幂函数的图像与性质(用).

合集下载

指数,对数,幂函数的图像和性质

指数,对数,幂函数的图像和性质

指数函数的图像是一条向上开口的曲线,通常表示为y=a^x(a>0,a≠1)。

指数函数的性质有:
1.在y 轴上的截距为1。

2.对于不同的指数函数,它们的图像形状是相同的,只有位置不同。

如果改变指数函数的
指数,则会改变函数的斜率,即函数图像会发生平移。

3.对于相同的指数函数,如果改变函数的系数,则会改变函数的尺度,即函数图像会发生
伸缩。

对数函数的图像是一条向右开口的曲线,通常表示为y=loga(x)(a>0,a≠1)。

对数函数的性质有:
1.在y 轴上的截距为0。

2.对于不同的对数函数,它们的图像形状是相同的,只有位置不同。

如果改变对数函数的
底数,则会改变函数的斜率,即函数图像会发生平移。

3.对于相同的对数函数,如果改变函数的系数,则会改变函数的尺度,即函数图像会发生
伸缩。

幂函数的图像可以是一条向上开口的曲线,也可以是一条向右开口的曲线,通常表示为y=x^n(n为常数)。

幂函数的性质有:
1.当n>0 时,幂函数的图像是一条向上开口的曲线。

2.当n<0 时,幂函数的图像是一条向右开口的曲线。

3.当n=0 时,幂函数的图像是一条水平直线。

4.幂函数的图像在y 轴上的截距为1。

5.对于不同的幂函数,它们的图像形状是相同的,只有位置不同。

如果改变幂函数的指数,
则会改变函数的斜率,即函数图像会发生平移。

6.对于相同的幂函数,如果改变函数的系数,则会改变函数的尺度,即函数图像会发生伸
缩。

幂函数图像和性质

幂函数图像和性质
先增后减
x0
减减

(0, 0)
y0
(0, ) (0, )
减函数
减减

y轴 (1,1) 一二
无 无
(1,1)
一三
(1,1)
一三
(1,1)

(-2,4)
4
y=x3 (2,4) y=x2 y=x (4,2)
1
3
1、所有幂函数在(0,+∞) 上都有定义,并且图象 都通过点(1,1). 2、在第一象限内, α >0,在(0,+∞)上为增函数; α <0,在(0,+∞)上为减函数. 3、α为奇数时,幂函数为奇 函数, α为偶数时,幂函数为偶 函数.
例3 若 m 4
1 2
3 2m ,
1 2
1 2
则求m的取值范围.
解: 幂函数f ( x) x 的定义域是(0, ) 且在定义域上是减函数, 0 3 2m m 4 1 3 m ,即为m的取值范围. 3 2
小结: 幂函数的性质:
不要等失去的时候才知道珍惜;不要等 后悔的时候才知道做错;不要等争吵的 时候才知道和解;不要等错过的时候才 知道回头;不要等成绩出来的时候才知 道后悔;人生是有限的,不要留下太多 的等待,时间最宝贵;把握好现在的时 光,让生命活得更精彩!
一般地,我们把形如 y x 的函数 称为幂函数,
a
其中 x 是自变量, a 是常数; 注意:幂函数与指数函数的区别.
幂函数的定义域、值域、奇偶性和单调性, 随常数α取值的不同而不同.
1.所有幂函数的图象都通过点(1,1); 2.当α为奇数时,幂函数为奇函数, 当α为偶数时,幂函数为偶函数.

幂函数图像及性质PPT课件

幂函数图像及性质PPT课件

上述问题中涉及的函数,都是形如
y=xa的函数。
.
3
从而我们归纳出幂函数的一般概念:
一般地,形如 yx(R) 的函数
称为幂函数,其中 x 为自变量,α为
常数.
注意与指数函数的区别: ● 幂函数——底数是自变量、指数是常数。 ● 指数函数——指数是自变量、底数是常数。
.
4
例1 判断下列函数哪几个是幂函数?
证明:任取x1,x2∈ [0,+∞),且x1<x2,则
f (x1) f (x2 ) x1 x2
(
x1
x2 )( x1
x2 )
x1 x2
x1 x2 x1 x2
因 为 x 1 x 2 0 , x 1x 2 0 ,
除了作差,还 有没有其它方
法呢?
所 以 f(x 1 )f(x 2 ),即 幂 函 数 f(x )x 在 [0 , )上 是 增 函 数 .
例3.比较下列各组数的大小:
< 1
1
(1)1.32 ____1.42
解后反思 两个数比较
> (2)0.26 1_____0.27 1
大小,何时 用幂函数模
2
(3)3.9 3
2
__<___3.85
型,何时用 指数函数模 型?
> 2
3
(4)(2.4)5____(1.8)5
.
11
例4 证明幂函数f (x) x 在[0,+∞)上是增函数.

非奇 非偶
{y|y≠0}

单调性
增 x∈[0,+∞)时增 x∈(-∞,0]时减


定点
(1,1) (0,0)

10.高一寒假数学讲义:幂函数的图像与性质(应用)【讲师版】

10.高一寒假数学讲义:幂函数的图像与性质(应用)【讲师版】

高一寒假数学讲义“幂函数的图像与性质(应用)”学生姓名授课日期教师姓名授课时长知识定位熟练掌握幂函数的概念,幂函数的图像及幂函数的性质,会解决幂函数的综合问题及应用问题。

知识梳理一、幂函数的定义一般地,形如y xα=(x∈R)的函数称为幂函数,其中x是自变量,α是常数.如11234,,y x y x y x-===等都是幂函数,幂函数与指数函数,对数函数一样,都是基本初等函数.幂函数的几个特点:(1)以自变量为底的幂;(3)指数为常数;(4)自变量前的系数为1;(5)幂前的系数也为1。

特别的:y=x0(x≠0)也是幂函数,因为00没有意义,所以要去掉点(0,1);而y=1不是幂函数,是常数函数,定义域是x∈R。

二、幂函数的图像α取值范围不同,图像也不相同,α的正负:α>0时,图象过原点和(1,1),在第一象限的图象上升;α<0时,图象不过原点,在第一象限的图象下降,反之也成立注意判断幂函数的定义域的方法可概括为(对指数)“先看正负,是负去零,再看奇偶,是偶非负”。

比如幂函数11234,,y x y x y x -===定义域分别为x ∈R ,x ∈R ,x ≠0。

三、 幂函数的性质(1)所有的幂函数在x ∈(0,+∞)都有定义,并且图象都通过点(1,1) (2)指数是偶数的幂函数是偶函数,指数是奇数的幂函数是奇函数 (3)α>0(1)图象都经过点(0,0)和(1,1) (2)图象在第一象限,函数是增函数. α<0(1)图象都经过点(1,1); (2)图象在第一象限是减函数;(3)在第一象限内,图象向上与Y 轴无限接近,向右与X 轴无限地接近.四、 幂函数的运算(一)两个重要公式①⎪⎩⎪⎨⎧⎩⎨⎧<-≥==)0()0(||a a a a a a a n n ;②a a n n =)((注意a 必须使n a 有意义)。

(二)有理数指数幂 (1)幂的有关概念①正数的正分数指数幂:(0,,1)m n m na a a m n N n *=>∈>、且; ②正数的负分数指数幂: 11(0,,1)mn m nmnaa m n N n a a-*==>∈>、且③0的正分数指数幂等于0,0的负分数指数幂没有意义.注:分数指数幂与根式可以互化,通常利用分数指数幂进行根式的运算。

幂函数图像及性质总结

幂函数图像及性质总结

幂函数图像及性质总结幂函数是高中数学中的一个重要概念,它是指形式为f(x)=ax^k的函数,其中a 为非零实数,k为实数。

幂函数在数学中具有广泛的应用,在图像的研究中,掌握幂函数的图像及其性质是非常重要的。

首先,我们来看幂函数的图像特点。

当k为正数时,幂函数的图像呈现出“增长”或“递减”的趋势。

当k>1时,曲线会明显上升,形成类似于指数函数的图像特征。

而当0<k<1时,曲线则会下降,但下降的速率逐渐减慢。

特别地,当k=1时,幂函数成为一次函数,即f(x)=ax,其图像为一条直线。

此外,当k为负数时,幂函数的图像则出现在第二、第四象限,并且具有对称轴。

接下来,我们来讨论幂函数的性质。

首先,我们来看函数的定义域和值域。

由于幂函数的底数a不能为零,函数的定义域为除以0的集合,即R-{0}。

而幂函数的值域则依赖于指数k的正负情况。

当k为正数时,函数的值域为正实数集(0,+∞)。

当k为负数时,函数的值域为(0, +∞)的实数集。

由于底数a的正负情况也会影响函数的关系,故在具体分析时需要考虑a的取值范围。

其次,我们来讨论幂函数的奇偶性。

当指数k为偶数时,幂函数f(x)=ax^k是一个偶函数,即满足f(x)=f(-x)。

这是因为对于任意x∈R,有(-x)^k=x^k,从而f(x)=ax^k=f(-x)。

相应地,当指数k为奇数时,幂函数f(x)=ax^k是一个奇函数,即满足f(x)=-f(-x)。

这是因为对于任意x∈R,有(-x)^k=-x^k,从而f(x)=ax^k=-ax^k=-f(-x)。

进一步地,我们来讨论幂函数的增减性和极值点。

当指数k为正数时,幂函数在定义域上是递增的。

当a>1时,函数的增长速度更快;当0<a<1时,函数的增长速度更慢。

而当指数k为负数时,幂函数在定义域上是递减的。

在图像上,幂函数具有一个最小值或最大值,该点称为极值点。

当k为偶数时,函数的极值点出现在定义域的最小值点,当k为奇数时,函数的极值点出现在定义域的最大值点。

幂函数的性质及其应用课件

幂函数的性质及其应用课件
幂函数性质
当自变量$x$的取值范围为全体实 数时,幂函数的值域为 $(0,+\infty)$。
幂函数的奇偶性
奇偶性定义
如果一个函数满足$f(-x)=f(x)$,那 么这个函数就是偶函数;如果满足 $f(-x)=-f(x)$,那么这个函数就是奇 函数。
幂函数的奇偶性
当$n$为偶数时,幂函数$y = x^{n}$ 是偶函数;当$n$为奇数时,幂函数 $y = x^{n}$是奇函数。
幂函数的应用场景
幂函数在金融领域的应用
1 2
投资组合优化
幂函数可以用于建立投资组合模型,根据不同资 产的价格波动和相关性进行优化,以实现风险分 散和资产增值。
资本资产定价模型(CAPM)
幂函数可以用于CAPM中的回报率预测,根据风 险和资产的相关性来计算期望回报率。
3
期权定价模型
幂函数可以用于期权定价模型的构建,通过考虑 标的资产价格、行权价、剩余期限等因素来估算 期权的合理价格。
通过一个实际案例,介绍了幂函数在解决实际问题中的应用。
详细描述
首先介绍了幂函数的定义和性质,然后通过一个具体的例子,展示了如何利用幂函数解决实际问题。这个例子涉 及到物理学中的力学和工程学中的材料科学,通过幂函数来描述和预测材料的强度和重量之间的关系。
利用幂函数解决实际问题二例
总结词
通过另一个实际案例,介绍了幂函数在 解决实际问题中的应用。
数据压缩
在数据压缩领域,幂函数 被用于构建压缩算法,以 实现数据的紧凑表示和存 储。
加密算法
幂函数也被广泛应用于加 密算法中,如RSA公钥密 码体系,以提供安全的数 据传输和保护。
图像处理
在图像处理中,幂函数可 以用于实现图像的缩放、 旋转和扭曲等变换。

幂函数知识点

幂函数知识点

幂函数知识点1. 幂函数定义幂函数是形如 \(y = x^n\) 的函数,其中 \(n\) 是实数。

当 \(n\) 为正整数时,幂函数的图像是一系列经过原点的点,且随着 \(n\) 的增加,曲线逐渐趋于平坦。

2. 幂函数的图像特征- 当 \(n > 1\) 时,幂函数在 \(x > 0\) 区域内单调递增。

- 当 \(0 < n < 1\) 时,幂函数在 \(x > 0\) 区域内单调递减。

- 当 \(n\) 为负整数时,幂函数在 \(x > 0\) 区域内表现为周期函数,周期为 \(4\pi\)。

- 当 \(n = 0\) 时,函数退化为常数函数 \(y = 1\)。

3. 幂函数的性质- 奇次幂函数是奇函数,即 \(y(-x) = -y(x)\)。

- 偶次幂函数是偶函数,即 \(y(-x) = y(x)\)。

- 幂函数的导数是 \(y' = n \cdot x^{n-1}\)。

- 幂函数的积分是 \(\int x^n dx = \frac{x^{n+1}}{n+1} + C\),其中 \(C\) 是积分常数。

4. 幂函数的应用- 在物理学中,幂函数常用于描述物体的速度与加速度的关系。

- 在经济学中,幂函数可以用来模拟市场需求与价格的关系。

- 在工程学中,幂函数用于描述材料的强度与应力的关系。

5. 特殊幂函数- 指数函数 \(y = a^x\) 是幂函数的一种特殊形式,其中 \(a\) 是正实数且 \(a \neq 1\)。

- 对数函数 \(y = \log_a x\) 也是幂函数的一种特殊形式,其中\(a\) 是正实数且 \(a \neq 1\)。

6. 幂函数的运算法则- 幂的乘法:\(x^m \cdot x^n = x^{m+n}\)- 幂的除法:\(x^m / x^n = x^{m-n}\)- 幂的幂:\((x^m)^n = x^{m \cdot n}\)7. 幂函数的极限- 当 \(x \to 0\) 时,\(x^n\) 的极限取决于 \(n\) 的值。

4.1.1幂函数的的性质与图像(一)(2课时)

4.1.1幂函数的的性质与图像(一)(2课时)

0.1
1
2
3
4
5
1
2
1
2
0.7 1.0
1.4
0.3 1.0
4.0
一、幂函数的概念
y xk,k 0
图像必过 (0,0), (1,1)
在 [0, ) 上为增函数
证:设 k n , n, m N *
m
6
7
0 x1 x2
0 x1n x2n 0 m x1n m x2n
x1k x2k
3
x
1
4
1
x2
0.5
x2
0.1
x3
0.0
1
2
1
0.7 1.0
0.3 1.0
0.1 1.0
2
3
1.4 1.7
4.0 9.0
8.0 27.0
二、幂函数4.54 的图像研究
3.5 3
2.5 2
1.5 1
0.5
-4
-3
-2
-1
-0.5
-1
-1.5
-2
-2.5
-3
x
1 -3.5
4 -4
1
-4.5
x2
0.5
x2
k 1
k 1
2.2
2
0 k 1
1.8
1.6
1.4
1.2
1
k 0
0.8
0.6
0.4 7
k0
0.2
-1
-0.5
6
6
0.5
1
1.5
2
2.5
3
3.5
-0.2
7
5
5
四、幂函数的奇偶性 -0.4
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
-2
-3
-4
(-2,4)
4
y=x3
(2,4) y=x2 y=x (4,2)
1
3
y=x 2
2
1
(-1,1)
-6 -4 -2
(1,1)
2 4 6
-1
(-1,-1)
-2
-3
-4
x -3 -2 y x1 -1/3 1/2
- 1 2 3 1 - 1 1/ 1/ 1 2 3
(-2,4)
4
y=x3
(2,4) y=x2 y=x (4,2)
1
3
y=x 2
2
1
(-1,1)
-6 -4 -2
(1,1)
2
y=x-1
4 6
-1
(-1,-1)
-2
-3
-4
(-2,4)
4
y=x3
(2,4) y=x2 y=x (4,2)
1
3
y=x 2
2
1
(-1,1)
-6 -4 -2
(1,1)
2
y=x-1
4
y=x06-1(-1来自-1)-2-3
-4
二、新课讲解
y=x 定义域 值域 奇偶性 单调性 y=x2 y=x3 y=x1/2 y=x-1
-1
(-1,-1)
-2
-3
-4
(-2,4)
4
(2,4) y=x
3
2
1
(-1,1)
-6 -4 -2
(1,1)
2 4 6
-1
(-1,-1)
-2
-3
-4
(-2,4)
4
(2,4) y=x2 y=x
3
2
1
(-1,1)
-6 -4 -2
(1,1)
2 4 6
-1
(-1,-1)
-2
-3
x -3 -2 -1 0 1 2 3 y=x -27 -8 -1 0 1 8 3 27
(4) y x (5) y x
1 2
1
作出下列函数的图象 : 1
y=x
yx
2
y x3
-2 -2
yx
2
y x 1
3 3
y=x0
x … -3 yx … -3
-1 0 -1 0
1 1
2 2
… …
y x2 … 9
3
1 2…
4
1 0
1
4
8
9

y x … -27 -8 -1 0 1
yx
\ \ \ 0 1 1
27 …
2
3 …

y x … -1/3
1
-1 \ 1/2
1/ 1/2 3
4
3
2
1
(1,1)
2 4 6
-6
-4
-2
-1
(-1,-1)
-2
-3
-4
-3 -2 -1 0 1 2 3 y=x 9 4 1 0 1 4 2 9
x
4
3
y=x
2
1
(1,1)
2 4 6
-6
-4
-2
(-2,4)
4
y=x3
(2,4) y=x2 y=x
1
3
2
y=x 2 (4,2)
1
(-1,1)
-6 -4 -2
(1,1)
2
y=x-1
4 6
-1
(-1,-1)
-2
当a为奇数时,幂函数为奇函数, 当a为偶数时,幂函数为偶函数.
-3
-4
0< <1
图 象 特 点 性 质
y y
>1
y
<0
1
o 1 x
R R
R
[0,+∞)
R [0,+∞)
R [0,+∞)
{x|x≠0}
{y|y≠0}
奇 增

x∈[0,+∞)时,增 x∈(-∞,0]时,减
奇 增
(1,1) (0,0)
非奇非偶

x∈[0,+∞)时,减 x∈(-∞,0]时,减

(1,1) (0,0)
(1,1) 公共点 (0,0)
(1,1) (0,0)
(1,1)
x
答案(2)(6)(8)
联系旧知 形成区别 指数函数与幂函数的对比 自变量在指 数位置
指数函数:y=a (a>0且a 1)
x
幂函数:y=x ( R)
自变量在 底数位置

快速反应
y 0.2
x
yx
1 2
(指数函数)
(幂函数)
yx
1
y 5
5
x
(幂函数) x
(指数函数)
y 3
y x
1 2
范例讲解
例2.如果函数 f ( x) (m m 1) x 是幂函数,求满足条件的实数m的值.
2
m2 2 m 3
解:由题意有
m2 m 1 1
m2 m 2 0
m 2或m 1
三、五个常用幂函数的 图象和性质
2 3 y x (1) (2) y x (3) y x

(3) 函数式前的系数都是1;
(4) 形式都是
yx

,其中 是常数.
练习:判断下列函数哪几个是幂函数?
1 () 1 y 3 ; (2) y 2 ; (3) y 2 x 2 ; x 1 2 (4) y x 1; (5) y 1; (6) y ; x (7) y ( x 1) 2 (8) y x 0 (9) y x 3
归纳 概括
yx
yx
2
yx
3
yx
1 2
yx
1
5个函数式的共同特征: (1) 指数是常数; (2) 底数是自变量;
(3) 函数式前的系数都是1;
(4) 形式都是
yx

,其中 是常数.
二、新课讲解
幂函数定义:
一般地,函数 y x ( R) 叫做幂函数,
其中 x 是自变量, 是常数. (1) 指数是常数; (2) 底数是自变量;
幂函数
问题引入
我们先看几个具体问题:
(1) 如果回收旧报纸每公斤1元,某班每年卖旧报纸 yx x公斤,所得价钱y是关于x的函数 (2) 如果正方形的边长为x,面积y,这里y是关于 2 x的函数; yx (3) 如果正方体的边长为x, 正方体的体积为y, 3 这里y是关于x函数; yx (4)如果一个正方形场地的面积为x, 这个正方形的 1 边长为y,这里y是关于x的函数; y x2 (5)如果某人x秒内骑车行驶了1km,他骑车的平 1 均速度是y,这里y是关于x的函数. yx 以上各题目的函数关系分别是什么?
1 o 1 x
1
o 1 x
都经过定点(1,1) 在[0,+∞)为 在[0,+∞)为 在(0,+∞)为 单调增函数. 单调增函数. 单调减函数.
(慢增)
(快增)
(慢减)
幂函数在第一象限的图像
幂函数图象在第一象限的分布情况:
-4
(-2,4)
4
y=x3
(2,4) y=x2 y=x
3
2
1
(-1,1)
-6 -4 -2
(1,1)
2 4 6
-1
(-1,-1)
-2
x
0
1 2
1
2
4
-3
yx
0
1
2
2
-4
(-2,4)
4
y=x3
(2,4) y=x2 y=x (4,2)
3
2
1
(-1,1)
-6 -4 -2
(1,1)
2 4 6
-1
(-1,-1)
(幂函数)
(指数函数)
例题讲解
例1:已知幂函数y f ( x)的图象过点(2, 2 ), 试求出这个函数的解析式.
解 : 设所求的幂函数为y x 函数的图像过点(2, 2 )
这种方法 叫待定 系数法

1 2
2 2 , 即2 2
1 2


所求的幂函数为y x .
相关文档
最新文档