幂函数的性质及其应用
专题幂函数以及函数的应用(解析版)

专题10 幂函数以及函数的应用【考点预测】 考点一、幂函数概念形如y x α=的函数,叫做幂函数,其中α为常数. 考点诠释:幂函数必须是形如y x α=的函数,幂函数底数为单一的自变量x ,系数为1,指数为常数.例如:4223,1,(2)y x y x y x ==+=-等都不是幂函数.考点二、幂函数的图象及性质 1.作出下列函数的图象:(1)y x =;(2)12y x =;(3)2y x =;(4)1y x -=;(5)3y x =.考点诠释:幂函数随着α的取值不同,它们的定义域、性质和图象也不尽相同,但它们有一些共同的性质: (1)所有的幂函数在(0,)+∞都有定义,并且图象都过点()1,1;(2)0α>时,幂函数的图象通过原点,并且在区间[0,)+∞上是增函数.特别地,当1α>时,幂函数的图象下凸;当01α<<时,幂函数的图象上凸;(3)0α<时,幂函数的图象在区间(0,)+∞上是减函数.在第一象限内,当x 从右边趋向原点时,图象在y 轴右方无限地逼近y 轴正半轴,当x 趋于+∞时,图象在x 轴上方无限地逼近x 轴正半轴.2.作幂函数图象的步骤如下: (1)先作出第一象限内的图象;(2)若幂函数的定义域为(0,)+∞或[0,)+∞,作图已完成; 若在(0)-∞,或0]-∞(,上也有意义,则应先判断函数的奇偶性 如果为偶函数,则根据y 轴对称作出第二象限的图象; 如果为奇函数,则根据原点对称作出第三象限的图象.3.幂函数解析式的确定(1)借助幂函数的定义,设幂函数或确定函数中相应量的值. (2)结合幂函数的性质,分析幂函数中指数的特征.(3)如函数()a f x k x =⋅是幂函数,求()f x 的表达式,就应由定义知必有1k =,即()a f x x =. 4.幂函数值大小的比较(1)比较函数值的大小问题一般是利用函数的单调性,当不便于利用单调性时,可与0和1进行比较.常称为“搭桥”法.(2)比较幂函数值的大小,一般先构造幂函数并明确其单调性,然后由单调性判断值的大小. (3)常用的步骤是:①构造幂函数;②比较底的大小;③由单调性确定函数值的大小. 考点三、解决实际应用问题的步骤: 第一步:阅读理解,认真审题读懂题中的文字叙述,理解叙述所反映的实际背景,领悟从背景中概括出来的数学实质,尤其是理解叙述中的新名词、新概念,进而把握住新信息.第二步:引进数学符号,建立数学模型设自变量为x ,函数为y ,并用x 表示各相关量,然后根据问题已知条件,运用已掌握的数学知识、物理知识及其他相关知识建立函数关系式,将实际问题转化为一个数学问题,实现问题的数学化,即所谓建立数学模型.第三步:利用数学的方法将得到的常规数学问题(即数学模型)予以解答,求得结果. 第四步:再转译为具体问题作出解答.【典型例题】例1.(2022·全国·高一单元测试)已知幂函数()()23122233m m f x m m x++=-+为奇函数.(1)求函数()f x 的解析式;(2)若()()132f a f a +<-,求a 的取值范围. 【解析】(1)由题意,幂函数()()23122233m m f x m m x++=-+,可得2331m m -+=,即2320m m -+=,解得1m =或2m =, 当1m =时,函数()311322f x x x ++==为奇函数,当2m =时,()21152322f x xx ++==为非奇非偶函数,因为()f x 为奇函数,所以()3f x x =.(2)由(1)知()3f x x =,可得()f x 在R 上为增函数,因为()()132f a f a +<-,所以132a a +<-,解得23<a , 所以a 的取值范围为2,3⎛⎫-∞ ⎪⎝⎭.例2.(2022·全国·高一单元测试)已知幂函数2()(33)a f x a a x =-+为偶函数, (1)求函数()f x 的解析式;(2)若函数()()()213g x f x m x =+--在[]1,3-上的最大值为2,求实数m 的值.【解析】(1)因为2()(33)af x a a x =-+为幂函数,所以2331a a -+=,解得2a =或1a = 因为()f x 为偶函数,所以2a =,故()f x 的解析式2()f x x =;(2)由(1)知()()2213g x x m x =+--,对称轴为122mx -=,开口向上,当1212m-≤即12m ≥-时,()()max 3362g x g m ==+=,即16m =-; 当1212m ->即12m <-时,()()max 1122g x g m =-=--=,即32m =-; 综上所述:16m =-或32m =-.例3.(2022·全国·高一课时练习)吉祥物“冰墩墩”在北京2022年冬奥会强势出圈,并衍生出很多不同品类的吉祥物手办.某企业承接了“冰墩墩”玩具手办的生产,已知生产此玩具手办的固定成本为200万元.每生产x 万盒,需投入成本()h x 万元,当产量小于或等于50万盒时()180100h x x =+;当产量大于50万盒时()2603500h x x x =++,若每盒玩具手办售价200元,通过市场分析,该企业生产的玩具手办可以全部销售完(利润=售价-成本,成本=固定成本+生产中投入成本)(1)求“冰墩墩”玩具手办销售利润y (万元)关于产量x (万盒)的函数关系式; (2)当产量为多少万盒时,该企业在生产中所获利润最大?【解析】(1)当产量小于或等于50万盒时,20020018010020300y x x x =---=-, 当产量大于50万盒时,222002006035001403700y x x x x x =----=-+-, 故销售利润y (万元)关于产量x (万盒)的函数关系式为220300,050,N 1403700,50x x y x x x x -≤≤⎧=∈⎨-+->⎩(2)当050x ≤≤时,2050300700y ≤⨯-=; 当50x >时,21403700y x x =-+-, 当140702x ==时,21403700y x x =-+-取到最大值,为1200.因为7001200<,所以当产量为70万盒时,该企业所获利润最大.例4.(2022·全国·高一课时练习)如图,某日的钱塘江观测信息如下:2017年⨯月⨯日,天气:阴;能见度:1.8千米;11:40时,甲地“交叉潮”形成,潮水匀速奔向乙地;12:10时,潮头到达乙地,形成“一线潮”,开始均匀加速,继续向西;12:35时,潮头到达丙地,遇到堤坝阻挡后回头,形成“回头潮”.按上述信息,小红将“交叉潮”形成后潮头与乙地质检的距离x (千米)与时间t (分钟)的函数关系用图3表示.其中:“11:40时甲地‘交叉潮’的潮头离乙地12千米”记为点(0,12)A ,点B 坐标为(,0)m ,曲线BC 可用二次函数:21(125s t bt c b =++,c 是常数)刻画. (1)求m 值,并求出潮头从甲地到乙地的速度;(2)11:59时,小红骑单车从乙地出发,沿江边公路以0.48千米/分的速度往甲地方向去看潮,问她几分钟与潮头相遇?(3)相遇后,小红立即调转车头,沿江边公路按潮头速度与潮头并行,但潮头过乙地后均匀加速,而单车最高速度为0.48千米/分,小红逐渐落后.问小红与潮头相遇到落后潮头1.8千米共需多长时间?(潮水加速阶段速度02(30)125v v t =+-,0v 是加速前的速度) 【解析】(1)11:40到12:10的时间是30分钟,则(30,0)B ,即30m =, 潮头从甲地到乙地的速度120.430=(千米/分钟). (2)因潮头的速度为0.4千米/分钟,则到11:59时,潮头已前进190.47.6⨯=(千米), 此时潮头离乙地127.6 4.4-=(千米),设小红出发x 分钟与潮头相遇, 于是得0.40.48 4.4x x +=,解得5x =, 所以小红5分钟后与潮头相遇.(3)把(30,0),(55,15)C 代入21125s t bt c =++,得221303001251555515125b c b c ⎧⨯++=⎪⎪⎨⎪⨯++=⎪⎩,解得225b =-,245c =-, 因此21224125255s t t =--,又00.4v =,则22(30)1255v t =-+, 当潮头的速度达到单车最高速度0.48千米/分,即0.48v =时,22(30)0.481255t -+=,解得35t =,则当35t =时,21224111252555s t t =--=, 即从35t =分钟(12:15时)开始,潮头快于小红速度奔向丙地,小红逐渐落后,但小红仍以0.48千米/分的速度匀速追赶潮头,设小红离乙地的距离为1s ,则1s 与时间t 的函数关系式为10.48(35)s t h t =+≥, 当35t =时,1115s s ==,解得:735h =-,因此有11273255s t =-,最后潮头与小红相距1.8千米,即1 1.8s s -=时,有212241273 1.8125255255t t t ---+=, 解得150t =,220t =(舍去),于是有50t =,小红与潮头相遇后,按潮头速度与潮头并行到达乙地用时0.48560.4⨯=(分钟), 因此共需要时间为6503026+-=(分钟),所以小红与潮头相遇到潮头离她1.8千米外共需26分钟.例5.(2022·全国·高一课时练习)已知幂函数()()2253mf x m m x =-+的定义域为全体实数R.(1)求()f x 的解析式;(2)若()31f x x k >+-在[]1,1-上恒成立,求实数k 的取值范围.【解析】(1)∵()f x 是幂函数,∴22531m m -+=,∴12m =或2.当12m =时,()12f x x =,此时不满足()f x 的定义域为全体实数R , ∴m =2,∴()2f x x =.(2)()31f x x k >+-即2310x x k -+->,要使此不等式在[]1,1-上恒成立,令()231g x x x k =-+-,只需使函数()231g x x x k =-+-在[]1,1-上的最小值大于0.∵()231g x x x k =-+-图象的对称轴为32x =,故()g x 在[]1,1-上单调递减, ∴()()min 11g x g k ==--, 由10k -->,得1k <-, ∴实数k 的取值范围是(,1)-∞-.【过关测试】 一、单选题1.(2022·全国·高一单元测试)若函数()f x x α=的图象经过点19,3⎛⎫ ⎪⎝⎭,则19f ⎛⎫= ⎪⎝⎭( )A .13B .3C .9D .8【答案】B【解析】由题意知()193f =,所以193α=,即2133α-=, 所以12α=-,所以()12f x x -=,所以1211399f -⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭.故选:B2.(2022·全国·高一课时练习)已知432a =,254b =,1325c =,236d =,则( ) A .b a d c <<< B .b c a d <<< C .c d b a <<< D .b a c d <<<【答案】D 【解析】由题得4133216a ==,2155416b ==,1325c =,2133636d ==,因为函数13y x =在R 上单调递增,所以a c d <<.又因为指数函数16x y =在R 上单调递增,所以b a <.故选:D .3.(2022·全国·高一课时练习)已知幂函数()a f x x 的图象过点(9,3),则函数1()()1f x y f x -=+在区间[1,9]上的值域为( ) A .[-1,0] B .1[,0]2-C .[0,2]D .3[,1]2-【答案】B【解析】解法一:因为幂函数()a f x x 的图象过点()9,3 ,所以93=a ,可得12a =,所以()f x x =1()12(1)1()1111f x x x y f x x x x ---+===++++.因为19x ≤≤,所以214x ≤≤,故11,021y x ⎡⎤=∈-⎢⎥+⎣⎦.因此,函数1()()1f x y f x -=+在区间[1,9]上的值域为1,02⎡⎤-⎢⎥⎣⎦.故选:B .解法二:因为幂函数()a f x x 的图象过点(9,3),所以93a =,可得12a =, 所以()f x x =[1,9]x ∈,所以()[1,3]f x ∈.因为y =1()()1f x f x -+,所以1()1y f x y -=+,所以1131y y -≤≤+,解得102y -≤≤,即函数1()()1f x y f x -=+在区间[1,9]上的值域为1,02⎡⎤-⎢⎥⎣⎦.故选:B .4.(2022·全国·高一课时练习)如图所示是函数mn y x =(*N m n ∈、且互质)的图象,则( )A .m n 、是奇数且1mn< B .m 是偶数,n 是奇数,且1m n> C .m 是偶数,n 是奇数,且1m n< D .m n 、是偶数,且1m n> 【答案】C【解析】函数n m nm y x x =y 轴对称,故n 为奇数,m 为偶数, 在第一象限内,函数是凸函数,故1mn<, 故选:C.5.(2022·全国·高一期中)幂函数2225()(5)m m f x m m x +-=+-在区间(0,)+∞上单调递增,则(3)f =( ) A .27 B .9C .19D .127【答案】A【解析】由题意,令251m m +-=,即260m m +-=,解得2m =或3m =-, 当2m =时,可得函数3()f x x =,此时函数()f x 在(0,)+∞上单调递增,符合题意; 当3m =-时,可得2()f x x -=,此时函数()f x 在(0,)+∞上单调递减,不符合题意, 即幂函数3()f x x =,则(3)27f =. 故选:A.6.(2022·全国·高一课时练习)向高为H 的水瓶内注水,一直到注满为止,如果注水量V 与水深h 的函数图象如图所示,那么水瓶的形状大致是( )A .B .C .D .【答案】B【解析】当容器是圆柱时,容积V =πr 2h ,r 不变,V 是h 的正比例函数,其图象是过原点的直线,∴选项D 不满足条件;由函数图象可以看出,随着高度h 的增加V 也增加,但随h 变大,每单位高度的增加,体积V 的增加量变小,图象上升趋势变缓,∴容器平行于底面的截面半径由下到上逐渐变小, ∴A 、C 不满足条件,而B 满足条件. 故选:B .7.(2022·全国·高一单元测试)某工厂近期要生产一批化工试剂,经市场调查得知,生产这批试剂的成本分为以下三个部分:①生产1单位试剂需要原料费50元;②支付所有职工的工资总额由7500元的基本工资和每生产1单位试剂补贴20元组成;③后续保养的费用是每单位60030x x ⎛⎫+- ⎪⎝⎭元(试剂的总产量为x 单位,50200x ≤≤),则要使生产每单位试剂的成本最低,试剂总产量应为( )A .60单位B .70单位C .80单位D .90单位【答案】D【解析】设每生产单位试剂的成本为y ,因为试剂总产量为x 单位,则由题意可知,原料总费用为50x 元, 职工的工资总额为750020x +元,后续保养总费用为60030x x x ⎛⎫+- ⎪⎝⎭元, 则250750020306008100810040240220x x x x y x x x x x+++-+==++≥⋅=, 当且仅当8100x x=,即90x =时取等号, 满足50200x ≤≤,所以要使生产每单位试剂的成本最低,试剂总产量应为90单位. 故选:D .8.(2022·全国·高一课时练习)给出幂函数:①()f x x =;②2()f x x =;③()3f x x =;④()f x x ()1f x x =.其中满足条件()()()121221022f x f x x x f x x ++⎛⎫>>> ⎪⎝⎭的函数的个数是( ) A .1B .2C .3D .4【答案】A【解析】由题,满足条件()()()121221022f x f x x x f x x ++⎛⎫>>> ⎪⎝⎭表示函数图象在第一象限上凸,结合幂函数的图象特征可知只有④满足.故选:A 二、多选题9.(2022·全国·高一课时练习)幂函数()()22657mf x m m x--=+在()0,∞+上是增函数,则以下说法正确的是( ) A .3m =B .函数()f x 在(),0∞-上单调递增C .函数()f x 是偶函数D .函数()f x 的图象关于原点对称 【答案】ABD【解析】因为幂函数()()22657m f x m m x--=+在()0,∞+上是增函数,所以2257160m m m ⎧-+=⎨->⎩,解得3m =,所以()3f x x =,所以()()()33f x x x f x -=-=-=-,故()3f x x =为奇函数,函数图象关于原点对称,所以()f x 在(),0∞-上单调递增; 故选:ABD10.(2022·全国·高一课时练习)几名大学生创业时经过调研选择了一种技术产品,生产此产品获得的月利润()p x (单位:万元)与每月投入的研发经费x (单位:万元)有关.已知每月投入的研发经费不高于16万元,且21()6205p x x x =-+-,利润率()p x y x =.现在已投入研发经费9万元,则下列判断正确的是( ) A .此时获得最大利润率B .再投入6万元研发经费才能获得最大利润C .再投入1万元研发经费可获得最大利润率D .再投入1万元研发经费才能获得最大利润 【答案】BC【解析】当16x ≤时,2211()620(15)2555p x x x x =-+-=--+,故当15x =时,获得最大利润,为()1525p =,故B 正确,D 错误;()12012012066262555p x y x x x x x x x ⎛⎫==-+-=-++≤-⋅= ⎪⎝⎭, 当且仅当1205x x=,即10x =时取等号,此时研发利润率取得最大值2,故C 正确,A 错误.故选:BC.11.(2022·全国·高一课时练习)(多选)某单位准备印制一批证书,现有两个印刷厂可供选择,甲厂费用分为制版费和印刷费两部分,先收取固定的制版费,再按印刷数量收取印刷费,乙厂直接按印刷数量收取印刷费,甲厂的总费用y 1(千元)、乙厂的总费用y 2(千元)与印制证书数量x (千个)的函数关系图分别如图中甲、乙所示,则( )A .甲厂的制版费为1千元,印刷费平均每个为0.5元B .甲厂的总费用y 1与证书数量x 之间的函数关系式为10.51y x =+C .当印制证书数量不超过2千个时,乙厂的印刷费平均每个为1.5元D .当印制证书数量超过2千个时,乙厂的总费用y 2与证书数量x 之间的函数关系式为21542y x =+ 【答案】ABCD【解析】由题图知甲厂制版费为1千元,印刷费平均每个为0.5元,故A 正确; 设甲厂的费用1y 与证书数量x 满足的函数关系式为y kx b =+,代入点(0,1),(6,4),可得164b k b =⎧⎨+=⎩,解得0.5,1k b ==,所以甲厂的费用1y 与证书数量x 满足的函数关系式为10.51y x =+,故B 正确; 当印制证书数量不超过2千个时,乙厂的印刷费平均每个为32 1.5÷=元,故C 正确; 设当2x >时,设2y 与x 之间的函数关系式为y mx n =+代入点(2,3),(6,4),可得2364m n m n +=⎧⎨+=⎩,解得15,42k b ==,所以当2x >时,2y 与x 之间的函数关系式为21542y x =+,故D 正确.故选:ABCD.12.(2022·全国·高一课时练习)若函数()f x 在定义域内的某区间M 是增函数,且()f x x在M 上是减函数,则称()f x 在M 上是“弱增函数”,则下列说法正确的是( ) A .若()2f x x =,则不存在区间M 使()f x 为“弱增函数” B .若()1f x x x=+,则存在区间M 使()f x 为“弱增函数”C .若()3f x x x =+,则()f x 为R 上的“弱增函数”D .若()()24f x x a x a =+-+在区间(]0,2上是“弱增函数”,则4a =【答案】ABD【解析】对于A :()2f x x =在[)0,∞+上为增函数,()==f x y x x在定义域内的任何区间上都是增函数,故不存在区间M 使()2f x x =为“弱增函数”,A 正确;对于B :由对勾函数的性质可知:()1f x x x=+在[)1,+∞上为增函数,()21f x y x x-==+,由幂函数的性质可知,()21f x y x x-==+在[)1,+∞上为减函数,故存在区间[)1,M =+∞使()1f x x x =+为“弱增函数”,B 正确;对于C :()3f x x x =+为奇函数,且0x ≥时,()3f x x x =+为增函数,由奇函数的对称性可知()3f x x x=+为R 上的增函数,()21f x y x x==+为偶函数,其在0x ≥时为增函数,在0x <时为减函数,故()3f x x x=+不是R 上的“弱增函数”,C 错误;对于D :若()()24f x x a x a =+-+在区间(]0,2上是“弱增函数”,则()()24f x x a x a =+-+在(]0,2上为增函数,所以402a --≤,解得4a ≤,又()()4f x ay x a x x==+-+在(]0,2上为减函数,由对勾函数的单调性可知,2a ≥,则4a ≥,综上4a =.故D 正确. 故选:ABD . 三、填空题13.(2022·全国·高一单元测试)已知1114,1,,,,1,2,3232a ⎧⎫∈---⎨⎬⎩⎭,若函数()af x x =在()0,+∞上单调递减,且为偶函数,则=a ______. 【答案】4-【解析】由题知:0a <, 所以a 的值可能为4-,1-,12-.当4a =-时,()()1440f x x x x -==≠为偶函数,符合题意.当1a =-时,()()110-==≠f x x x x为奇函数,不符合题意. 当12a =-时,()12f x x x-==,定义域为()0,+∞,则()f x 为非奇非偶函数,不符合题意.综上,4a =-. 故答案为:4-14.(2022·全国·高一课时练习)已知幂函数()2232(1)m m f x m x -+=-在()0+∞,上单调递增,则()f x 的解析式是_____.【答案】()2f x x =【解析】()f x 是幂函数,211m ∴-=,解得2m =或0m =,若2m =,则()0f x x =,在()0+∞,上不单调递减,不满足条件; 若0m =,则()2f x x =,在()0+∞,上单调递增,满足条件; 即()2f x x =. 故答案为:()2f x x =15.(2022·全国·高一课时练习)现在有红豆、白豆各若干粒.甲乙两人为了计算豆子的粒数,选用了这样的方法:第一轮甲每次取4粒红豆,乙每次取2粒白豆,同时进行,当红豆取完时,白豆还剩10粒;第二轮,甲每次取1粒红豆,乙每次取2粒白豆,同时进行,当白豆取完时,红豆还剩()*1620,n n n ∈<<N 粒.则红豆和白豆共有________粒. 【答案】58【解析】设红豆有x 粒,白豆有y 粒, 由第一轮结果可知:1042x y -=,整理可得:220x y =-; 由第二轮结果可知:2yx n =-,整理可得:22y x n =-; 当17n =时,由220234x y y x =-⎧⎨=-⎩得:883743x y ⎧=⎪⎪⎨⎪=⎪⎩(舍);当18n =时,由220236x y y x =-⎧⎨=-⎩得:923763x y ⎧=⎪⎪⎨⎪=⎪⎩(舍);当19n =时,由220238x y y x =-⎧⎨=-⎩得:3226x y =⎧⎨=⎩,322658x y ∴+=+=,即红豆和白豆共有58粒. 故答案为:58.16.(2022·全国·高一期中)已知幂函数()223()p p f x x p N --*=∈ 的图像关于y 轴对称,且在()0+∞,上是减函数,实数a 满足()()233133pp a a -<+,则a 的取值范围是_____.【答案】14a <<【解析】幂函数()()223*p p f x xp N --=∈在()0+∞,上是减函数, 2230p p ∴--<,解得13p -<<,*p N ∈,1p ∴=或2.当1p =时,()4f x x -=为偶函数满足条件,当2p =时,()3f x x -=为奇函数不满足条件,则不等式等价为233(1)(33)ppa a -<+,即()11233(1)33a a -<+,()13f x x =在R 上为增函数, 2133a a ∴-<+,解得:14a <<.故答案为:14a <<. 四、解答题17.(2022·全国·高一课时练习)比较下列各组数的大小: (1)()32--,()32.5--; (2)788--,7819⎛⎫- ⎪⎝⎭; (3)3412⎛⎫ ⎪⎝⎭,3415⎛⎫ ⎪⎝⎭,1412⎛⎫ ⎪⎝⎭.【解析】(1)因为幂函数3y x -=在(),0∞-上单调递减,且2 2.5->-,所以()()332 2.5---<-. (2)因为幂函数78y x =在[)0,∞+上为增函数,且7788188-⎛⎫-=- ⎪⎝⎭,1189>,所以77881189⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭,所以77881189⎛⎫⎛⎫-<- ⎪ ⎪⎝⎭⎝⎭,所以7788189-⎛⎫-<- ⎪⎝⎭.(3)41341128⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭,3144115125⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭,11112582<<,因为幂函数14y x =在()0,∞+上单调递增,所以331444111522⎛⎫⎛⎫⎛⎫<< ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.18.(2022·全国·高一单元测试)已知函数()f x x =()2g x x =-.(1)求方程()()f x g x =的解集;(2)定义:{},max ,,a a b a b b a b ≥⎧=⎨<⎩.已知定义在[)0,∞+上的函数{}()max (),()h x f x g x =,求函数()h x 的解析式;(3)在(2)的条件下,在平面直角坐标系中,画出函数()h x 的简图,并根据图象写出函数()h x 的单调区间和最小值. 【解析】(12x x =-,得2540x x -+=且0x ≥,解得11x =,24x =;所以方程()()f x g x =的解集为{1,4}(2)由已知得()2,01,2,14222,4x x x x x h x x x x x x x x -≤<⎧⎧-⎪⎪==≤≤⎨⎨-<-⎪⎪⎩->⎩. (3)函数()h x 的图象如图实线所示:函数()h x 的单调递减区间是[]0,1,单调递增区间是()1,+∞,其最小值为1.19.(2022·天津市第九十五中学益中学校高一期末)已知幂函数()a g x x =的图像经过点(22,,函数2(4)()1g x af x x ⋅+=+为奇函数.(1)求幂函数()y g x =的解析式及实数a 的值;(2)判断函数f (x )在区间(-1,1)上的单调性,并用的数单调性定义证明【解析】(1)由条件可知22a=12a =,即()12g x x x ==,()42g =,因为()221x a f x x +=+是奇函数,所以()00f a ==,即()221xf x x =+,满足()()f x f x -=-是奇函数,所以2a =成立; (2)由(1)可知()221xf x x =+, 在区间()1,1-上任意取值12,x x ,且12x x <, ()()()()()()211212122222121221221111x x x x x x f x f x x x x x ---=-=++++,因为1211x x -<<<,所以210x x ->,1210x x -<,()()2212110x x ++>所以()()120f x f x -<, 即()()12f x f x <,所以函数在区间()1,1-上单调递增.20.(2022·全国·高一课时练习)几名大学毕业生合作开设3D 打印店,生产并销售某种3D 产品.已知该店每月生产的产品当月都能销售完,每件产品的生产成本为34元,该店的月总成本由两部分组成:第一部分是月销售产品的生产成本,第二部分是其他固定支出20000元.假设该产品的月销售量t (件)与销售价格x (元/件)(*x ∈N )之间满足如下关系:①当3460x ≤≤时,()()2510050t x a x =-++;②当6076x ≤≤时,()1007600t x x =-+.记该店月利润为M (元),月利润=月销售总额-月总成本.(1)求M 关于销售价格x 的函数关系式;(2)求该打印店的最大月利润及此时产品的销售价格.【解析】(1)当60x =时,()260510050100607600a -++=-⨯+,解得2a =.∴()()()()()2**220100003420000,3460,,10076003420000,6076,x x x x x N M x x x x x N ⎧--+--≤≤∈⎪=⎨-+--≤≤∈⎪⎩即()32*2*24810680360000,3460,,10011000278400,6076,x x x x x N M x x x x x N ⎧-++-≤≤∈=⎨-+-≤≤∈⎩(2)当3460x ≤≤,x ∈R 时,设()3224810680360000g x x x x =-++-,则()()26161780g x x x '=---.令()0g x '=,解得182461x =-,()28246150,51x =+, 当3450x ≤≤时,()0g x '>,()g x 单调递增; 当5160x ≤≤时,()0g x '<,()g x 单调递减.∵*x ∈N ,()5044000M =,()5144226M =,()M x 的最大值为44226.当6076x ≤≤时,()()21001102784M x x x =-+-单调递减,故此时()M x 的最大值为()6021600M =.综上所述,当51x =时,()M x 有最大值44226.∴该打印店的最大月利润为44226元,此时产品的销售价格为51元/件. 21.(2022·全国·高一课时练习)已知幂函数2()(33)a f x a a x =-+为偶函数, (1)求函数()f x 的解析式;(2)若函数()()()213g x f x m x =+--在[]1,3-上的最大值为1,求实数m 的值. 【解析】(1)因为()f x 为幂函数所以233112a a a a -+===,得或 因为()f x 为偶函数所以2a = 故()f x 的解析式2()f x x =.(2)由(1)知()()2213g x x m x =+--,当1212m-≤即12m ≥-时,()()max 3361g x g m ==+=,即13m =- 当1212m ->即12m <-时,()()max 1121g x g m =-=--=即1m =- 综上所述:13m =-或1m =-22.(2022·全国·高一课时练习)已知幂函数()()()22tf x t t x t R -=+∈,且()f x 在区间()0,∞+上单调递减.(1)求()f x 的解析式及定义域; (2)设函数()()()221g x f x f x =-⎡⎤⎣⎦⎡⎤⎣⎦,求证:()g x 在()0,∞+上单调递减.【解析】(1)因为幂函数()()()22t f x t t x t R -=+∈,()f x 在区间()0,+∞上单调递减,所以221+=t t ,解得1t =-或12t =, 所以()12f x x -=,定义域为()0,+∞.(2)由(1)知函数()()()()2222110--=-=-≠⎡⎤⎣⎦⎡⎤⎣⎦g x f x x x x f x ,设120x x >>,则()()()222222211212212222121211------=--+=-+x x g x g x x x x x x x x x因为120x x >>,所以2212x x >,222221210,0-<>x x x x ,所以()()120g x g x -<,即()()12g x g x <, 所以()g x 在()0,+∞上单调递减.。
幂函数与对数函数

幂函数与对数函数幂函数和对数函数是高中数学中的重要概念,它们在各个学科领域中都有着广泛的应用。
本文将介绍幂函数与对数函数的定义、性质及其实际应用,并通过实例详细说明它们在数学问题中的具体应用方法。
一、幂函数幂函数是指形如y=x^a的函数,其中a为实数,x为自变量,y为因变量。
幂函数的图像通常是一条平滑的曲线,其特点是对于不同的a值,其图像呈现出不同的形状。
1. 幂函数的定义域和值域对于幂函数y=x^a来说,当x>0时,幂函数的定义域为(0,+∞),其值域依赖于a的取值范围。
当a>0时,值域为(0,+∞);当a<0时,值域为(0,1)。
2. 幂函数的图像特点当a>1时,幂函数的图像呈现上升的特点;当0<a<1时,幂函数的图像呈现下降的特点;当a=1时,幂函数的图像为y=x直线。
3. 幂函数的性质(1)若a>1,则幂函数是增函数;若0<a<1,则幂函数是减函数。
(2)幂函数的对称中心位于坐标原点。
(0,0)点对称于直线y=x的右上方部分和左下方部分。
(3)幂函数在坐标系中的图像永远不会穿过x轴,但可能与x轴有一个切点。
二、对数函数对数函数是指形如y=loga(x)的函数,其中a为底数,x为自变量,y 为因变量。
对数函数的图像常呈现一条曲线,并且在x轴的正半轴上无定义。
1. 对数函数的定义域和值域对于对数函数y=loga(x)来说,底数a必须大于0且不等于1,自变量x的取值范围为x>0,因变量y的取值范围为全体实数。
2. 对数函数的图像特点当底数a>1时,对数函数的图像呈现出上升的特点;当0<a<1时,对数函数的图像呈现出下降的特点;当底数a=1时,对数函数的图像为一条水平直线。
3. 对数函数的性质(1)对数函数的图像在y轴上有一个渐近线x=0,当x趋近于0时,函数值趋近于负无穷。
(2)对数函数的图像关于直线y=x对称,即y=loga(x)与y=loga^(-1)(x)的图像关于直线y=x对称。
幂函数知识点总结

幂函数知识点总结幂函数是数学中常见的一类函数,主要应用于数据分析和物理学中。
它有着独特的数学性质,并且能够解释一系列规律性的现象,因此在各个领域中都有着广泛的应用。
本文将综合介绍幂函数的基本性质、作用机制和表达方式,以及其在实际应用中的各种特性。
一、基本性质幂函数(Power Function)是一类函数,通常定义为 y=x^n,其中x为变量,n为常数。
它同样也是一种一元函数,因为它只有一个变量X,表示函数值由变量X决定。
二、作用机制幂函数的作用机制主要体现在它的图象与数轴上。
因为x的增大会使得y的值也会加大,所以函数的图象通常是一条上凸的曲线。
这条曲线在原点处发散无限,而且具有明显的拐点,即抛物线的最高点。
此外,幂函数的作用机制还表现出了其“加速增长”的性质。
从图象上看,在抛物线最高点处,x增大时,y值会比较稳定,但是在x值增大之后,y值会变化得越来越快,这也是函数的最显著特征。
三、表达方式幂函数的表达方式很简单,一般情况下,以n来表示其幂的值,并且幂的值可以是整数、实数或负数,但必须保证x的值不等于0,这里说明由于x不等于0才有意义,因为若x等于0时,n为任意值,y都等于0.例如:y=x^2,即平方函数,n=2;y=x^3,即立方函数,n=3;y=x^2,即倒数平方函数,n=2.四、实际应用1、数据分析:幂函数在数据分析中应用十分广泛,其特有的“加速增长”性质,让数据分析者能够以规律的路径追求特定的结果。
例如,可以利用幂函数进行回归分析,以拟合给定数据;此外,可以利用幂函数构建概率模型,更好地研究联系型数据间的关系;2、物理学:幂函数在物理学中也有着广泛应用,可以用来模拟夸克的衰变过程,更好地理解物质的衰变规律;另外,也可以利用幂函数,研究物体受力的加速度变化,以及质量变化对物体运动的影响等。
综上所述,幂函数是一类重要的函数,它的基本性质、作用机制和表达方式构成了幂函数的基本框架,而在实际应用中,幂函数又有着广泛的用途,能够用于数据分析和物理学等领域,从而帮助人们更好地理解客观事物的变化规律。
高考数学知识点幂函数知识点知识点总结

高考数学知识点幂函数知识点知识点总结高考数学知识点:幂函数知识点总结在高中数学课程中,幂函数是一个重要的知识点。
幂函数的数学表达式为f(x) = ax^n,其中a和n分别代表常数,x代表自变量。
幂函数具有许多特殊性质和应用,下面将对幂函数的相关知识点进行总结。
一、定义和性质1. 幂函数的定义:幂函数是指具有形如f(x) = ax^n的函数,其中a和n为实数常数,且a≠0。
2. 幂函数的图像:根据a和n的取值不同,幂函数的图像可以表现为增函数、减函数或恒函数。
3. 幂函数的对称性:当幂函数的幂指数n为正偶数时,函数图像关于y轴对称;当n为正奇数时,函数图像关于原点对称;当n为负数时,函数图像关于x轴对称。
二、基本性质和运算法则1. 幂函数的基本性质:a) 当n>0时,幂函数是增函数;当n<0时,幂函数是减函数。
b) 当a>1时,幂函数递增速度大于直线函数y=x;当0<a<1时,幂函数递增速度小于直线函数y=x。
c) 当n=1时,幂函数是一次函数;当n=0时,幂函数是常值函数。
2. 幂函数的运算法则:a) 幂函数相乘:f(x) = ax^m * bx^n = abx^(m+n)。
b) 幂函数相除:f(x) = (ax^m) / (bx^n) = (a/b)x^(m-n),其中b≠0。
c) 幂函数相乘的分配律:(a * b)x^n = a * bx^n,其中a和b为常数,n为指数。
d) 幂函数的复合:f(g(x)) = (ax^m)^n = a^n*x^(m*n),其中a、g(x)和n为常数。
三、幂函数的应用1. 函数图像:通过掌握幂函数图像的特点,我们可以辨认各类函数的图像特征,帮助解题。
2. 变化率计算:由于幂函数在不同区间具有不同的递增、递减性质,可以用来计算变化率,例如速度、增长率等。
3. 经济学应用:幂函数可以描述经济学中的一些指数关系,如价格与需求量的关系等。
数学高考知识点幂函数

数学高考知识点幂函数数学高考知识点:幂函数幂函数是高考数学中非常重要的一个知识点,它是指形如y=x^a的函数,其中a是一个实数。
在高考中,幂函数常常会与其他函数进行比较或者求解方程等相关问题,因此熟练掌握幂函数的性质和应用是非常重要的。
一、幂函数的性质1. 幂函数的定义域:幂函数y=x^a的定义域是所有使得x^a有意义的实数x。
2. 幂函数的奇偶性:当指数a为偶数时,幂函数具有关于y轴的对称性,即f(-x) = f(x)。
当指数a为奇数时,幂函数关于原点对称,即f(-x) = -f(x)。
3. 幂函数的单调性:当指数a大于0时,幂函数在定义域上是递增的;当指数a小于0时,幂函数在定义域上是递减的。
4. 幂函数的图像:幂函数的图像呈现出如下特点:当a>1时,幂函数在∞处增加,0处取到最小值;当0<a<1时,幂函数在∞处减小,0处取到最大值;当a<0时,幂函数在定义域上是奇函数,图像关于原点对称。
二、幂函数的应用1. 幂函数与对数函数的关系:幂函数和对数函数是互为反函数的,即y=x^a和y=loga(x)是一对反函数。
这一性质在解决指数方程和对数方程时非常有用。
2. 幂函数的极限:对于幂函数y=x^a,当x趋近于正无穷时,幂函数趋近于正无穷;当x趋近于负无穷时,幂函数趋近于零。
这一性质在求解极限时常常会被用到。
3. 幂函数的应用:幂函数在物理学、生物学、经济学等领域具有广泛的应用。
例如,在物理学中,速度和加速度的计算常常涉及到幂函数的运算。
三、幂函数在高考中的常见题型解析1. 求解方程:高考经常出现要求解幂函数方程的题目,在解这类问题时,我们可以利用幂函数和对数函数互为反函数的特性,将幂函数方程转化为对数方程进行求解。
2. 判断性质:高考中会出现判断幂函数性质的题目,例如给出一个函数的图像,要求判断该函数的奇偶性、单调性等。
在解这类问题时,我们需要运用幂函数的性质和图像特点进行分析。
幂函数性质的应用

幂函数 是重要的基本初等函数模型之一,它具有如下性质:
(1)幂函数 在 上有定义,并且图象过定点 ;
(2)如果 ,则幂函数的图象过定点 和 ,并且在区间 上为增函数;
(3)如果 ,则幂函数的图象过定点 ,并且在区间 上为减函数;在第一象限内,当 趋向于原点时,图象在 轴右方并无限地逼近 轴,当 趋于 时,图象在 轴上方并无限地逼近 轴;
例2比较 , , 的大小。
解析: , , 。
因为幂函数 在 上单调递减,且 ,
所以 ,所以 。
点评:当幂指数不同时可先转化为相同幂指数,再运用单调性比较大小。
二、求函数解析式
例3已知幂函数 的图象与 轴, 轴都无交点,且关于 轴对称,试确定函数 的解析式。
解析:因为 的图象与 轴, 轴都无交点,所以 ,即 。
又 ,所以 。
当 时, , 是奇函数,不合题意,舍去;
当 时, , 是偶函数,图象关于 轴对称,符合题意。
故所求幂函数为 。
点评:求幂函数的解析式,一般用待定系数法,弄清幂函数的定义和性质是关键。
三、讨论函数性质
例4讨论函数 ( )的定义域、奇偶性和单调性。
解析:(1)因为 ,所以 是正偶数,
所以 是正奇数,
(4)设 互质, , 。
①当 为奇数, 为偶数时,函数为非奇非偶函数,函数在其它象限无图象,只在第一象限内有图象;
②当 为偶数, 为奇数时,函数为偶函数,图象在第一、二象限,且关于 轴对称;
③当 、 均为奇数时,函数为奇函数,图象在第一、三象限,且关于 对称。
利用上述性质,可以解决许多有关幂函数问题。下面举例说明。
一、比较大小
例1比较下列各组中两个值的大小:
(1) , ;
幂函数与函数的概念

幂函数与函数的概念函数是数学中非常重要的概念,它描述了两个集合之间的对应关系。
而幂函数是一类特殊的函数,它的自变量为底数,因变量为指数。
本文将重点探讨幂函数和其他常见函数的不同之处,以及幂函数的性质和应用。
一、幂函数的定义和性质幂函数是形如y = x^a的函数,其中x为自变量,a为常数,y为因变量。
幂函数中的指数可以是整数、分数或者实数,但当指数为0时,函数将变为常函数1。
不同指数的幂函数呈现出不同的特征。
1. 整数指数的幂函数:当指数为正整数a时,幂函数将呈现出不断增长的趋势。
例如,y = x^2表示抛物线,在x轴右侧永远为正,并且随着x的增大而增大。
而当指数为负整数时,幂函数将会变成反比例函数,即随着x的增大而减小。
2. 分数指数的幂函数:当指数为分数时,幂函数的图像将会出现不同的形状。
例如,y =x^(1/2)表示平方根函数,其图像为非负的抛物线,随着x的增大而增大,但增长速度逐渐减缓。
类似地,指数为倒数、立方等分数时,幂函数的图像也会有所不同。
3. 实数指数的幂函数:当指数为实数时,幂函数的图像将更加多样化。
在指数为实数且底数为正数时,幂函数的图像将呈现出类似指数函数的特点,即随着x的增大而迅速增大或减小。
而当底数为负数时,幂函数则具有奇偶性的变化。
二、幂函数的应用幂函数在自然科学、经济学等领域中有着广泛的应用。
以下是其中几个重要的应用:1. 物理学中的功率函数:功率函数是幂函数的一种特殊情况,其中指数为常数。
在物理学中,功率函数常用于描述功率与时间、功率与速度等之间的关系。
2. 经济学中的收益函数:在经济学中,幂函数用来描述生产函数中的产出与投入之间的关系。
例如,某种产品的产量与投入的关系可以通过幂函数来表示,对经济决策有一定的指导意义。
3. 生物学中的生长模型:幂函数也被广泛用于描述生物体的生长模型。
例如,细菌的繁殖、植物的生长等都可以使用幂函数来描述,从而帮助我们更好地理解和研究生物的生长规律。
幂函数归纳总结

幂函数归纳总结幂函数是高中数学中常见的一种函数形式,其表达式为y = ax^n,其中a和n为常数,x为自变量。
幂函数在数学和实际应用中具有重要的作用,通过对幂函数进行归纳总结,可以更好地理解和应用幂函数。
1. 幂函数的定义和性质幂函数是由一个常数底数a的幂次方函数。
其中,底数a决定了幂函数的基本形态,幂指数n则决定了幂函数曲线的变化。
幂函数的性质包括:- 当a>0时,幂函数在整个定义域上单调递增或递减;- 当a<0时,幂函数在定义域上单调递增或递减,但在奇次幂的情况下函数的值为负;- 当n为偶数时,幂函数图像关于y轴对称;- 当n为奇数时,幂函数图像关于原点对称。
2. 幂函数图像的特点幂函数的图像特点与其底数a和幂指数n密切相关。
下面分别对这两个因素进行总结:2.1 底数a的影响- 当|a|>1时,幂函数的图像趋向于无穷大。
当a>1时,幂函数为增长函数;当a<1时,幂函数为衰减函数。
- 当|a|<1时,幂函数的图像趋向于零。
当a>0时,幂函数为衰减函数;当a<0时,幂函数为增长函数。
2.2 幂指数n的影响- 当n>1时,幂函数的图像在零点的右侧逐渐上升或下降。
- 当n=1时,幂函数为一次函数。
- 当0<n<1时,幂函数在整个定义域上单调递减。
- 当n=0时,幂函数为常函数,图像为一条水平直线。
3. 幂函数的应用幂函数在实际生活和科学研究中有着广泛的应用,在以下领域中尤为重要:3.1 物理学中的应用- 物体自由落体的运动规律中,与时间相关的位移和速度函数可以表示为幂函数的形式;- 电路中的电阻与电流关系、电压与电流关系等多与幂函数相关。
3.2 经济学中的应用- 许多经济学模型中,需求曲线、供给曲线等都可以用幂函数来描述;- 成本函数、收益函数等经济学指标常常涉及幂函数。
3.3 生物学中的应用- 生物种群的增长模型经常使用幂函数来描述;- 营养物质浓度、酶催化反应速率等生物过程也可以通过幂函数来表示。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2
例题1: 讨论函数y x5的定义域,值域,奇偶性,
并画出图象示意图.
2
解:要使y x 5 5 x2 有意义,x可取任意数,函数定义域为R
x R, x2 0, y 0.
f (x) 5 (x)2 5 x2 f (x)
2
函数y x 5是偶函数
几何画板
2、
(
7
)
8 7
____ 1
2解:
8
设:y
8
f(x) x 7
则:(
7
)
8 7
f (7);
8
1 (1) 7
f (1)
8
8
指数 8 0,根据幂函数的性质:
7
该函数在第一象限单调递减
又: 7 1 8
则: f (7) f (1) 8
几何画板
即:
(
7
)
1.在研究幂函数的性质时,通常将分式指数幂化为
根式形式,负整指数幂化为分式形式再去进行讨论;
2.对于幂函数y=xa,我们首先应该分析函数的 定义域、值域和奇偶性,由此确定图象的位置,即 所在象限,其次确定曲线的类型,即a<0,0<a<1 和a>1三种情况下曲线的基本形状,还要注意a=0, ±1三个曲线的形状;对于幂函数在第一象限的图象 的大致情况可以用口诀来记忆:“正抛负双,大竖 小横”,即a>0(≠1)时图象是抛物线型;a<0时 图象是双曲线型;a>1时图象是竖直抛物线型;0< a<1时图象是横卧抛物线型.
2、
(
7
)
8 7
____ 1
8
则:0.181.2 f (0.18); 0.151.2 f (0.15)
指数 1.2 0,根据幂函数的性质:
该函数在第一象限单调递减
又: 0.18 0.15 则: f (0.18) f (0.15)
即: 0.181.2 0.15 1.2
8 7
1
8
• 变式练习
•
1.函数y=(x2-2x)-1/2的定义域是
()
• A.{x|x≠0或x≠2}
B.(-∞,0)(2,+∞)
• C.(-∞,0)][2,+∞] 2)
D.(0,
答案:B
2.函数y= (15+2x-x2 )3 的定义域是( ) A.5≥x≥-3 B.5>x>-3 C.x≥5或x≤-3 D.R
答案:A
3.已知函数y=4 15-2x-x2
(1)求函数的定义域、值域 (2)判断函数的奇偶性; (3)求函数的单调区间.
答案:(1)定义域为[-5,3],值域为[0,2]; (2)函数即不是奇函数,也不是偶函数
解析:这是复合函数问题,用换元法令t=15-2x-x2,则y
= , 4t
(1)由15-2x-x2≥0得函数的定义域为[-5,3], ∴t=16-(x-1)2∈[0,16] ∴函数的值域为[0,2].
过点(0,0)、(1,1)呈抛物线型,上凸递增。
图象1.gsp
y x 当>1时,函数图像在第一象限内的规律如下 过点(0,0)、(1,1)呈抛物线型,下凸递增。
图象2.gsp
y x 当<0时,函数图像在第一象限内的规律如下
过点(1,1)呈双曲线型,递减,与两坐标轴的正半轴无限 接近。
又 n 2 0 5
2
幂函数y x 5在[0,]上是增函数 由于该函数是偶函数
2
幂函数y x 5在[0,]上是减函数 图象如下所示: 例1.gsp
例2: 利用幂函数的性质,比较下面各组中两个值的大小
1、 0.181.2 ____ 0.151.2 1解: 设:y f(x) x1.2
(2)∵函数的定义域为[-5,3]且关于原点不对称, ∴函数既不是奇函数也不是偶函数.
(3)∵函数的定义域为[-5,3],对称轴为x=1, ∴x ∈ [-5,1]时,t随x的增大而增大;x ∈ (1,3)时, t 随x的增大而减小.
又∵函数y=在t∈[0,16]时,y随t的增大而增大,
∴函数y=的单调增区间为[-5,1],单调减区间为(1,3]。
复习: 幂函数的概念
定义:函数y=xα(α是常数)叫做幂函数 讨论幂函数的性质: 幂函数由于指数α的不同,它们的定义域也 不同,性质(有界性、单调性、奇偶性、 周期性)也不同。 主要分α>0和α<0两大类情况去讨论它们的 定义域、单调性、奇偶性。
y x 当0<<1时,函数图像在第一象限内的规律如下