(-∞, 0],在这段区间内,函数值y 随x的增加而减小;三、总结幂函数的图像和性质是指函数形式为y=ax^n(a≠0)的函数的图像和性质,其中a是实数,n∈Z。
幂函数的性质有:对称轴、渐近线、函数值随x的变化而变化等,此外,图像表明幂函数的变化趋势,可以直观地看出函数值y 随x的变化趋势,从而有助于理解函数的特点。
幂函数图像

y=x3 R R 奇 增
(1,1)
yx
1 2
y=x-1
| R且x 0 xx y|y R且y 0
定义域 值域 奇偶性 单调性
[0,+∞) [0,+∞) 非奇非 偶 增
(1,1)
奇 (0,+∞)减 (-∞,0)减
(1,1)
公共点 (1,1)
幂函数的性质:
幂函数的定义域、奇偶性、单调性,因函数式 中α的不同而各异. 1.所有的幂函数在(0,+∞)都有定义,并且函数 图象都通过点(1,1); 2.如果α >0,则幂函数的图象过点(0,0),(1,1) α >1 并在(0,+∞)上为增函数; 3.如果α <0,则幂函数的图象过点(1,1),并在 α <0 (0,+∞)上为减函数;
1 1
2
4
6
8
6
1.6 2.5 3.3 4
4
(8.4)
2
(4,2.5) (1,1)
-10
-5
o
5
10
x
-2
10
y
8
x y
0 0
1 1
2
4
6
8
6
1.6 2.5 3.3 4
4
(8.4)
2
(4,2.5) (1,1)
-10
-5
o
5
10
x
-2
例2:讨论函数 y x 的定义域,作出
2 3
探 究 与 发 现
O
X
画出函数在第一象限的图象后,再根据函数 的奇偶性,画出函数在其他象限还有的图象
练习: 如图所示,曲线是幂函数 y = xk 在第一象限
幂函数图像与性质

例 1.证明幂 f(x函 ) 数 x在 [0, )上是增 . 函
证 : 任 x 1 明 ,x 2 [ 取 0 , ) 且 , x 1 x 2 , 则
f(x1)f(x2)x1x2
(
x1
x2)( x1 x1 x2
x2)
x1 x2 x1 x2
如果α<0,则幂函数
α<0
在(0,+∞)上为减函数。
练习:利用单调性判断下列各值的大小。
(1)5.20.8 与 5.30.8 ((23)) 0.20.-32 与 0.3-20.3
2.5 5 与 2.7 5
解:(1)y= x0.8在(0,∞)内是增函数,
∵5.2<5.3 ∴ 5.20.8 <
5.3(02.8)y=x0.3在(0,∞)内是增函
数
∵(30).y2=<x0-.23/5∴在0(.02,0∞.3)内<0是.3减0.3函数
单调性:
在{x x 0}上是奇函数
在(0,)上是减函数
在(,0)上是减函数
x y=x3
y=x1/2
… -2 -1 0 … - -1 0 … 8/ / 0
y 8 6 4
2
-3 -2 -1 0 1 -2 -4 -6 -8
12 18 12 y= x3
23 4
3 4… 27 64 …
3 2…
1
y=x 2
增函数
在(0,+∞) 上是增函数
在( -∞,0), (0, +∞)上 是减函数
公共点
(1,1)
y x2
(-2,4)
y x3
4
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
幂函数的一般形式为y = x^n,其中n 是一个实数,x 是自变量,y 是因变量。
以下是幂函数的主要性质:
1.当n > 0 时,幂函数是增函数;当n < 0 时,幂函数是减函数。
2.当n 是偶数时,幂函数的图像关于y 轴对称;当n 是奇数时,幂函
数的图像关于原点对称。
3.当n > 1 时,幂函数的图像在第一象限和第三象限上都是上升的;当0
< n < 1 时,幂函数的图像在第一象限和第三象限上都是下降的。
4.当n > 1 时,幂函数的图像在x 轴正半轴上有一个水平渐近线,而在
x 轴负半轴上没有水平渐近线;当0 < n < 1 时,幂函数的图像在x 轴正半轴上没有水平渐近线,而在x 轴负半轴上有一个水平渐近线。
5.幂函数的导数为y' = nx^(n-1),因此在n > 0 时,幂函数在定义域内处
处可导。
以下是一些常见幂函数的图像:。