经典幂函数及其性质.ppt

合集下载

3.3幂函数(共43张PPT)

3.3幂函数(共43张PPT)

解决幂函数图象问题应把握的原则 (1)依据图象高低判断幂指数大小,相关结论为:①在(0,1)上,指数越大, 幂函数图象越靠近 x 轴(简记为指大图低);②在(1,+∞)上,指数越大,幂 函数图象越远离 x 轴(简记为指大图高). (2)依据图象确定幂指数 α 与 0,1 的大小关系,即根据幂函数在第一象限内 的图象(类似于 y=x-1 或 y=x12或 y=x3)来判断.
()
解析:选 D.由题意设 f(x)=xn, 因为函数 f(x)的图象经过点(3, 3), 所以 3=3n,解得 n=12, 即 f(x)= x, 所以 f(x)既不是奇函数,也不是偶函数, 且在(0,+∞)上是增函数,故选 D.
4.函数 y=x-3 在区间[-4,-2]上的最小值是_____________. 解析:因为函数 y=x-3=x13在(-∞,0)上单调递减, 所以当 x=-2 时,ymin=(-2)-3=(-12)3=-18. 答案:-18
B.-3 D.3
()
【解析】 (1)②⑦中自变量 x 在指数的位置,③中系数不是 1,④中解析式 为多项式,⑤中底数不是自变量本身,所以只有①⑥是幂函数.
(2)因为函数 y=(m2+2m-2)xm 为幂函数且在第一象限为增函数,所以 m2+2m-2=1, m>0, 所以 m=1.
【答案】 (1)B (2)A
所以( 2)-32>( 3)-32.
6
6
6
6
(3)因为 y=x5为 R 上的偶函数,所以(-0.31)5=0.315.又函数 y=x5为[0,
+∞)上的增函数,且 0.31<0.35,
6
6
6
6
所以 0.315<0.355,即(-0.31)5<0.355.

高一数学幂函数的性质3PPT课件

高一数学幂函数的性质3PPT课件

以上问题中的函数有什么共同特征?
(1) y=x (2) y=x2 (3) y=x1/2
• (1)都是函数; • (2)均是以自变量为底的
幂;• (3)指数为常数;源自(4) y=x3 (5) y=x-1
• (4)自变量前的系数为1; • (5)幂前的系数也为1。
上述问题中涉及的函数,都是形如y= x 的函数。
补充练习
1
求 函 数 y(x2 4x8)2 的 值 域
提问与解答环节
Questions and answers
16
结束语
感谢参与本课程,也感激大家对我们工作的支持与积极 的参与。课程后会发放课程满意度评估表,如果对我们
课程或者工作有什么建议和意见,也请写在上边
17
感谢您的观看与聆听
本课件下载后可根据实际情况进行调整
整体概况
+ 概况1
您的内容打在这里,或者通过复制您的文本后。
概况2
+ 您的内容打在这里,或者通过复制您的文本后。
概况3
+ 您的内容打在这里,或者通过复制您的文本后。 2
我们先看下面几个具体问题:
(1)如果张红买了每千克1元的蔬菜W千克,那么她需要支付 __P_=_W__元____ p是w的函数
(2)如果正方形的边长为 a,那么正方形的面积_S_=__a_²
一般地,函数y= x叫做幂函数,其中x是自
变量,α是常数.
注意:幂函数中α的可以为任意实数.
判一判
判断下列函数是否为幂函数.
(1) y=x4
(2) y 1 x2
(5) y=2x2 (6) y=x3+2
(3) y= -x2
1
(4) y x 2

第三章3.3幂函数PPT课件(人教版)

第三章3.3幂函数PPT课件(人教版)

1.幂函数的概念 一般地,函数 y=xα 叫做幂函数,其中x是自变量,α是常数. 2.幂函数的图象和性质
拓展:对于幂函数y=xα(α为实数)有以下结论: (1)当α>0时,y=xα在(0,+∞)上单调递增;(2)当α<0时,y=xα在(0,+∞)上单 调递减;(3)幂函数在第一象限内指数的变化规律:在直线x=1的右侧,图象从 上到下,相应的幂指数由大变小.
已知 n 取±2,±12四个值,则相应于 C1,C2,C3,C4 的 n 依次为(
)
A.-2,-12,12,2
B.2,12,-12,-2
C.-12,-2,2,12
D.2,12,-2,-12
解析 根据幂函数 y=xn 的性质,在第一象限内的图象当 n>0 时,n 越大,y=xn
递增速度越快,故 C1 的 n=2,C2 的 n=12;当 n<0 时,|n|越大,曲线越陡峭,所
奇偶性 _奇___
_偶___
_奇___ __非__奇__非__偶__
__奇__
x∈[0,+∞), 单调性 _增___ __增__
x∈(-∞,0], __减__
_增___
__增__
x∈(0,+∞),_减___ x∈(-∞,0),_减___
公共点
都经过点(__1_,__1_)___
教材拓展补遗
[微判断] 1.函数y=-x2是幂函数.( × )
【训练1】 若函数f(x)是幂函数,且满足f(4)=16,则f(-4)的值等于________. 解析 设f(x)=xα,因为f(4)=16,∴4α=16,解得α=2,∴f(-4)=(-4)2=16. 答案 16
题型二 幂函数的图象及其应用 关键取决于α>0,α<0

高中数学课件-幂函数

高中数学课件-幂函数

奇偶性 奇函数
偶函数
奇函数
非奇非 偶函数
奇函数
x∈[0,+∞)
单调性 增
时,增 x∈(-∞,0]


时,减
x∈[0,+∞) 时,增 x∈(-∞,0] 时,减
主页
[难点正本 疑点清源] 1.在(0,1)上,幂函数中指数越大,函数图象越靠近 x 轴, 在(1,+∞)上幂函数中指数越大,函数图象越远离 x 轴.

n

b 2a
n
f (m) 0 b2 4ac 0 f (n) 0
f(x)min>0(x∈[m, n])
④f(x)=ax2+bx+c<0(a>0)

[m,
n]
上恒成立
f f
(m) 0 (n) 0
f(x)max<0(x∈[m, n])
幂函数的图像与性质
知识点梳理
1.幂函数的概念 一般地,我们把形如 y=xα 的函数称为幂函数,其中 x 是自变量,α 是常数.
变式训练 4
已知幂函数 f(x)= x(m2 m)1 (m∈N*)
(1)试确定该函数的定义域,并指明该函数在其定义域上的单 调性; (2)若该函数还经过点(2, 2),试确定 m 的值,并求满足条 件 f(2-a)>f(a-1)的实数 a 的取值范围.
解 (1)m2+m=m(m+1),m∈N*, 而 m 与 m+1 中必有一个为偶数, ∴m(m+1)为偶数.
∴m>-1+ 5.
[8 分]
由②得 Δ2=(-m)2-4<0,即-2<m<2.
[12 分]
综上可得 5-1<m<2.
[14 分]

幂函数ppt

幂函数ppt

档消耗一个共享文档下载特权。
年VIP
月VIP
连续包月VIP
享受100次共享文档下载特权,一次 发放,全年内有效
赠每的送次VI的发P类共放型的享决特文定权档。有下效载期特为权1自个V月IP,生发效放起数每量月由发您放购一买次,赠 V不 我I送 清 的P生每 零 设效月 。 置起1自 随5每动 时次月共续 取发享费 消放文, 。一档前次下往,载我持特的续权账有,号效-自
2.用描点法画出①y=x;②y=x2;③y=x3;
1
④ y x 2 ;⑤y=x-1的图象并指出其特点.
【解析】 (1)图象如下图所示:
(2)观察上面的函数图象会发现以下特征:
①图象都过点(1,1).
1
②在第一象限内函数y=x,y=x2,y=x3,y x2
的图象自左向
右看都是上升的,也就是在[0,+∞)上都是增函数,且这几种函数的
特权福利
特权说明
VIP用户有效期内可使用VIP专享文档下载特权下载或阅读完成VIP专享文档(部分VIP专享文档由于上传者设置不可下载只能 阅读全文),每下载/读完一篇VIP专享文档消耗一个VIP专享文档下载特权。
年VIP
月VIP
连续包月VIP
VIP专享文档下载特权
享受60次VIP专享文档下载特权,一 次发放,全年内有效。
0下载券文档一键搜索 VIP用户可在搜索时使用专有高级功能:一键搜索0下载券文档,下载券不够用不再有压力!
内容特 无限次复制特权 权 文档格式转换
VIP有效期内可以无限次复制文档内容,不用下载即可获取文档内容 VIP有效期内可以将PDF文档转换成word或ppt格式,一键转换,轻松编随时随地彰显尊贵身份。
专属客服
VIP专属客服,第一时间解决你的问题。专属客服QQ:800049878

幂函数PPT课件

幂函数PPT课件
2 1 0 0 1 2

图象性质应用(奇偶性和单调性)
1.画出幂函数 y x 的图象,并指出它 的单调性 2.比较下列各组数的大小. (1) 1.5 ,1.7 ,1 (2) ( 2) ,( 3) ,( 5)
3 7 3 7 3 7
1 3
1 3
1 3
小结:



1.学习了幂函数的概念; 2.利用“还原根式”求幂函数定义 域的方法; 3.利用幂函数在第一象限内的图象 特征,并会根据奇偶性完成整个函 数的图象。 4.利用函数的单调性比较几个“同 指数不同底数”的幂的大小.
一 幂函数的定义:
我们把形 是实常数。
x 是自变量,
对定义的了解
1 例1:下列函数 : 1 y 3 ;2 y 3 x 2; x (3) y x 4 x 2 ;(4) y 个数为()
3
x 2 ; 其中幂函数的
A.1 C.3
答案:B
B.2 D.4
对定义的了解
例2.若函数y=(k2-k-5)x2是幂函 数,则实数k的值是( ) A.3 B.-2 C.3或-2 D.k≠3且k≠-2
解:由题意可知: k2-k-5=1 所以k=3或k=-2
小组讨论,归纳 幂函数.gsp
——通过对图象位置变化的观 察,我们可以发现哪些规律性 的结论?
课后作业
(1)若(a+1)-2>(3-2a)-2,求实数a 的取值范围。 m2-2m-3(m∈N) (2)已知幂函数y=x 的图像与x轴、y轴都没有公共点, 且关于y轴对称,求m的值。
问题探究:
整数m, n的奇偶性与幂函数 y x (m, n Z , 且m, n互质)的定 义域以及奇偶性有什么 关系?

幂函数-课件ppt

幂函数-课件ppt
5.已知点 33,3 3在幂函数 f(x)的图象上,则 f(x)的定义域
为___(_-__∞_,__0_)_∪__(_0_,__+__∞_)___,奇偶性为_____奇__函__数________, 单调减区间为__(_-__∞_,__0_)_和__(_0_,__+__∞_)_____.
二次函数的解析式 已知二次函数 f(x)有两个零点 0 和-2,且它有最 小值-1. (1)求 f(x)解析式; (2)若 g(x)与 f(x)图象关于原点对称,求 g(x)解析式. [课堂笔记]
(1)幂函数的形式是 y=xα(α∈R),其中只有参数 α,因此只 需一个条件即可确定其解析式. (2)若幂函数 y=xα(α∈R)是偶函数,则 α 必为偶数.当 α 是 分数时,一般将其先化为根式,再判断.
(3)若幂函数 y=xα 在(0,+∞)上单调递增,则 α>0,若在(0, +∞)上单调递减,则 α<0.
分类讨论思想在求二次函数最值中的应用
(2014·山东青岛模拟)已知 f(x)=ax2-2x(0≤x≤1),
求 f(x)的最小值. [解] (1)当 a=0 时,f(x)=-2x 在[0,1]上递减, ∴f(x)min=f(1)=-2. (2)当 a>0 时,f(x)=ax2-2x 图象的开口方向向上,且对称 轴为 x=1a.
在(-∞,-2ba)上是 ___增_____函数;在(-
2ba,+∞)上是增函数 2ba,+∞)上是减函数
最值
a>0
当 x=-2ba时,
ymin=
4ac-b2 4a
a<0
当 x=-2ba时, ymax=4ac4-a b2
1.已知函数 f(x)=ax2+x+5 的图象在 x 轴上方,则 a 的取

高一数学幂函数ppt课件.ppt

高一数学幂函数ppt课件.ppt

(4)只有1项; (5)这些例子中涉及的函数都是形 能开始 对症下 药,然 后药到 病除。 近年来 国家对 扶贫工 作高度 重视, 已经展 开了“ 精准扶 贫”项 目
幂函数的定义
一 般 地 ,函 数 y x 叫 做 幂 函 数 ,其 中 x 是 自 变 量 ,
下面我们一起来尝试幂函数性质的简单应用:
(基础练习)例4:写出下列函数的定义域,并指出它们的奇偶
性和单调性.
(1)y x4
1
(2) y x 4
(3)y x3
解:(1)函数 y x4的定义域为R,它是偶函数,在 [0,)上是增函数,
在(,0)上是减函数.
1
(2)函数 y x 4 的定义域为[0,),它是非奇非偶函数,在[0,)上是增函数.
(3)yx2 x(×)(4)yx2 (1 ×)
(5)y x2
(×) (6)y
1 x3
(√)
[总结]要判断一个函数是幂函数,判断的标准是它的定
义.根据定义,可以把幂函数的形式特征概括为:两个系
数为1,只有一项.
4
认识到了贫困户贫困的根本原因,才 能开始 对症下 药,然 后药到 病除。 近年来 国家对 扶贫工 作高度 重视, 已经展 开了“ 精准扶 贫”项 目
认识到了贫困户贫困的根本原因,才 能开始 对症下 药,然 后药到 病除。 近年来 国家对 扶贫工 作高度 重视, 已经展 开了“ 精准扶 贫”项 目
(巩固提升)例3:已知函数f(x)(m 22m )xm 2m 1,m为何值
时,是:(1)正比例函数;(2)反比例函数;(3)二次
函数;(4)幂函数.
解 :
(感受理解)例5:比较下列各组中两个值的大小,并说明理由.
1
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

-27
-2.5 -15.63
-2
-8
-1.5 -3.375
-1
-1
-0.5 -0.125
0
0
0.5
0.125
1
1
1.5
3.375
2
8
2.5 15.625
3
27
30
28
26
24
22
20
18
16
14
12
108Biblioteka 6420
-4 -3 -2 -1 -2 0 1 2 -4
-6
-8
-10
-12
-14
-16
-18
-20
.精品课件.
2
一、幂函数的概念的引入
阅读课本第85页的具体实例(1)-(5), 思考下列问题:
1.它们的解析式分别是什么?若用 x 表示自
变量, y 表示 x 的函数,上述五个函数解析式
分别是什么?
.精品课件.
3
问题引入:函数的生活实例
问题1:如果张红购买了每千克1元的苹果w千克,
那么她需要付的钱数p = w元,这里p是w的函数 。y x
练习1:判断下列函数哪几个是幂函数?
(1)y 3x; (2) y x2; (3) y 2x2; (4) y x2 1;
(5) y 1
思考:指数函数y=ax与幂
x
函数y=xα有什么区别?
答案(2)(5)
.精品课件.
6
2.已知幂函数y = f (x)的图象经过点
(3 ,3 ),求这个函数的解析式。
问题2:如果正方形的边长为a,那么正方形的面积
是S = a², 这里S是a的函数。
y x2
问题3:如果立方体的边长为a,那么立方体的体积
是V = a³, 这里V是a的函数 。
y
3
x
问题4:如果1 正方形场地的面积为S,那么正方形的边
长问题a=5:,S如2果某这人里tas是内S骑的车函行数。进了1km,那么他y 骑x车12
的平均速度v = t1 km/s
,这里v是t的函数 。
y
1
x
若将它们的自变量全部用x来表示,函数值用
y来表示,则它们.的精品课函件. 数关系式将是:y
a
x4
以上问题中的函数有什么共同特征?
(1) y=x (2) y=x2
(1)都是函数;
(2)均是以自变量为底的 幂;
(3) y=x1/2
(3)指数为常数;
-22
-24
-26
.精品课件.
-28 -30
34 14
函数 y x3 的图像
定义域: R
值 域: R
奇偶性:在R上是奇函数
单调性:在R上是.精增品课件函. 数
15
x
1
1
y x2 用描点法作出函数y x2 的图象.
0
0
1
1
2
1.414
3
1.732
5
4
2
4
5
2.236
6
2.449
3
7
2.646
a1 2
1
y x2
.精品课件.
8
1
3.如果函数f (x) = (m2+2m-2) x m2 1 2n 3
是幂函数,求实数m,n的值。
解:由题意得
m2 2m 2 1 m2 1 0 2n 3 0
解得m 3, n 3 .
.精品课件.
2
9
二、幂函数与指数函数比较
名称
式子
常数
x
y
指数函数: y=a x
分析:例题要求函数的解析式,首先由题知, 此函数是幂函数,也就符合幂函数的一般形 式 y x ,而且我们知道图像(过2点, 2 )
只要把点带入解析式中即可求出a,也就可以求 出函数的解析式。
待定系数法
.精品课件.
7
解:设所求幂函数的解析式为y x
(3, 3)因为点在函数图像上,所以代
入解析式得: 3 3a
(4)
1
y x2
(5)
y x1
.精品课件.
19
(-2,4)
4
y=x3 (2,4)
y=x2
3
y=x
1
y=x 2
2
(4,2)
1
(-1,1)
(1,1)
y=x-1
-6
-4
-2
2
4
6
-1
(-1,-1)
-2
-3
-4
.精品课件.
20
幂函数的定义域、值域、奇偶性和单调性,随常 数α取值的不同而不同.
1
y = x y = x2 y= x3 y x 2
幂函数及其性质
.精品课件.
1
学习目标
一、知识目标:
1.通过实例了解并记住幂函数的概念. 2.结合几个常见幂函数的图象观察图象特征并能
自行发现幂函数的性质. 3.记住幂函数的性质并会应用. 能力目标:
通过观察图象特征来归纳函数性质, 从而培养学生数形结合的能力. 情感目标:
通过观察图象体会数学的简洁美.
(a>0且a≠1)
幂函数: y= xα
a为底数 α为指数
指数 底数
幂值 幂值
判断一个函数是幂函数还是指数函数的切入点:
看未知数x是指数还是底数
指数函数 .精品课件.
幂函1数0
二、五个常用幂函数的图像和性质
(1) y x (2) y x2 (3) y x3
(4)
1
y x2
(5)
y x1
.精品课件.
(4) y=x3
(4)自变量前的系数为1;
(5) y=x-1
(5)幂前的系数也为1。
一般地,函数y= x叫做幂函数,其中x是自
变量,α是常数.
注意:幂函数中α的可以为任意实数.
.精品课件.
5
一、幂函数的定义: 一般地,我们把形如 y x 的函数叫做
幂函数,其中 x为自变量, 为常数。
y x 中 x前面的系数是1,后面没有其它项。
y x1
定义域 R 值域 R
R
R [0,+∞) ,0 (0,+)
[0,+∞) R [0,+∞) ,0 (0,+)
奇偶性 奇函数 偶函数
奇函数
非奇非偶 函数
奇函数
单调性 公共点
在(-∞,0] 在R上 上是减函 是增函 数,在(0, 数 +∞)上是
单调性:在[0,)上.精品是课件.增函数
17
函数 y x1 的图像
定义域:{x x 0}
值 域:{y y 0}
奇偶性:在{x x 0}上是奇函数
单调性:在(0,)上是减函数
在(,0)上.精是品课件减. 函数
18
下面将5个函数的图像画在同一坐标系中
(1) y x (2) y x2 (3) y x3
2
8
2.828
9
3
1
10
3.162
0
11 12
3.317 3.464
--11 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
13
3.606
14
3.742
15
3.873
16
4
.精品课件.
16
1
函数 y x 2 的图像
定义域:[0,)
值 域: [0,)
奇偶性: 非奇非偶函数
11
函数 y x的图像
定义域: R
值 域: R
奇偶性:在R上是奇函数
单调性:在R上是.精增品课件函. 数
12
函数 y x2 的图像
定义域: R
值 域:[0,)
奇偶性:在R上是偶函数
单调性:在[0,)上是增函数
在(,0]上.精是品课件减. 函数
13
用描点法作出函数y=x3的图象.
x
y=x3
-3
相关文档
最新文档