立体几何(4)

合集下载

人教A版(2019)必修二第八章立体几何初步单元测试卷(4)(提高版)解析版

人教A版(2019)必修二第八章立体几何初步单元测试卷(4)(提高版)解析版

人教A版(2019)必修二第八章立体几何初步单元测试卷(4)(提高版)1.正三棱锥中,,,AB的中点为M,若一只小蜜蜂沿锥体侧面经过棱PB由点M爬到点C,则最短路程是A. B. C. D.2.在棱长为6的正方体中,点E,F分别是棱,的中点,过A,E,F三点作该正方体的截面,则截面的周长为A. B. C. D.3.如图,已知是水平放置的根据斜二测画法得到的直观图,在轴上,与轴垂直,且,则的边AB上的高为A. 3B. 6C.D.4.一个正四棱台的两底面边长分别为m,,侧面积等于两个底面积之和,则这个棱台的高为A. B. C. D.5.斗拱是中国古典建筑最富装饰性的构件之一,并为中国所特有,图一图二是斗拱实物图,图三是斗拱构件之一的“斗”的几何体,本图中的斗是由棱台与长方体形凹槽长方体去掉一个小长方体组成.若棱台两底面面积分别是,,高为9 cm,长方体形凹槽的体积为,斗的密度是那么这个斗的质量是注:台体体积公式是A. 3990 gB. 3010 gC. 7000 gD. 6300 g6.已知三棱锥的四个顶点在球O的球面上,,是边长为2的正三角形,E,F分别是PA,AB的中点,,则球O的体积为A. B. C. D.7.设A,B,C,D是同一个半径为4的球的球面上四点,为等边三角形且其面积为,则三棱锥体积的最大值为A. B. C. D.8.如图,等边三角形ABC的中线AF与中位线DE相交于G,已知是绕DE旋转过程中的一个图形,下列命题中,错误的是A. 恒有B. 异面直线与BD不可能垂直C. 恒有平面平面BCDED. 动点在平面ABC上的射影在线段AF上9.如图,正方体的棱长为1,线段上有两个动点,且,则下列说法中正确的是A. 存在点使得B. 异面直线EF与所成的角为C. 三棱锥的体积为定值D. 到平面AEF的距离为10.如图所示,正三角形ABC中,D,E分别为边AB,AC的中点,其中,把沿着DE翻折至位置,使得二面角为,则下列选项中正确的是A. 点到平面BCED的距离为3B. 直线与直线CE所成的角的余弦值为C.D. 四棱锥的外接球半径为11.如图,在三棱锥中,D、E、F分别为棱PC、AC、AB的中点,平面ABC,,则A. 三棱锥的体积为6B. 直线PB与直线DF垂直C. 平面DEF截三棱锥所得的截面面积为12D. 点P与点A到平面BDE的距离相等12.如图,在四棱锥中,底面ABCD为菱形,,侧面PAD为正三角形,且平面平面ABCD,则下列说法正确的是A. 直线AD与PB是异面直线B. 在棱AD上存在点M,使平面PMBC. 平面PAD与平面PBC的交线平面ABCDD. 当时,四棱锥的体积为613.如图是一正方体的表面展开图B、N、Q都是所在棱的中点则在原正方体中与CD异面;平面PQC;平面平面CQN;与平面AQB形成的线面角的正弦值是;二面角的余弦值为其中真命题的序号是__________14.如图,在正方体中,点P在面对角线AC上运动,给出下列四个命题:①平面;②;③平面平面;④三棱锥的体积不变.则其中所有正确的命题的序号是__________.15.如图所示,在矩形ABCD中,,,点E为CD的中点,F为线段端点除外上一动点.现将沿AF折起,使得平面平面ABCF,设直线DF与平面ABCF所成的角为,则的最大值为__________.16.如图,在三棱锥中,若底面ABC是正三角形,侧棱长,M、N分别为棱SC、BC的中点,并且,则异面直线MN 与AC所成角为___________;三棱锥的外接球的体积为__________.17.如图,在正三棱柱中,,,由顶点B沿棱柱侧面经过棱到顶点的最短路线与的交点记为M,求:该最短路线的长及点M的位置;平面与平面所成锐二面角的正切值.18.如图,菱形ABCD的对角线AC与BD交于点O,点E、F分别在AD,CD上,,EF交BD于点H,将沿EF折到的位置.证明:;若,,,,求五棱锥体积.19.如图,在正方体中,已知E是AB的中点,F是的中点,求证:E,C,,F四点共面;求证:直线CE,,DA三线共点;求直线与所成角的正切值.20.如图,在四棱锥中,底面ABCD为直角梯形,且,,侧面底面若求证:平面PAC;侧棱PA上是否存在点E,使得平面若存在,指出点E的位置并证明,若不存在,请说明理由;求二面角的余弦值.21.如图,在四棱锥,底面ABCD为平行四边形,为等边三角形,平面平面PCD,,,,设G,H分别为PB,AC的中点,求证:平面PAD;求证:平面PCD;求直线AD与平面PAC所成角的正弦值.22.如图1,在边长为4的菱形中,,于点E,将沿折起到的位置,使,如图求证:;求二面角的余弦值;判断在线段上是否存在一点P,使?若存在,求出的值;若不存在,说明理由.答案和解析【答案】1. C2. D3. D4. A5. C6. D7. B8. B9. BCD10. ABD11. ACD12. ABC13. ①②④14. ①③④15.16.17. 解:将侧面,展开在一个平面内,如图,连交于,,,所以A为BC中点,,所以所以最短路线的长为,此时M为中点.取中点D,连接,过D作,垂足为E,连接在正三棱柱中,底面是正三角形,D为中点,所以,又面,面,所以平面平面,又平面平面,平面,所以平面因面,则,又,,面,面,所以面,又面,所以,所以为平面与平面所成锐二面角的平面角.,,所以,,又,所以,在直角三角形中,所以平面与平面所成锐二面角的正切值为18. 证明:菱形ABCD的对角线AC与BD交于点O,点E,F分别在AD,CD上,,,且,将沿EF折到的位置,则,,;若,,则,,,,,,,,,,,,,满足,则为直角三角形,且,又,,AC,底面ABCD,即底面ABCD,即是五棱锥的高.底面五边形的面积,则五棱锥体积19. 证明:如图,在正方体中,连接EF,,因为E为AB的中点,F为的中点,又,,四边形为平行四边形.,从而所以,且,所以E,F,,C四点共面.因为,,所以CE与必相交,设交点为P,则由直线CE,平面ABCD,得平面同理,平面又平面平面,所以直线所以CE,,DA三线共点.在正方体中,,则与所成角即为,在中, .20. 解:因为,所以又因为侧面底面ABCD,且侧面底面,所以底面而底面ABCD,所以在底面ABCD中,因为,,所以,所以又因为,,所以平面在PA上存在中点E,使得平面PCD,证明如下:设PD的中点是F,连结BE,EF,FC,则,且由已知,所以,又,所以,且,所以四边形BEFC为平行四边形,所以因为平面PCD,平面PCD,所以平面设G为AD中点,连结CG,则又因为平面平面PAD,侧面底面,,所以平面又,故,过G作于H,连结CH,由,,故,又,故所以是二面角的平面角.设,则,在中,,所以所以,即二面角的余弦值为21. 证明:如图:证明:连接BD,由题意得,,又由,得,平面PAD,平面PAD,平面PAD;证明:取棱PC中点N,连接DN,依题意得,又平面平面PCD,平面平面,平面PCD,平面PAC,又平面PAC,,又,,平面PCD,平面PCD,平面PCD;解:连接AN,由中平面PAC,知是直线AD与平面PAC所成角,是等边三角形,,且N为PC中点,,又平面PAC,,,在中,直线AD与平面PAC所成角的正弦值为22. 证明:,,,,,,平面,平面,又平面,,,,DC,平面BCDE,平面BCDE;解:由题意,以EB,ED,分别为x,y,z轴,建立坐标系,则,,,,,,,平面的一个法向量为,设平面的一个法向量为,则,令,,,,钝二面角的余弦值为;解:在线段EB上不存在一点P,使平面平面,设,则,,设平面的法向量为,则,令,,平面平面,由第二问可得平面的一个法向量,由得,,,,在线段EB上不存在一点P,使平面平面【解析】1. 【分析】本题考查多面体表面上的最短距离的计算,考查分析问题解决问题的能力,属于中档题.将侧面PAB与侧面PBC展开到一个平面,则中,CM为最短路线长.【解答】解:由题意,将侧面PAB与平面PBC展开到一个平面,则中,,,,,即最短路线长是,故选2. 【分析】本题考查棱柱的结构特征,考查空间想象能力和思维能力,是中档题.由题意画出截面五边形,再由已知利用勾股定理求得边长得答案.【解答】解:如图所示:延长EF、相交于M,连接AM交于H,延长FE、相交于N,连接AN交于G,可得截面五边形是边长为6的正方体,且E,F分别是棱,的中点,,,截面的周长为故选3. 【分析】本题考查了平面图形的直观图画法与有关计算问题,熟记平面图形的直观图与原图形的面积比,是解题的关键.根据平面图形的直观图与原图形的面积比为1:,列方程求出结果.【解答】解:在坐标系下的面积为;根据水平放置的平面图形的直观图画法知,在xOy坐标系下的面积为,由,且,所以,即的边AB上的高为故选:4. 【分析】本题考查棱台的侧面积,关键是要搞清楚棱台的高、斜高与上下底面的边长之间的关系,难点在于复杂的计算,属于中档题.设该棱台的高为h,斜高,于是,从而可求得【解答】解:设该棱台的高为h,则斜高,该棱台侧面积等于两个底面积之和,,,,故选5. 【分析】本题主要考查台体的体积计算,是中档题.由题意,求出“斗”的体积,再利用求解即可.【解答】解:依题意,,又长方体形凹槽的体积为4300,故“斗”的体积为,其质量为故选:6. 【分析】本题考查球的体积的求法,涉及到余弦定理.设,,,根据余弦定理以及勾股定理证明三条侧棱两两互相垂直,即可求出球O的体积.【解答】解:设,,,因为E,F分别是PA,AB的中点,所以,,在中,,在中,,整理得,①因为是边长为2的正三角形,所以,又,则,②,由①②得,所以,所以,即,同理可得,,则PA、PB、PC两两垂直,则球O是以PA为棱的正方体的外接球,则外接球的直径为,所以球O的体积为故选7. 【分析】本题考查球的内接多面体,棱锥的体积的求法,考查空间想象能力以及计算能力.求出等边三角形的边长,画出图形,判断D的位置,然后求解即可.【解答】解:为等边三角形且面积为,可得,解得,设球心为O,三角形ABC 的外心为,显然D为的延长线与球的交点时,三棱锥的体积最大.如图:,,则三棱锥高的最大值为:6,则三棱锥体积的最大值为:故选:8. 【分析】本题平面图形的旋转为载体,综合考查线面、面面垂直的判定定理、性质定理的运用,考查空间线线、线面的位置关系及所成的角的概念,考查空间想象能力,属较难题.先推导出平面,从而恒有,从而判断A正确;由异面直线所成的角的概念可判断B不正确;由面面垂直的判定定理,可判断C正确;由斜线的射影定理可判断D正确.【解答】解:在A中,,,是正三角形,,又,平面平面,又平面,恒有,故A正确;在B中,、F为线段AC、BC的中点,,就是异面直线与BD所成的角,当时,直线与BD垂直,故B不正确;在C中,因为平面,平面BCDE,平面平面BCDE,故C正确;在D中,,是正三角形,,又,平面,从而平面平面,且两平面的交线为AF,在平面ABC上的射影在线段AF上,故D正确.故选:9. 【分析】本题以正方体为载体,考查了空间中的平行关系、空间角、距离和体积问题,考查转化与化归的思想,属于拔高题.由异面直线的判定判断A;异面直线EF与所成的角即为与所成的角,据此可判断B;由可计算体积,判断C;将到平面AEF 的距离转化为到平面的距离,利用等体积法可求距离,判断【解答】解:如图所示,AB与为异面直线,故AE与BF也为异面直线,A错误;异面直线EF与所成的角即为与所成的角,即与所成的角,连接,,易得三角形是正三角形,,即异面直线EF与所成的角为,故B正确;连结BD交AC于O,则AO为三棱锥的高,,易知:,则,所以,为定值,故C正确;到平面AEF的距离即到平面的距离,,设到平面AEF的距离为h,由得,即,解得,故D正确.故选10. 【分析】本题考查棱锥的结构特征,异面直线的夹角,点到平面的距离,二面角,锥体的外接球问题,属于困难题.取ED,BC的中点分别为F,G,连接FG,取FG的中点为H,通过题中的数据,结合线面垂直的性质得出平面BCED,从而分析各选项即可.【解答】解:如图,取ED,BC的中点分别为F,G,连接FG,取FG的中点为H,连接,因为正中,D,E分别为边AB,AC的中点,所以,,又易知,,,平面,所以平面,且为的二面角,即,由,可知,所以为正三角形,所以,又平面,平面,所以,又,DE,平面BCED,所以平面BCED,在中,因为,所以,故A正确;连接EG,DG,因为且,所以四边形EDGC为平行四边形,故,即为直线与直线CE所成的角,可知,,,故,故B正确;易知,即,故与BD不垂直,故C错误;易知,所以四棱锥的外接球球心O在过G点且与平面BCED垂直的直线上,记,四棱锥的外接球半径为R,则有,即,解得,故D正确.故选11. 【分析】本题考查空间几何体的结构特征,考查空间距离及几何体体积求法,空间中的线线关系和线面关系.根据棱锥的体积公式即可判断A;假设,推出平面PAB,结合平面PAB即可判断B;取PB的中点Q,连DQ,FQ,计算截面DEFQ的面积即可判断C;证出平面BDE即可判断【解答】解:D,E分别为棱PC,AC的中点,则,又平面ABC,则平面ABC,即平面FBE,,,,所以,,所以三棱锥的体积为,故A正确;假设,平面ABC,平面ABC,,又,,PA,平面PAB,平面PAB,,F分别为AC,AB的中点,,平面PAB,平面PAB,,平面ABC,平面ABC,,,EF,平面DEF,平面DEF,平面DEF,,又假设,,AB,平面PAB,平面PAB,显然不成立,不符合题意,故假设不成立,故B错误;取PB的中点Q,连DQ,FQ,则,,四边形DQFE为平行四边形,平面EFB,平面EFB,,所以平行四边形DEFQ为矩形,,,所以截面面积为12,故C正确;因为,平面BDE,平面BDE,所以平面所以点P与点A到平面BDE的距离相等,故D正确;故选12. 【分析】本题考查空间几何体中线面平行、线面垂直的判定,考查三棱锥的体积求解问题,属于较难题.根据空间中异面直线的概念即可推出选项A正确;取AD的中点M,根据线面垂直的判定定理即可推出选项B成立;根据线面平行的判定定理和性质定理即可得选项C正确;根据面面垂直的性质定理可证得平面ABCD,计算四棱锥的体积,继而可判断出选项D的正误.【解答】解:如图所示,选项A:因为平面ABCD,平面ABCD,,平面ABCD,所以根据异面直线的概念可知选项A正确;选项B:取AD的中点M,连接PM,BM,连接对角线AC,BD相交于点侧面PAD为正三角形,又底面ABCD为菱形,,是等边三角形,又M为AD中点,又,PM、平面平面PMB,故选项B正确;选项C:因为底面ABCD为菱形,所以,又平面PBC,平面PBC,所以平面设平面PAD与平面PBC的交线为l,因为平面PAD,平面PBC,平面平面,所以又因为平面ABCD,平面ABCD,所以平面ABCD,故选项C正确;选项D:由选项B的证明过程可知,又因为平面平面ABCD,平面平面,平面PAD,所以平面因为为正三角形,,所以底面ABCD为菱形,,,所以菱形ABCD的面积为:所以四棱锥的体积为:,故选项D错误.故选13. 【分析】本题考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是难题.将正方体的表面展开图进行还原成正方体,利用正方体中的直线位置关系分别判断.【解答】解:根据条件将正方体进行还原如下图所示:对于命题①,由图形可知,直线MN与CD异面,命题①正确;对于命题②,、Q分别为所在棱的中点,易证四边形MNQP为平行四边形,所以,,平面PQC,平面PQC,平面PQC,命题②正确;对于命题③,在正方体中,平面PQC,由于四边形MNQP为平行四边形,,平面、平面PQC,,则二面角所成的角为,显然不是直角,则平面MPQ与平面CQN不垂直,命题③错误;对于命题④,设正方体的棱长为2,易知平面AQB,则EQ与平面AQB所成的角为,由勾股定理可得,,在中,,即直线EQ与平面AQB所成线面角的正弦值为,命题④正确;对于命题⑤,在正方体中,平面MEFG,且,平面、平面MEFG,,所以,二面角的平面角为,在中,由勾股定理得,由余弦定理得,命题⑤错误.故答案为①②④.14. 【分析】本题主要考查空间直线和平面平行和垂直的位置关系的判断,综合考查学生的推理能力,属于中档题.①根据面面平行的性质定理进行判断平面;②利用特殊值法,即可判断不成立;③根据面面垂直的判断条件即可判断平面平面;④将三棱锥的体积进行等价转化,即可判断三棱锥的体积不变.【解答】解:①在正方体中,,且平面,平面,平面,同理平面,又、平面,且,平面平面;在面对角线AC上运动,平面;①正确.②当P位于AC的中点时,不成立,②错误;③平面,平面,,同理,平面,,平面平面;③正确.④三棱锥的体积等于三棱锥的体积.的面积为定值,B到平面的距离为高,为定值,三棱锥的体积不变,④正确.故答案为:①③④.15. 【分析】本题主要考查了线面角,难度较大.首先在矩形ABCD中,过点D作AF的垂线交AF于O点,交AB于M点,证明是直线DF与平面ABCF所成的角,求出最大,进而即可解答【解答】解:如图,在矩形ABCD中,过点D作AF的垂线交AF于O点,交AB于M点,设,,由且四边形ABCD是矩形可知,,所以,所以在翻折后的几何体中,连接DM,因为,,,OD,平面ODM,所以平面ODM,又AF在平面ABCF内,所以平面平面ABCF,又平面平面ABCF,平面平面,所以平面连接MF,则是直线DF与平面ABCF所成的角,所以为锐角因为,,所以,又,故当,即时,取得最大值,此时有最大值,即有最大值故答案为16. 【分析】本题主要考查了线面垂直的性质与判定、异面直线所成的角、正三棱锥的外接球的体积. 根据三棱锥的底面为正三角形且侧棱长相等得到正三棱锥,得到面ABC,接着根据线面垂直的性质、正三角形的性质及线面垂直的判定得到面SBE,进而得到,最后根据中位线的性质证明出根据已知及线面垂直的判定得到面SAC,从而结合正三棱锥得到其为相应正方体的一部分,求出球的半径及球的体积.【解答】解:如图所示,在三棱锥中,若底面ABC是正三角形,侧棱长知,三棱锥是正三棱锥,则点S在底面ABC中的投影为底面的中心O,所以面ABC,因此,又E为AC中点,,,所以平面SBE,平面SBE,,又M、N分别为棱SC、BC的中点,则,因此,异面直线MN与AC所成角为;,,,平面SAC ,又,则平面SAC,又三棱锥是正三棱锥,因此三棱锥可以看成正方体的一部分且S,A,B,C为正方体的四个顶点,故球的直径为,则球的体积为故答案为:17. 本题重点考查棱柱的侧面展开图求最短距离和二面角的求法,考查推理能力、计算能力和空间想象能力.将侧面,展开在一个平面内,连交于M,利用最短路线为即可求解;取中点D,连接,过D作,垂足为E,连接说明为平面与平面所成锐二面角的平面角,解直角三角形即可.18. 本题主要考查空间直线和平面的位置关系的判断,以及空间几何体的体积,根据线面垂直的判定定理以及五棱锥的体积公式是解决本题的关键.根据直线平行的性质以及菱形对角线垂直的性质进行证明即可.根据条件求出底面五边形的面积,结合平行线段的性质证明是五棱锥的高,即可得到结论.19. 本题考查四点共线的证明,考查三条直线交于一点的证明,异面直线所成角,属于拔高题.分别连接EF、、,推导出四边形为平行四边形,由此能证明E、F、、C四点共面.推导出直线和CE必相交,设,推导出P是平面ABCD与平面的公共点,由此能证明CE、、DA三线共点.由题意与所成角即为,在中求解即可.20. 本题重点考查线面垂直和线面平行的判定,以及二面角的求法,考查空间想象能力、推理能力和计算能力,属于拔高题.通过求证,即可求证平面PAC;设PD的中点是F,通过求证,即可求证存在中点E,使得平面PCD;设G为AD中点,连结CG,过G作于H,连结CH,先说明是二面角的平面角,再利用解三角形知识求解即可.21. 本题考查直线与平面平行、直线与平面垂直、平面与平面垂直、直线与平面所成角等基础知识,考查空间想象能力和运算求解能力,属于拔高题.连接BD ,由题意得,,由,得,由此能证明平面PAD;取棱PC中点N,连接DN,推导出,从而平面PAC,进而,再上,能证明平面PCD;连接AN ,由平面PAC ,知是直线AD与平面PAC所成角,由此能求出直线AD与平面PAC所成角的正弦值.22. 本题考查线面垂直的判定与性质及利用空间向量求二面角和平面与平面垂直.属于拔高题.证明平面,可得,利用,,可得平面BCDE;以EB,ED ,分别为x,y,z 轴,建立坐标系,求出平面、平面的一个法向量,利用向量的夹角公式求二面角的余弦值;设,求出平面的法向量,利用平面平面,可得结论.第31页,共31页。

立体几何与空间向量小题分类练习(四)综合应用-北京市2021-2022学年高二上学期期中数学备考

 立体几何与空间向量小题分类练习(四)综合应用-北京市2021-2022学年高二上学期期中数学备考

高二专题分类-立体几何与空间向量(四)空间向量与立体几何的综合应用一.选择题1.(2021·北京八中高二期末)正方体1111ABCD A B C D -中,AC 和1A D 所成角的大小是( ) A .30B .45C .60D .752.(2021·北京市朝阳区北京教育学院朝阳分院高二期中)已知空间四边形ABCD 的每条边和对角线的长都等于a ,点,E F 分别是,BC AD 的中点,则AE ⃗⃗⃗⃗⃗ ⋅AF ⃗⃗⃗⃗⃗ 的值为( )A .2aB .212aC .214aD 2 3.(2021·北京昌平区·昌平一中高二月考)已知正四棱锥S ABCD -的侧棱长与底面边长都相等,点E 是SB 的中点,则直线AE ,SD 所成角的余弦值为( )A .3B C D .134.(2021·北京西城·)如图,在正方体1111ABCD A B C D -中,E 为CD 的中点,则直线1A E 与BC 所成角的余弦值为( )A .25B .35C .13D .235.(2020·北京和平街第一中学高二月考)已知向量()2,0,1n =为平面α的法向量,点()1,2,1A -在α内,点()1,2,2P -在α外,则点P 到平面α的距离为( )A B C .D6.(2021·北京八中高二期末)如图,正方体1111ABCD A B C D -的棱长为1,点E 为1DD 的中点,点P 为BDE 内部一动点,P 点到平面1111D C B A 的正射影为点Q ,则Q 到点A 的距离的最小值为( )AB C D .17.(2021·北京师范大学昌平附属学校)正方体1111ABCD A B C D -中,点E 为1BB 中点,平面1A EC 与平面ABCD 所成二面角的余弦值为( )A B C D 8.(2021·北京高二期末)在空间直角坐标系Oxyz 中,已知点(1,0,0),(0,2,0),(0,0,2),(0,0,1)A B C D ,则直线AD 与BC 所成角的大小是___.二.填空题9.(2020·北京市广渠门中学)已知平面α的一个法向量()2,2,1n =--,点()1,3,0A --在平面α内,则点()2,1,4P -到平面α的距离为_________.10.(2021·北京朝阳·高二期末)如图,平行六面体ABCD -A 1B 1C 1D 1的底面ABCD 是菱形,且∠C 1CB =∠C 1CD =∠BCD =60°.CD =CC 1=1.则A 1C 与平面C 1BD _______(填“垂直”或“不垂直”);A 1C 的长为_______.11.(2021·北京昌平区·昌平一中高二月考)如图,在棱长为1的正方体1111ABCD A B C D -中,点M 是左侧面11ADD A 上的一个动点,满足BC 1⃗⃗⃗⃗⃗⃗⃗ ⋅BM ⃗⃗⃗⃗⃗⃗ =1,则BC 1⃗⃗⃗⃗⃗⃗⃗ 与BM ⃗⃗⃗⃗⃗⃗ 的夹角最大值为___________.12.(2021·北京昌平区·昌平一中高二月考)如图,正方体1111ABCD A B C D -的棱长为2,E 为1BB 的中点,则异面直线1BC 与1D E 所成的角为___________.13.(2021·北京人大附中高二期末)如图,若正三棱柱111ABC A B C -的底面边长为8,对角线1B C 的长为10,点D 为AC 的中点,则点1B 到平面1C BD 的距离为_____,直线1AB 与直线BD 所成角的余弦值为________.14.(2021·北京高二期末)如图,在四面体ABCD 中,其棱长均为1,M ,N 分别为BC ,AD 的中点.若MN ⃗⃗⃗⃗⃗⃗⃗ =xAB ⃗⃗⃗⃗⃗ +yAC ⃗⃗⃗⃗⃗ +zAD ⃗⃗⃗⃗⃗ ,则x y z ++=________;直线MN 和CD 的夹角为________.15.(2020·北京市第十二中学高二期中)在长方体1111ABCD A B C D -中,4AB AD ==,11AA =,点P 在底面1111D C B A 上.(1)若点P 与点1A 重合,则点P 到平面11BDD B 的距离是__________. (2)若点P 到直线AD 和11C D 的距离相等,则1PC 的最小值是__________.参考答案1.C 【分析】连接1B C ,即可得到11//A D B C ,则1B CA ∠(或补角)即为异面直线AC 和1A D 所成角,再根据正方体的性质计算可得; 【详解】解:如图连接1B C ,在正方体1111ABCD A B C D -中,因为11//A B CD ,且11=A B CD ,所以四边形11A B CD 为平行四边形,所以11//A D B C , 所以1B CA ∠(或补角)即为异面直线AC 和1A D 所成角, 显然1AB C 为等边三角形,所以160B CA ∠=. 故选:C.2.C 【分析】由题意可知,空间四边形ABCD 相邻两边的夹角都为60︒,所以把,,AB AC AD 看成空间向量的基底,将,AE AF 用基底表示化简可得答案 【详解】11()22AB AC AE AF AD ⋅=+⋅1()4AB AD AC AD =⋅+⋅ 22211(cos60cos60)44a a a ︒︒=+= 故选:C3.C 【分析】由题意画出图形,连接AC ,BD ,交于O ,连接,EO SO ,可得//EO SD ,则AEO ∠为直线AE 与直线SD 所成的角,证明AC ⊥平面SBD ,AC OE ⊥,则求解直角三角形得答案.【详解】解:如图,连接AC ,BD ,交于O ,连接,EO SO ,则SO ⊥平面ABCD ,又AC ⊂平面ABCD ,所以SO AC ⊥, 因为正四棱锥S ABCD -的侧棱长与底面边长都相等,则AC BD ⊥, 又BD SO O ⋂=,所以AC ⊥平面SBD , 又OE ⊂平面SBD ,所以AC OE ⊥,在SBD 中,O 为BD 的中点,点E 是SB 的中点,所以//EO SD ,则直线AE 与直线SD 所成的角为AEO ∠或其补角, 设正四棱锥S ABCD -的棱长为2,则AO =AE =在Rt AOE 中,1EO .cosEO AEO AE ∴∠==即直线AE ,SD 故选:C .4.D 【分析】设正方体的棱长为2,建立空间直角坐标系,利用向量法求解直线1A E 与BC 所成的角即可. 【详解】解:设正方体的棱长为2,如图所示建立空间直角坐标系, 则1(2A ,0,2),(0E ,1,0),(0C ,2,0),(2B ,2,0), 则1(2,1,2),(2,0,0)A E BC =--=- 所以111cos ,||||A E BC A EBC A E BC ⋅<>=42323==⨯, 所以异面直线1A E 与直线BC 所成角的余弦值为23,故选:D .5.A 【分析】利用点到平面距离公式的向量求法即可求解. 【详解】因为()1,2,1A -,()1,2,2P -, 所以()2,0,3PA =-,因为平面α的法向量为()2,0,1n =,所以点P 到平面α的距离为242PA n d n⋅-==, 故选:A.6.B 【分析】建立空间直角坐标系,用向量法求AQ 的距离,再由表达式研究最小值即可 【详解】由题可知,Q 点在线段11B D 上运动,且Q 不与11,B D 重合,如图以D 为原点,1,,DA DC DD 分别为,,x y z 轴,建立空间直角坐标系, 则易知(1,0,0)A ,又11B D 为1111D C B A 的对角线,故可设(,,1),(01)Q a a a <<,则AQ =令2222t a a =-+,则易知12a =时,2222t a a =-+所以AQ 故选:B 7.C 【分析】设正方体1111ABCD A B C D -的棱长为2,以点D 为坐标原点,DA 、DC 、1DD 所在直线分别为x 、y 、z 轴建立空间直角坐标系,利用空间向量法可求得平面1A EC 与平面ABCD 所成二面角的余弦值. 【详解】设正方体1111ABCD A B C D -的棱长为2,以点D 为坐标原点,DA 、DC 、1DD 所在直线分别为x 、y 、z 轴建立如下图所示的空间直角坐标系,则()12,0,2A 、()2,2,1E 、()0,2,0C ,所以,()10,2,1EA =-,()2,0,1CE =, 设平面1A CE 的法向量为(),,m x y z =,则12020m EA y z m CE x z ⎧⋅=-+=⎨⋅=+=⎩,取1x =,可得()1,1,2m =--,易知平面ABCD 的一个法向量为()0,0,1n =,所以,cos ,6m n m n m n⋅<>===⨯⋅,易知,平面1A EC 与平面ABCD 故选:C. 8.60︒ 【分析】利用空间向量求夹角公式直接求解. 【详解】(1,0,0),(0,2,0),(0,0,2),(0,0,1)A B C D(0,2,2),(1,0,1)BC AD ∴=-=-21cos ,20AD BC AD BC AD BC⋅∴===⋅又空间中两直线夹角范围为(0,90⎤⎦,故,60AD BC = 所以直线AD 与BC 所成角的大小是60︒ 故答案为:60︒9.23【分析】由题意算出()1,4,4AP =-,根据向量()2,2,1n =--是平面α的一个法向量,算出向量AP 在n 上的投影的绝对值,即可得到P 到α的距离.【详解】解:根据题意,可得()()1,3,0,1,4,2A P ---,()1,4,4AP =-, 又平面α的一个法向量()2,2,1n =--,点A 在α内,()2,1,4P ∴-到α的距离等于向量AP 在n 上的投影的绝对值,()()1242412P n A -⨯-+⨯-∴⨯=-=+ 即(232AP n d n===- 故答案为:23【点睛】本题给出平面的法向量和平面上的一点,求平面外一点到平面的距离;着重考查了向量的数量积公式和点到平面的距离计算等知识,属于中档题.10.垂直【分析】设CB a =,CD b =,1CC c =,可得出1CA a b c =++,计算得出1110CA BD CA BC ⋅=⋅=,可得出1CA BD ⊥,11CA BC ⊥,利用线面垂直的判定定理可证得结论成立,求1CA 的平方即可求A 1C 的长.【详解】设CB a =,CD b =,1CC c =,由题意可得1CA a b c =++,则()()()2211CA BD CA CD CB a b c b a b a c b c a ⋅=⋅-=++⋅-=-+⋅-⋅cos60cos600c b c a =⋅-⋅=,1CA BD ∴⊥,同理可证11CA BC ⊥,1BD BC B ⋂=,故1CA ⊥平面1C BD .∠C 1CB =∠C 1CD =∠BCD =60°.CD =CC 1=1,11CD CB CC ∴===,222221111()2()1112()6222CA a b c a b c a b b c a c ∴=++=+++⋅+⋅+⋅=+++++=1CA →∴=即A 1C .11.60【分析】以D 为坐标原点,以DA 为x 轴,DC 为y 轴,DD 1为z 轴,建立空间坐标系,设点M (x ,0,z ),其中01,1)0(x z ≤≤≤≤,根据空间向量的数量积运算得x z =,再根据空间向量的夹角运算和二次函数的性质可得答案.【详解】解:以D 为坐标原点,以DA 为x 轴,DC 为y 轴,DD 1为z 轴,建立空间坐标系,如图所示:∠M 是左侧面ADD 1A 上的一个动点,设点M (x ,0,z ),其中01,1)0(x z ≤≤≤≤, 1(1,1,0),(0,1,1),B C =,1(1,0,1),(1,1,)BC BM x z ∴=-=--,111BC BM x z ∴⋅=-+=,即x z =,又1||2,||(BC BM x ===设1BC 与BM 的夹角为θ,1cos 2θ∴== 设2()1f x x x =-+,()f x 在10,2⎡⎤⎢⎥⎣⎦上单调递减,在1,12⎡⎤⎢⎥⎣⎦上单调递增,所以13(0)1,()24f f ==,3()14f x ≤≤,所以1cos 2θ≤≤1BC 与BM 的夹角最大值为60.故答案为:60.12.4π. 【分析】连接1BC ,证明11//BC AD ,则1AD E ∠或其补角即为异面直线1BC 与1D E 所成的角,从而可的答案.【详解】解:连接1BC ,由正方体的性质可知,11//AB C D ,且11AB C D =,所以11ABC D 是平行四边形,所以11//BC AD ,所以1AD E ∠或其补角即为异面直线1BC 与1D E 所成的角,在1AD E △中,113,D E AD AE ==则22211111cos 2AD D E AE AD E AD D E +-∠===⋅ 即异面直线1BC 与1D E又因异面直线1BC 与1D E 所成的角的范围为0,2π⎛⎤ ⎥⎝⎦, 所以异面直线1BC 与1D E 所成的角为4π. 故答案为:4π.13 【分析】设1B C 与1BC 交于点O ,连接1AC ,可证得1//AB 平面1C BD ,求点1B 到平面1C BD 的距离可以转化为求点A 到平面1C BD 的距离,然后利用11A BC D C ABD V V --=进行计算求解;由于1//AB DO ,直线1AB 与直线BD 所成的角为ODB ∠,利用余弦定理进行计算求解即可.【详解】设1B C 与1BC 交于点O ,连接1AC ,在正三棱柱111ABC A B C -中,显然点O 为1B C 的中点,又点D 为AC 的中点, 所以1//AB DO ,又DO ⊂平面1C BD ,1AB ⊄平面1C BD ,所以1//AB 平面1C BD ,所以求点1B 到平面1C BD 的距离可以转化为求点A 到平面1C BD 的距离,因为8BD =,16CC ==,1C D所以有22211BD C D BC +=,所以1BD C D ⊥,所以112BC D S =⨯△易得BD AC ⊥,所以142ABD S =⨯=△ 设点A 到平面1C BD 的距离为h ,由11A BC D C ABD V V --=,即111133BC D ABD S h S C C ⨯⨯=⨯⨯△△,所以有11633h ⨯=⨯,解得:h = 因为1//AB DO ,所以直线1AB 与直线BD 所成的角为ODB ∠,因为1BD C D ⊥,O 为1B C 的中点,所以1152DO BC ==,而BD =所以22222255cos2OD BD OB ODB OD BD+-+-∠===⨯..【点睛】关键点点睛:求线面距离通常可以转化为求三棱锥的高,而求三棱锥的高通常利用等体积法进行求解.14.12-. 4π 【分析】利用空间向量的线性运算把MN 用,,AB AC AD 表示即可得,,x y z ,再由向量的数量积得向量夹角,从而得异面直线所成的角.【详解】由已知得MN 1122MB BA AN CB AB AD =++=-+11111()22222AB AC AB AD AB AC AD =--+=--+,又MN xAB y AC z AD =++且,,AB AC AD 不共面,∠12x y ==-,12z =,∠12x y z ++=-, ABCD 是棱长为1的正四面体,∠111cos602AB AC ⋅=⨯⨯︒=,同理12AB AD AC AD ⋅=⋅=,2222111111444222MN MN AB AC ADAB AC AB AD AC AD ==+++⋅-⋅-⋅44444== CD AD AC =-,111()()222MN CD AB AC AD AD AC ⋅=--+⋅-22111111222222AB AD AB AC AC AD AC AD AD AC =-⋅+⋅-⋅++-⋅11111114442242=-+-++-=, ∠12cos ,2MN CD MN CD MN CD ⋅<>===,∠,4MN CD π<>=, ∠异面直线MN 和CD 所成的角为4π. 【点睛】 关键点点睛:本题考查空间向量基本定理,考查用向量法求异面直线所成的角.在空间任意不共面的三个向量可作为空间的一个基底,空间所有向量都可用基底表示,且表示方法唯一,因此在用同一个基底用两种不同方法表示出同一向量时,两种表示法中对应的系数相等.由此结合向量的运算法则可表示得结论.同样用向量法求异面直线所成的角,可以直接计算,不需要作图与证明.15. 3【分析】(1)若点P 与点1A 重合,在平面1111D C B A 内,过P 作11PE B D ⊥,证明PE ⊥平面11BDD B ,则PE 为点P 到平面11BDD B 的距离,利用等面积法求解; (2)以1D 为坐标原点建立空间直角坐标系,设()(),,00,0P x y x y >≤,得()2210,0x y x y +=>≤,再由两点间的距离公式写出1PC ,利用配方法求最小值.【详解】解:(1)如图,若点P 与点1A 重合,在平面1111D C B A 内,过1A 作111A E B D ⊥, ∠平面1111A B C D ⊥平面11BB D D ,平面1111A B C D 平面1111BB D D B D =,∠1A E ⊥平面11BDD B ,则1A E 为点P 到平面11BDD B = (2)以1D 为坐标原点建立如图所示空间直角坐标系.设()(),,00,0P x y x y >≤y ,即()2210,0x y x y +=>≤,P 的轨迹为双曲线的部分, ()14,0,0C ,则1PC = ∠当2x =时,1PC 的最小值是3.故答案为:3.。

精品高三复习练习题:立体几何4

精品高三复习练习题:立体几何4

1.与正方体ABCD —1111A B C D 的三条棱AB 、CC 1 、A 11D 所在直线的距离相等的点( )A.有且只有1个B.有且只有2个C.有且只有3个D.有无数个答案:D解析:经验证线段1B D 上的点B,D,中点,四等分点均满足题意,故由排除法知应有无数个点.2.直三棱柱ABC —111A B C 中,若90BAC ∠=°1AB AC AA ,==,则异面直线1BA 与1AC 所成的角等于 ( )A.30°B.45°C.60°D.90° 答案:C解析:不妨设AB=AC=11AA =,建立空间直角坐标系如图所示,则B(0,-1,0),1(001)A ,,,A(0,0,0),1(101)C -,,,∴11(011)BA AC =,,,=u u u u u u u r u u u u u u u u r (-1,0,1).∴cos 111111BA AC BA AC BA AC ⋅,=||||u u u u u u u r u u u u u u u u r u u u u r u u u u r u u u u r u u u u r 11222==⨯. ∴1160BA AC ,=u r °. ∴异面直线1BA 与1AC 所成的角为60°.3.在空间中,①若四点不共面,则这四点中任何三点都不共线;②若两条直线没有公共点,则这两条直线是异面直线.以上两个命题中,逆命题为真命题的是(把符合要求的命题序号都填上).答案:②解析:对于①的逆命题可举反例,如直线AB ∥CD,A B C D A B C D ,、、、没有三点共线但、、、四点共面;对于②的逆命题由异面直线定义知正确,故填②.4.若a 、b 是异面直线,在直线a 上有5个点,在直线b 上有4个点,则这9个点可确定平面的个数为 个.答案:9解析:直线a 上任一点与直线b 确定一平面,共5个,直线b 上任一点与直线a 确定一平面,共4个,一共9个.5.如图,三棱锥A —BCD 中E F G AB AC AD ,、、分别是侧棱、、上的点.AE AB AF AC AG AD ==且满足:::EFG BCD :.V V 求证∽证明:在△ABD 中,∵AE ∶AB=AG ∶AD,∴EG ∥BD.同理,GF ∥DC,EF ∥BC.又GEF ∠与DBC ∠方向相同.∴GEF DBC ∠=∠.同理EGF BDC ,∠=∠.∴△EFG ∽△BCD.题组一 共线、共面问题1.下列命题中正确的有几个?( )①若△ABC 在平面α外,它的三条边所在的直线分别交α于点P 、Q 、R,则P 、Q 、R 三点共线;②若三条直线a 、b 、c 互相平行且分别交直线l 于A 、B 、C 三点,则这四条直线共面;③空间中不共面的五个点一定能确定10个平面.A.0个B.1个C.2个D.3个答案:C解析:在①中,因为P 、Q 、R 三点既在平面ABC 上,又在平面α上,所以这三点必在平面ABC 与α的交线上,即P 、Q 、R 三点共线,故①正确;在②中,因为a ∥b,所以a 与b 确定一个平面α,而l 上有A 、B 两点在该平面上,所以l α⊂,即a 、b 、l 三线共面于α;同理a 、c 、l 三线也共面,不妨设为β,而α、β有两条公共的直线a 、l,∴α与β重合,即这四条直线共面,故②正确;在③中,不妨设其中四点共面,则它们最多只能确定7个平面,故③错.2.如图所示,ABCD —1111A B C D 是正方体,O 是11B D 的中点,直线1A C 交平面11AB D 于点M,则下列结论正确的是 ( )A.A 、M 、O 三点共线B.A 、M 、O 、1A 不共面C.A 、M 、C 、O 不共面D.B 、1B 、O 、M 共面答案:A解析:连接11AC AC ,,则11A C ∥AC,∴1A 、1C 、C 、A 四点共面. ∴1AC ⊂平面11ACC A . ∵1M AC ∈,∴M ∈平面11ACC A .又M ∈平面11AB D ,∴M 在平面11ACC A 与平面11AB D 的交线上,同理O 也在平面11ACC A 与平面11AB D 的交线上,∴A 、M 、O 三点共线.3.在空间四边形ABCD 的边AB BC CD DA E F G H EF HG M ,,、、、上分别取、、、四点如果与交于点那么( )A.M 一定在直线AC 上B.M 一定在直线BD 上C.M 可能在直线AC 上,也可能在直线BD 上D.M 既不在直线AC 上,也不在直线BD 上答案:A解析:平面ABC ⋂平面ACD AC M =,∈平面ABC M ,∈平面ACD,从而M AC ∈.4.对于空间三条直线,有下列四个条件:①三条直线两两相交且不共点;②三条直线两两平行;③三条直线共点;④有两条直线平行,第三条直线和这两条直线都相交.其中,使三条直线共面的充分条件有 .(把符合要求的条件序号都填上)答案:①④解析:①中两直线相交确定平面,由于第三条直线不过前两条直线的交点且又分别与它们都相交,所以第三条直线也在这个平面内.②中可能有直线和平面平行.③中直线最多可确定3个平面.④两条平行线确定一个平面,第三条直线与它们都相交,所以第三条直线也在这个平面内.5.如图,在四边形ABCD 中,已知AB ∥CD,直线AB 、BC 、AD 、CD 与平面α相交于点E 、G 、H 、F.求证:E 、F 、G 、H 四点共线.证明:∵AB ∥CD,∴直线AB 、CD 确定一个平面β.∵E 是直线AB 上一点,∴E β∈,又E α∈,E 是平面α与β的一个公共点.同理可证F 、G 、H 均为平面α与β的公共点.∵两个平面有公共点,它们有且只有一条通过公共点的公共直线,∴E 、F 、G 、H 四点共线.题组二 异面直线6.到两互相垂直的异面直线的距离相等的点… ( )A.只有1个B.恰有3个C.恰有4个D.有无穷多个答案:D解析:放在正方体中研究,显然,线段1OO 、EF 、FG 、GH 、HE 的中点到两垂直异面直线AB 、CD 的距离都相等,所以排除A 、B 、C,选D.7.如图,正方体1AC 中,E 、F 分别是线段BC 、1CD 的中点,则直线1A B 与直线EF 的位置关系是( )A.相交B.异面C.平行D.垂直答案:A解析:如题图所示,直线1A B 与直线1CD 平行,所以确定一个平面11A BCD ,显然EF ⊂平面11A BCD ,直线EF 与1CD 相交1A B ,∥1CD ,所以1A B 与EF 相交.8.如图,长方体1111ABCD A B C D -中,12AA AB AD ==,=1,点E 、F 、G 分别是1DD 、AB 、1CC 的中点.求异面直线1A E 与GF 所成角的大小.解:连接1B G EG ,,由于E 、G 分别是1DD 和1CC 的中点,∴EG C 11D ,而11C D A 11B ,∴EG A 11B ,∴四边形11EGB A 是平行四边形.∴1A E ∥1B G ,从而1B GF ∠为异面直线1A E 与GF 所成的角,连接1B F ,易求得11325FG BG B F =,=,=, ∵22211FG B G B F +=,∴190B GF ∠=°,即异面直线1A E 与GF 所成的角为90°.题组三 综合问题9.在正方体ABCD —1111A B C D 的侧面1AB 内有一动点P 到直线11A B 与直线BC 的距离相等,则动点P 所在曲线的形状为( )答案:C解析:动点P 到定点B 的距离也就是P 到直线BC 的距离,它等于到直线11A B 的距离,所以动点P 的轨迹是以B 为焦点,以11A B 为准线的过A 的抛物线的一部分.10.如图,在四面体ABCD 中,若截面PQMN 是正方形,则在下列命题中,错误的为 ( )A.AC BD ⊥B.AC ∥截面PQMNC.AC=BDD.异面直线PM 与BD 所成的角为45°答案:C解析:由PQ ∥AC,QM ∥BD PQ QM ,⊥可得AC BD ⊥,故A 正确;由PQ ∥AC 可得AC ∥截面PQMN,故B 正确;异面直线PM 与BD 所成的角等于PM 与PN 所成的角,故D 正确;综上C 是错误的,故选C.11.已知正方体ABCD —1111A B C D 中,E 是对角线1AB 上一点,且113AE AB F =,是对角线BD 上一点且13BF BD =.求证:E 、F 、C 、1A 四点共面. 证明:∵113AE AB =,延长1A E 与AB 交于G,则12111AG AE A B EB ==,即12AG AB =, ∴∶GA=1∶1.同理延长CF 与AB 交于G′,则′∶G′A=1∶1.∴G 与G′重合,即直线1A E 与CF 相交于G,从而确定一个平面.∴E 、F 、C 、1A 四点共面.12.如图所示,三棱锥P-ABC 中PA ,⊥平面60ABC BAC ,∠=°,PA=AB=AC=2,E 是PC 的中点.(1)求证AE 与PB 是异面直线.(2)求三棱锥A-EBC 的体积.解:(1)证明:假设AE 与PB 共面,设平面为α,∵A B E ααα∈,∈,∈,∴平面α即为平面ABE,∴P ∈平面ABE,这与P ∉平面ABE 矛盾,所以直线AE 与PB 是异面直线.(2)∵PA ⊥平面ABC,E 是PC 的中点,∴E 到平面ABC 的距离112h PA ==. ∵△ABC 中60BAC ,∠=°,AB=AC=2,∴△ABC 的面积12ABC S AB AC =⨯⨯⨯V sin BAC ∠312232=⨯⨯⨯=. ∴三棱锥A —EBC 的体积,即三棱锥E —ABC 的体积为3111333ABC hS =⨯⨯=V .。

第8章立体几何专题4 垂直的证明-人教A版(2019)高中数学必修(第二册)常考题型专题练习

第8章立体几何专题4 垂直的证明-人教A版(2019)高中数学必修(第二册)常考题型专题练习

垂直的证明【方法总结】1、证明线面垂直的方法:①利用线面垂直定义:如果一条直线垂直于平面内任一条直线,则这条直线垂直于该平面;②用线面垂直判定定理:如果一条直线与平面内的两条相交直线都垂直,则这条直线与平面垂直;③用线面垂直性质:两条平行线中的一条垂直于一个平面,则另一条也必垂直于这个平面.2、证明线线(或线面)垂直有时需多次运用线面垂直的定义和线面垂直的判定定理,实现线线垂直与线面垂直的相互转化.3、证明面面垂直一般要先找到两个面的交线,然后再在两个面内找能与交线垂直的直线,最后通过证明线面垂直证明面面垂直。

【分类练习】考向一线面垂直例1、在四棱锥P ABCD -中,PA ⊥底面ABCD ,//AB CD ,AB BC ⊥,1AB BC ==,2DC =,点E 在PB 上求证:CA ⊥平面PAD ;【答案】(1)证明见解析;(2)2.【解析】(1)过A 作AF ⊥DC 于F ,则CF =DF =AF ,所以∠DAC =90°,即AC ⊥DA ,又PA ⊥底面ABCD ,AC ⊂面ABCD ,所以AC ⊥PA ,因为PA 、AD ⊂面PAD ,且PA ∩AD =A ,所以AC ⊥平面PAD .例2、如图,长方体ABCD –A 1B 1C 1D 1的底面ABCD 是正方形,点E 在棱AA 1上,BE ⊥EC 1.(1)证明:BE ⊥平面EB 1C 1;解析:(1)由已知得,11B C ⊥平面11ABB A ,BE ⊂平面11ABB A ,故11B C ⊥BE .又1BE EC ⊥,所以BE ⊥平面11EB C .例3、如图,在三棱柱111ABC A B C -中,1CC ⊥平面ABC ,D ,E ,F ,G 分别为1AA ,AC ,11A C ,1BB 的中点求证:AC ⊥平面BEF ;【解析】(1)在三棱柱111ABC A B C -中,∵1CC ⊥平面ABC ,∴四边形11A ACC 为矩形.又E ,F 分别为AC ,11A C 的中点,∴AC ⊥EF .∵AB BC =.∴AC ⊥BE ,∴AC ⊥平面BEF .例4、如图,在四棱锥P ABCD -中,PA ⊥平面ABCD ,CD ⊥AD ,BC ∥AD ,12BC CD AD ==.(Ⅰ)求证:BD ⊥平面PAB ;【解析】因为PA ⊥平面ABCD ,BD ⊂平面ABCD ,所以BD ⊥PA .所以222AD AB BD =+,所以BD AB ⊥.因为PA AB A = ,所以BD ⊥平面PAB .【巩固练习】1、如图,在三棱柱ABC-A 1B 1C 1中,AB=AC,A 1在底面ABC 的射影为BC 的中点,D 是B 1C 1的中点.证明:A 1D⊥平面A 1BC;【答案】见解析【解析】证明:设E 为BC 的中点,连接A 1E,AE.由题意得A 1E⊥平面ABC,所以A 1E⊥AE.因为AB=AC,所以AE⊥BC.故AE⊥平面A 1BC.连接DE,由D,E 分别为B 1C 1,BC 的中点,得DE∥B 1B 且DE=B 1B,从而DE∥A 1A 且DE =A 1A,所以AA 1DE 为平行四边形.于是A 1D∥AE.因为AE⊥平面A 1BC,所以A 1D⊥平面A 1BC.2.(2019·上海格致中学高三月考)如图,在四棱锥P ABCD -中,底面ABCD 是正方形,侧棱PD ⊥底面ABCD ,PD DC =,E 是PC 的中点,作EF PB ⊥交PB 于点F .(1)证明:PA ∥平面EDB ;(2)证明:PB ⊥平面EFD .【答案】(1)详见解析;(2)详见解析.【解析】(1)设AC 与BD 相交于O ,连接OE ,由于O 是AC 中点,E 是PC 中点,所所以PA ∥平面EDB .(2)由于PD ⊥底面ABCD ,所以PD BC ⊥,由于,BC CD PD CD D ⊥⋂=,所以BC ⊥平面PCD ,所以BC DE ⊥.由于DP DC =且E 是PC 中点,所以DE PC ⊥,而PC BC C ⋂=,所以DE ⊥平面PBC ,所以DE PB ⊥.依题意EF PB ⊥,DE EF E = ,所以PB ⊥平面EFD .3.(2019·江苏高三月考)如图,在四棱锥P ABCD -中,四边形ABCD 是平行四边形,AC ,BD 相交于点O ,OP OC =,E 为PC 的中点,PA PD ⊥.(1)求证://PA 平面BDE ;(2)求证:PA ⊥平面PCD【答案】(1)详见解析(2)详见解析【解析】(1)连结OE .因为四边形ABCD 是平行四边形,AC ,BD 相交于点O ,所以O 为AC 的中点.因为E 为PC 的中点,所以//OE PA .因为OE ⊂平面BDE ,PA ⊄平面BDE ,所以//PA 平面BDE .(2)因为OP OC =,E 为PC 的中点,所以OE PC ⊥.由(1)知,//OE PA ,所以PA PC ⊥.因为PA PD ⊥,PC ,PD ⊂平面PCD ,PC PD P ⋂=,所以PA ⊥平面PCD .考向二面面垂直例1、如图,在四棱锥P ABCD -中,已知底面ABCD 为矩形,且AB =,1BC =,E ,F 分别是AB ,PC 的中点,PA DE ⊥.(1)求证://EF 平面PAD ;(2)求证:平面PAC ⊥平面PDE .【答案】(1)详见解析(2)详见解析【解析】证明:(1)取PD 中点G ,连AG ,FG ,F ,G 分别是PC ,PD 的中点又E 为AB 中点//AE FG ∴,AE FG=四边形AEFG 为平行四边形//EF AG ∴,又EF ⊄平面PAD ,AG ⊂平面PAD//EF ∴平面PAD(2)设AC DE H= 由AEH CDH ∆∆ 及E 为AB 中点又BAD ∠为公共角GAE BAC∴∆∆ 90AHE ABC ∴∠=∠=︒即DE AC ⊥又DE PA ⊥,PA AC A= DE ⊥平面PAC ,又DE ⊂平面PDE∴平面PAC ⊥平面PDE例2、如图,边长为2的正方形ABCD 所在的平面与半圆弧 CD所在平面垂直,M 是 CD 上异于C ,D 的点.(1)证明:平面AMD ⊥平面BMC ;【解析】(1)由题设知,平面CMD ⊥平面ABCD ,交线为CD .因为BC ⊥CD ,BC ⊂平面ABCD ,所以BC ⊥平面CMD ,故BC ⊥DM .因为M 为 CD上异于C ,D 的点,且DC 为直径,所以DM ⊥CM .又BC CM =C ,所以DM ⊥平面BMC .而DM ⊂平面AMD ,故平面AMD ⊥平面BMC .例3、如图,在梯形ABCD 中,AB ∥CD ,AD=DC=CB=a ,∠ABC=3π,平面ACFE ⊥平面ABCD ,四边形ACFE 是矩形,AE=AD ,点M 在线段EF 上。

高中数学第一章立体几何初步4空间图形的基本关系与公理4.1空间图形基本关系的认识4.2空间图形的公理

高中数学第一章立体几何初步4空间图形的基本关系与公理4.1空间图形基本关系的认识4.2空间图形的公理
第十二页,共42页。
[小组合作型]
空间点、线、面的位置(wèi zhi)关系
(1)如果 a α,b α,l∩a=A,l∩b=B,l β,那么 α 与 β 的位置关系是________.
(2)如图 1-4-1,在正方体 ABCD-A′B′C′D′中, 哪几条棱所在的直线与直线 BC′是异面直线?
图 1-4-1
第十页,共42页。
两个平面若有三个公共点,则这两个平面( )
A.相交
B.重合
C.相交或重合
D.以上都不对
【解析】 若三个点在同一条直线上,则两平面可能相交;若这三个点不 在同一直线上,则这两个平面重合.
【答案】 C
第十一页,共42页。
[质疑·手记] 预习完成后,请将你的疑问记录,并与“小伙伴们”探讨交流: 疑问 1: _____________________________________________________ 解惑: _______________________________________________________ 疑问 2: _____________________________________________________ 解惑: _______________________________________________________ 疑问 3: ______________________________________________________ 解惑: _______________________________________________________
平面与平面 的位置关系
面面平行 面面相交
α∥β α∩β=a
第五页,共42页。

历年高考真题专题04立体几何

历年高考真题专题04立体几何

专题04 立体几何【2020年】1.(2020·新课标Ⅰ)埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥,以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为( )A. 51-B. 51-C. 51+D. 51+ 【解析】如图,设,CD a PE b ==,则22224a PO PE OEb =-=-, 由题意212PO ab =,即22142a b ab -=,化简得24()210b b a a -⋅-=,解得15b a +=(负值舍去).2.(2020·新课标Ⅰ)已知A 、B 、C 为球O 球面上的三个点,⊙1O 为ABC 的外接圆,若⊙1O 的面积为4π,1AB BC AC OO ===,则球O 的表面积为( )A. 64πB. 48πC. 36πD. 32π【解析】设圆1O 半径为r ,球的半径为R ,依题意,得24,2r r ππ=∴=,由正弦定理可得2sin 6023AB r =︒=,123OO AB ∴==,根据圆截面性质1OO ⊥平面ABC , 222211111,4OO O A R OA OO O A OO r ∴⊥==+=+=,∴球O 的表面积2464S R ππ==.3.(2020·新课标Ⅱ)如图是一个多面体的三视图,这个多面体某条棱的一个端点在正视图中对应的点为M,在俯视图中对应的点为N,则该端点在侧视图中对应的点为()A. EB. FC. GD. H【解析】根据三视图,画出多面体立体图形,图中标出了根据三视图M点所在位置,可知在侧视图中所对应的点为E。

4.(2020·新课标Ⅲ)下图为某几何体的三视图,则该几何体的表面积是()2233【解析】根据三视图特征,在正方体中截取出符合题意的立体图形根据立体图形可得:12222ABC ADC CDBS S S===⨯⨯=△△△根据勾股定理可得:22AB AD DB===∴ADB△是边长为2根据三角形面积公式可得:2113sin 60(22)23222ADB S AB AD =⋅⋅︒=⋅=△ ∴该几何体的表面积是:2362332=⨯++.5.(2020·北京卷)某三棱柱的底面为正三角形,其三视图如图所示,该三棱柱的表面积为( ). A . 63+ B. 623+C. 123+D. 1223+ 【解析】由题意可得,三棱柱的上下底面为边长为2的等边三角形,侧面为三个边长为2的正方形, 则其表面积为:()1322222sin 6012232S ⎛⎫=⨯⨯+⨯⨯⨯⨯︒=+⎪⎝⎭. 6.(2020·山东卷)日晷是中国古代用来测定时间的仪器,利用与晷面垂直的晷针投射到晷面的影子来测定时间.把地球看成一个球(球心记为O ),地球上一点A 的纬度是指OA 与地球赤道所在平面所成角,点A 处的水平面是指过点A 且与OA 垂直的平面.在点A 处放置一个日晷,若晷面与赤道所在平面平行,点A 处的纬度为北纬40°,则晷针与点A 处的水平面所成角为( )A. 20°B. 40°C. 50°D. 90°【解析】画出截面图如下图所示,其中CD 是赤道所在平面的截线;l 是点A 处的水平面的截线,依题意可知OA l ⊥;AB 是晷针所在直线.m 是晷面的截线,依题意依题意,晷面和赤道平面平行,晷针与晷面垂直,根据平面平行的性质定理可得可知//m CD 、根据线面垂直的定义可得AB m ⊥..由于40,//AOC m CD ∠=︒,所以40OAG AOC ∠=∠=︒,由于90OAG GAE BAE GAE ∠+∠=∠+∠=︒,所以40BAE OAG ∠=∠=︒,也即晷针与点A 处的水平面所成角为40BAE ∠=︒.7.(2020·天津卷)若棱长为23的正方体的顶点都在同一球面上,则该球的表面积为( ) A. 12π B. 24π C. 36π D. 144π【解析】这个球是正方体的外接球,其半径等于正方体的体对角线的一半,即()()()22223232332R ++==,所以,这个球的表面积为2244336S R πππ==⨯=.8.(2020·浙江卷)某几何体的三视图(单位:cm )如图所示,则该几何体的体积(单位:cm 3)是( )A. 73B. 143C. 3D. 6【解析】由三视图可知,该几何体是上半部分是三棱锥,下半部分是三棱柱,且三棱锥的一个侧面垂直于底面,且棱锥的高为1,棱柱的底面为等腰直角三角形,棱柱的高为2,所以几何体的体积为:11117211212232233⎛⎫⎛⎫⨯⨯⨯⨯+⨯⨯⨯=+= ⎪ ⎪⎝⎭⎝⎭. 9.(2020·山东卷)已知直四棱柱ABCD –A 1B 1C 1D 1的棱长均为2,∠BAD =60°.以1D 为球心,5为半径的球面与侧面BCC 1B 1的交线长为________.【解析】如图:取11B C 的中点为E ,1BB 的中点为F ,1CC 的中点为G ,因为BAD ∠=60°,直四棱柱1111ABCD A B C D -的棱长均为2,所以△111D B C 为等边三角形,所以1D E 3=,111D E B C ⊥, 又四棱柱1111ABCD A B C D -为直四棱柱,所以1BB ⊥平面1111D C B A ,所以111BB B C ⊥,因为1111BB B C B =,所以1D E ⊥侧面11B C CB ,设P 为侧面11B C CB 与球面的交线上的点,则1D E EP ⊥, 因为球的半径为5,13D E =,所以2211||||||532EP D P D E =-=-=, 所以侧面11B C CB 与球面的交线上的点到E 的距离为2,因为||||2EF EG ==,所以侧面11B C CB 与球面的交线是扇形EFG 的弧FG ,因为114B EF C EG π∠=∠=,所以2FEG π∠=,所以根据弧长公式可得2222FG ππ=⨯=. 10.(2020·浙江卷)已知圆锥展开图的侧面积为2π,且为半圆,则底面半径为_______.【解析】设圆锥底面半径为r ,母线长为l ,则21222r l r l ππππ⨯⨯=⎧⎪⎨⨯⨯=⨯⨯⨯⎪⎩,解得1,2r l ==. 11.(2020·江苏卷)如图,六角螺帽毛坯是由一个正六棱柱挖去一个圆柱所构成的.已知螺帽的底面正六边形边长为2 cm ,高为2 cm ,内孔半轻为0.5 cm ,则此六角螺帽毛坯的体积是____cm.【解析】正六棱柱体积为23622=123⨯;圆柱体积为21()222ππ⋅=;所求几何体体积为1232π 12.(2020·新课标Ⅲ)已知圆锥的底面半径为1,母线长为3,则该圆锥内半径最大的球的体积为_________.2【解析】易知半径最大球为圆锥的内切球,球与圆锥内切时的轴截面如图所示,其中2,3BC AB AC ===,且点M 为BC 边上的中点,设内切圆的圆心为O ,由于223122AM =-=,故1222222S =⨯⨯=△ABC ,设内切圆半径为r ,则: ABC AOB BOC AOC S S S S =++△△△△111222AB r BC r AC r =⨯⨯+⨯⨯+⨯⨯ ()1332222r =⨯++⨯=,解得:22r ,其体积:34233V r ππ==. 【2019年】1.【2019·全国Ⅰ卷】已知三棱锥P −ABC 的四个顶点在球O 的球面上,P A =PB =PC ,△ABC 是边长为2的正三角形,E ,F 分别是P A ,AB 的中点,∠CEF =90°,则球O 的体积为( )A .68πB .64πC .62πD .6π 【解析】,PA PB PC ABC ==△为边长为2的等边三角形,P ABC ∴-为正三棱锥,PB AC ∴⊥,又E ,F 分别为PA ,AB 的中点,EF PB ∴∥,EF AC ∴⊥,又EF CE ⊥,,CEAC C EF =∴⊥平面PAC ,∴PB ⊥平面PAC ,2APB PA PB PC ∴∠=90︒,∴===,P ABC ∴-为正方体的一部分,22226R =++=,即364466,π62338R V R =∴=π=⨯=π,故选D .2.【2019·全国Ⅱ卷】设α,β为两个平面,则α∥β的充要条件是( )A .α内有无数条直线与β平行B .α内有两条相交直线与β平行C .α,β平行于同一条直线D .α,β垂直于同一平面【解析】由面面平行的判定定理知:α内两条相交直线都与β平行是αβ∥的充分条件,由面面平行性质定理知,若αβ∥,则α内任意一条直线都与β平行,所以α内两条相交直线都与β平行是αβ∥的必要条件,故选B .3.【2019·全国Ⅲ卷】如图,点N 为正方形ABCD 的中心,△ECD 为正三角形,平面ECD ⊥平面ABCD ,M 是线段ED 的中点,则( )A .BM =EN ,且直线BM ,EN 是相交直线;B .BM ≠EN ,且直线BM ,EN 是相交直线C .BM =EN ,且直线BM ,EN 是异面直线;D .BM ≠EN ,且直线BM ,EN 是异面直线【解析】如图所示,作EO CD ⊥于O ,连接ON ,BD ,易得直线BM ,EN 是三角形EBD 的中线,是相交直线.过M 作MF OD ⊥于F ,连接BF ,平面CDE ⊥平面ABCD ,,EO CD EO ⊥⊂平面CDE ,EO ∴⊥平面ABCD ,MF ⊥平面ABCD ,MFB ∴△与EON △均为直角三角形.设正方形边长为2,易知3,12EO ON EN ===,,35,,722MF BF BM ==∴=,BM EN ∴≠,故选B .4.【2019·浙江卷】祖暅是我国南北朝时代的伟大科学家,他提出的“幂势既同,则积不容异”称为祖暅原理,利用该原理可以得到柱体的体积公式V 柱体=Sh ,其中S 是柱体的底面积,h 是柱体的高.若某柱体的三视图如图所示(单位:cm ),则该柱体的体积(单位:cm 3)是( )A .158B .162C .182D .324 【解析】由三视图得该棱柱的高为6,底面可以看作是由两个直角梯形组合而成的,其中一个上底为4,下底为6,高为3,另一个的上底为2,下底为6,高为3,则该棱柱的体积为264633616222++⎛⎫⨯+⨯⨯=⎪⎝⎭. 故选B.5.【2019·浙江卷】设三棱锥V –ABC 的底面是正三角形,侧棱长均相等,P 是棱VA 上的点(不含端点).记直线PB 与直线AC 所成的角为α,直线PB 与平面ABC 所成的角为β,二面角P –AC –B 的平面角为γ,则( ) A .β<γ,α<γ B .β<α,β<γ C .β<α,γ<α D .α<β,γ<β 【解析】如图,G 为AC 中点,连接VG ,V 在底面ABC 的投影为O ,则P 在底面的投影D 在线段AO 上,过D 作DE 垂直于AC 于E ,连接PE ,BD ,易得PE VG ∥,过P 作PF AC ∥交VG 于F ,连接BF ,过D 作DH AC ∥,交BG 于H ,则,,BPF PBD PED αβγ=∠=∠=∠,结合△PFB ,△BDH ,△PDB 均为直角三角形,可得cos cos PF EG DH BD PB PB PB PBαβ===<=,即αβ>; 在Rt △PED 中,tan tan PD PD ED BD γβ=>=,即γβ>,综上所述,答案为B.6.【2019·全国Ⅲ卷】学生到工厂劳动实践,利用3D 打印技术制作模型.如图,该模型为长方体1111ABCD A B C D -挖去四棱锥O —EFGH 后所得的几何体,其中O 为长方体的中心,E ,F ,G ,H 分别为所在棱的中点,16cm 4cm AB =BC =, AA =,3D 打印所用原料密度为0.9 g/cm 3,不考虑打印损耗,制作该模型所需原料的质量为___________g.【解析】由题意得,214642312cm 2EFGH S =⨯-⨯⨯⨯=四边形,∵四棱锥O −EFGH 的高为3cm , ∴3112312cm 3O EFGH V -=⨯⨯=. 又长方体1111ABCD A B C D -的体积为32466144cm V =⨯⨯=,所以该模型体积为3214412132cm O EFGH V V V -=-=-=,其质量为0.9132118.8g ⨯=.7.【2019·北京卷】某几何体是由一个正方体去掉一个四棱柱所得,其三视图如图所示.如果网格纸上小正方形的边长为1,那么该几何体的体积为__________.【解析】如图所示,在棱长为4的正方体中,三视图对应的几何体为正方体去掉棱柱1111MPD A NQC B -之后余下的几何体,则几何体的体积()3142424402V =-⨯+⨯⨯=.8.【2019·北京卷】已知l ,m 是平面α外的两条不同直线.给出下列三个论断:①l ⊥m ; ②m ∥α; ③l ⊥α.以其中的两个论断作为条件,余下的一个论断作为结论,写出一个正确的命题:__________.【解析】将所给论断,分别作为条件、结论,得到如下三个命题:(1)如果l ⊥α,m ∥α,则l ⊥m ,正确;(2)如果l ⊥α,l ⊥m ,则m ∥α,不正确,有可能m 在平面α内;(3)如果l ⊥m ,m ∥α,则l ⊥α,不正确,有可能l 与α斜交、l ∥α.故答案为:如果l ⊥α,m ∥α,则l ⊥m.9.【2019·天津卷】已知四棱锥的底面是边长为2的正方形,侧棱长均为5.若圆柱的一个底面的圆周经过四棱锥四条侧棱的中点,另一个底面的圆心为四棱锥底面的中心,则该圆柱的体积为_____________.【解析】由题意,四棱锥的底面是边长为2的正方形,侧棱长均为5,借助勾股定理,可知四棱锥的高为512-=.若圆柱的一个底面的圆周经过四棱锥四条侧棱的中点,一个底面的圆心为四棱锥底面的中心,故圆柱的高为1,圆柱的底面半径为12,故圆柱的体积为21ππ124⎛⎫⨯⨯= ⎪⎝⎭. 10.【2019·江苏卷】如图,长方体1111ABCD A B C D -的体积是120,E 为1CC 的中点,则三棱锥E −BCD 的体积是 ▲ .【解析】因为长方体1111ABCD A B C D -的体积为120,所以1120AB BC CC ⋅⋅=,因为E 为1CC 的中点,所以112CE CC =,由长方体的性质知1CC ⊥底面ABCD , 所以CE 是三棱锥E BCD -的底面BCD 上的高,所以三棱锥E BCD -的体积1132V AB BC CE =⨯⋅⋅=111111201032212AB BC CC =⨯⋅⋅=⨯=. 【2018年】1.【2018·全国Ⅰ卷】某圆柱的高为2,底面周长为16,其三视图如图.圆柱表面上的点M 在正视图上的对应点为A ,圆柱表面上的点N 在左视图上的对应点为B ,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为A .172B .52C .3D .2【答案】B2.【2018·全国Ⅰ卷】已知正方体的棱长为1,每条棱所在直线与平面α所成的角都相等,则α截此正方体所得截面面积的最大值为 A .33 B .23 C .324D .3【解析】根据相互平行的直线与平面所成的角是相等的,所以在正方体1111ABCD A B C D -中, 平面11AB D 与线11111,,AA A B A D 所成的角是相等的,所以平面11AB D 与正方体的每条棱所在的直线所成角都是相等的, 同理,平面1C BD 也满足与正方体的每条棱所在的直线所成角都是相等的,要求截面面积最大,则截面的位置为夹在两个面11AB D 与1C BD 中间,且过棱的中点的正六边形,且边长为22,所以其面积为232336424S ⎛⎫=⨯⨯= ⎪ ⎪⎝⎭,故选A. 3.【2018·全国Ⅲ卷】中国古建筑借助榫卯将木构件连接起来,构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是【解析】本题主要考查空间几何体的三视图.由题意知,俯视图中应有一不可见的长方形,且俯视图应为对称图形.故选A .4.【2018·浙江卷】某几何体的三视图如图所示(单位:cm ),则该几何体的体积(单位:cm 3)是俯视图正视图2211A .2B .4C .6D .8【解析】根据三视图可得几何体为一个直四棱柱,高为2,底面为直角梯形,上、下底分别为1,2,梯形的高为2,因此几何体的体积为()112226,2⨯+⨯⨯=故选C. 5.【2018·全国Ⅲ卷】设A B C D ,,,是同一个半径为4的球的球面上四点,ABC △为等边三角形且其面积为93,则三棱锥D ABC -体积的最大值为 A .123B .183C .243D .543【解析】如图所示,设点M 为三角形ABC 的重心,E 为AC 中点,当点D 在平面ABC 上的射影为M 时,三棱锥D ABC -的体积最大,此时,4OD OB R ===,2393ABC S AB ==△,6AB ∴=,点M 为三角形ABC 的重心,2233BM BE ∴==,Rt OBM ∴△中,有222OM OB BM =-=,426DM OD OM ∴=+=+=,()max 19361833D ABC V -∴=⨯⨯=,故选B.6.【2018·全国Ⅱ卷】在长方体1111ABCD A B C D -中,1AB BC ==,13AA =,则异面直线1AD 与1DB 所成角的余弦值为 A .15B .5C .5 D .2 【解析】方法一:用一个与原长方体相同的长方体拼到原长方体的前面,如图,则11B P AD ∥,连接DP ,易求得1=5DB DP =,12B P =,则1DB P ∠是异面直线1AD 与1DB 所成的角,由余弦定理可得222111115cos 2545DB B P DP DB P DB PB +-∠===⋅.故选C.方法二:以D 为坐标原点,DA ,DC ,DD 1所在直线分别为x ,y ,z 轴建立空间直角坐标系, 则()()((110,0,0,1,0,0,3,3D A B D ,所以()(111,0,3,3AD DB =-=, 因为1111115cos ,25AD DB AD DB AD DB ⋅===⨯, 所以异面直线1AD 与1DB 所成角的余弦值为55,故选C. 7.【2018·浙江卷】已知四棱锥S −ABCD 的底面是正方形,侧棱长均相等,E 是线段AB 上的点(不含端点),设SE 与BC 所成的角为θ1,SE 与平面ABCD 所成的角为θ2,二面角S −AB −C 的平面角为θ3,则A .θ1≤θ2≤θ3B .θ3≤θ2≤θ1C .θ1≤θ3≤θ2D .θ2≤θ3≤θ1【解析】设O 为正方形ABCD 的中心,M 为AB 中点,过E 作BC 的平行线EF ,交CD 于F ,过O 作ON 垂直EF 于N ,连接SO ,SN ,SE ,SM ,OM ,OE ,则SO 垂直于底面ABCD ,OM 垂直于AB , 因此123,,,SEN SEO SMO ∠=∠=∠=θθθ 从而123tan ,tan ,tan ,SN SN SO SOEN OM EO OM====θθθ 因为SN SO EO OM ≥≥,,所以132tan tan tan ,≥≥θθθ即132≥≥θθθ,故选D.8.【2018·江苏卷】如图所示,正方体的棱长为2,以其所有面的中心为顶点的多面体的体积为________.【答案】439.【2018·全国II 卷】已知圆锥的顶点为S ,母线SA ,SB 所成角的余弦值为78,SA 与圆锥底面所成角为45°,若SAB △的面积为515__________.【解析】因为母线SA ,SB 所成角的余弦值为78,所以母线SA ,SB 所成角的正弦值为158,因为SAB △的面积为515,l 所以22115515,802l l ⨯=∴=,因为SA 与圆锥底面所成角为45°,所以底面半径为π2cos ,42r l ==因此圆锥的侧面积为22ππ402π.2rl l == 【2017年】1.【2017·全国Ⅱ卷】已知直三棱柱111ABC A B C -中,120ABC ∠=︒,2AB =,11BC CC ==,则异面直线1AB 与1BC 所成角的余弦值为A 3B 15C 10D 3【答案】C【解析】如图所示,补成直四棱柱1111ABCD A B C D -,则所求角为21111,2,21221cos603,5BC D BC BD C D AB ∠==+-⨯⨯⨯︒===,易得22211C D BD BC =+,因此111210cos 55BC BC D C D ∠===,故选C . 2.【2017·全国Ⅰ卷】某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形.该多面体的各个面中有若干个是梯形,这些梯形的面积之和为A .10B .12C .14D .16【解析】由题意该几何体的直观图是由一个三棱锥和三棱柱构成,如下图,则该几何体各面内只有两个相同的梯形,则这些梯形的面积之和为12(24)2122⨯+⨯⨯=,故选B . 3.【2017·北京卷】某四棱锥的三视图如图所示,则该四棱锥的最长棱的长度为A .2B .3C .2D .2【解析】几何体是四棱锥P ABCD -,如图.最长的棱长为补成的正方体的体对角线,即该四棱锥的最长棱的长度为22222223l =++=,选B . 4.【2017·全国Ⅱ卷】如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为A .90πB .63πC .42πD .36π【解析】由题意,该几何体是一个组合体,下半部分是一个底面半径为3,高为4的圆柱,其体积213436V =π⨯⨯=π,上半部分是一个底面半径为3,高为6的圆柱的一半,其体积221(36)272V =⨯π⨯⨯=π,故该组合体的体积12362763V V V =+=π+π=π.故选B .5.【2017·全国Ⅲ卷】已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为 A .πB .3π4 C .π2D .π4【解析】绘制圆柱的轴截面如图所示:由题意可得:11,2AC AB ==,结合勾股定理,底面半径2213122r ⎛⎫=-= ⎪⎝⎭, 由圆柱的体积公式,可得圆柱的体积是2233ππ1π24V r h ⎛⎫==⨯⨯= ⎪ ⎪⎝⎭,故选B. 6.【2017·浙江卷】某几何体的三视图如图所示(单位:cm ),则该几何体的体积(单位:cm 3)是A .12π+ B .32π+ C .312π+ D .332π+ 【解析】根据所给三视图可还原几何体为半个圆锥和半个棱锥拼接而成的组合体,所以,几何体的体积为21113(21)13222V π⨯π=⨯⨯+⨯⨯=+,故选A .7.【2017·浙江卷】如图,已知正四面体–D ABC (所有棱长均相等的三棱锥),P ,Q ,R 分别为AB ,BC ,CA 上的点,AP=PB ,2BQ CRQC RA==,分别记二面角D –PR –Q ,D –PQ –R ,D –QR –P 的平面角为αβγ,,,则A . γαβ<<B .αγβ<<C .αβγ<<D .βγα<<【解析】设O 为三角形ABC 中心,则O 到PQ 距离最小,O 到PR 距离最大,O 到RQ 距离居中,而三棱锥的高相等,因此αγβ<<,所以选B .8.【2017·全国I 卷】如图,圆形纸片的圆心为O ,半径为5 cm ,该纸片上的等边三角形ABC 的中心为O .D ,E ,F 为圆O 上的点,△DBC ,△ECA ,△F AB 分别是以BC ,CA ,AB 为底边的等腰三角形.沿虚线剪开后,分别以BC ,CA ,AB 为折痕折起△DBC ,△ECA ,△F AB ,使得D ,E ,F 重合,得到三棱锥.当△ABC 的边长变化时,所得三棱锥体积(单位:cm 3)的最大值为 .【解析】如下图,连接DO 交BC 于点G ,设D ,E ,F 重合于S 点,正三角形的边长为x (x >0),则133OG x =⨯3x =.∴35FG SG x ==-, 222233566SO h SG GO x x ⎛⎫⎛⎫==-=-- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭3553x ⎛⎫=- ⎪ ⎪⎝⎭, ∴三棱锥的体积2113355333ABC V S h x x ⎛⎫=⋅=⨯⨯- ⎪ ⎪⎝⎭△451535123x x =-. 设()4535n x x x =-,x >0,则()345320n x x x '=-, 令()0n x '=,即43403x -=,得43x =,易知()n x 在43x =处取得最大值. ∴max 154854415V =⨯⨯-=.9.【2017·山东卷】由一个长方体和两个14圆柱体构成的几何体的三视图如图,则该几何体的体积为.【解析】由三视图可知,长方体的长、宽、高分别为2,1,1,圆柱的高为1,底面圆的半径为1,所以2π1π21121242V⨯=⨯⨯+⨯⨯=+.10.【2017·天津卷】已知一个正方体的所有顶点在一个球面上,若这个正方体的表面积为18,则这个球的体积为___________.【解析】设正方体的边长为a,则26183a a=⇒=,其外接球直径为233R a==,故这个球的体积34π3V R==4279ππ382⨯=.11.【2017·江苏卷】如图,在圆柱12O O内有一个球O,该球与圆柱的上、下底面及母线均相切.记圆柱12O O的体积为1V,球O的体积为2V,则12VV的值是.【解析】设球半径为r,则213223423V r rV rπ⨯==π.故答案为32.12.【2017·全国Ⅲ卷】a,b为空间中两条互相垂直的直线,等腰直角三角形ABC的直角边AC所在直线与a,b都垂直,斜边AB以直线AC为旋转轴旋转,有下列结论:①当直线AB与a成60°角时,AB与b成30°角;②当直线AB与a成60°角时,AB与b成60°角;③直线AB与a所成角的最小值为45°;④直线AB与a所成角的最大值为60°.其中正确的是________.(填写所有正确结论的编号)【解析】设1AC BC ==.由题意,AB 是以AC 为轴,BC 为底面半径的圆锥的母线,由,AC a AC b ⊥⊥,又AC ⊥圆锥底面,所以在底面内可以过点B ,作BD a ∥,交底面圆C 于点D ,如图所示,连接DE ,则DE ⊥BD ,DE b ∴∥,连接AD ,等腰ABD △中,2AB AD ==,当直线AB 与a 成60°角时,60ABD ∠=,故2BD =,又在Rt BDE △中,2,2BE DE =∴=,过点B 作BF ∥DE ,交圆C 于点F ,连接AF ,由圆的对称性可知2BF DE ==,ABF ∴△为等边三角形,60ABF ∴∠=,即AB 与b 成60°角,②正确,①错误.由图可知③正确;很明显,可以满足平面ABC ⊥直线a ,则直线AB 与a 所成角的最大值为90°,④错误.故正确的是②③.【2016年】1. 【2016高考新课标1卷】如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是283π,则它的表面积是( ) (A )17π (B )18π (C )20π (D )28π【解析】该几何体直观图如图所示:是一个球被切掉左上角的18,设球的半径为R ,则37428V R 833ππ=⨯=,解得R 2=,所以它的表面积是78的球面面积和三个扇形面积之和2271=42+32=1784S πππ⨯⨯⨯⨯故选A . 2.【2016高考新课标2理数】下图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为( )(A )20π (B )24π (C )28π (D )32π【解析】由题意可知,圆柱的侧面积为12π2416πS =⋅⋅=,圆锥的侧面积为2π248πS =⋅⋅=,圆柱的底面面积为23π24πS =⋅=,故该几何体的表面积为12328πS S S S =++=,故选C.3.【2016年高考北京理数】某三棱锥的三视图如图所示,则该三棱锥的体积为()A.16B.13C.12D.1 【解析】分析三视图可知,该几何体为一三棱锥P ABC -,其体积111111326V =⋅⋅⋅⋅=,故选A. 4.【2016高考新课标3理数】如图,网格纸上小正方形的边长为1,粗实现画出的是某多面体的三视图,则该多面体的表面积为( )(A )18365+(B )54185+(C )90 (D )81【解析】由三视图该几何体是以侧视图为底面的斜四棱柱,所以该几何体的表面积236233233554185S =⨯⨯+⨯⨯+⨯⨯=+,故选B .5.【2016高考山东理数】一个由半球和四棱锥组成的几何体,其三视图如图所示.则该几何体的体积为( )(A )1233+π (B )1233+π (C )1236+π (D )216+π 【解析】由三视图可知,2的半球,体积为31142223V =⨯π⨯=),下面是底面积为1,高为1的四棱锥,体积2111133V =⨯⨯=,故选C. 6.【2016高考浙江理数】已知互相垂直的平面αβ,交于直线l .若直线m ,n 满足,m n αβ∥⊥, 则( )A .m ∥lB .m ∥nC .n ⊥lD .m ⊥n【解析】由题意知,l l αββ=∴⊂,,n n l β⊥∴⊥.故选C . 7.【2016年高考四川理数】已知三棱锥的四个面都是腰长为2的等腰三角形,该三棱锥的正视图如图所示,则该三棱锥的体积是 .正视图331【解析】由三棱锥的正视图知,三棱锥的高为1,底面边长为232,2,所以,该三棱锥的体积为113322132V =⨯⨯⨯=.8.【2016高考浙江理数】某几何体的三视图如图所示(单位:cm ),则该几何体的表面积是 cm 2,体积是 cm 3.【解析】几何体为两个相同长方体组合,长方体的长宽高分别为4,2,2,所以体积为2(224)32⨯⨯⨯=,由于两个长方体重叠部分为一个边长为2的正方形,所以表面积为2(222244)2(22)72⨯⨯+⨯⨯-⨯=9.【2016高考新课标2理数】 ,αβ是两个平面,,m n 是两条直线,有下列四个命题:(1)如果,,//m n m n αβ⊥⊥,那么αβ⊥.(2)如果,//m n αα⊥,那么m n ⊥.(3)如果//,m αβα⊂,那么//m β.(4)如果//,//m n αβ,那么m 与α所成的角和n 与β所成的角相等.其中正确的命题有 . (填写所有正确命题的编号)【解析】对于①,,,//m n m n αβ⊥⊥,则,αβ的位置关系无法确定,故错误;对于②,因为//n α,所以过直线n 作平面γ与平面β相交于直线c ,则//n c ,因为,,m m c m n α⊥∴⊥∴⊥,故②正确;对于③,由两个平面平行的性质可知正确;对于④,由线面所成角的定义和等角定理可知其正确,正确的有②③④.10.【2016高考浙江理数】如图,在△ABC 中,AB =BC =2,∠ABC =120°.若平面ABC 外的点P 和线段AC 上的点D ,满足PD =DA ,PB =BA ,则四面体PBCD 的体积的最大值是 .【解析】ABC △中,因为2,120AB BC ABC ==∠=,所以30BAD BCA ∠=∠=.由余弦定理可得2222cos AC AB BC AB BC B =+-⋅2222222cos12012=+-⨯⨯=,所以AC =设AD x =,则0x <<DC x =.在ABD ∆中,由余弦定理可得2222cos BD AD AB AD AB A =+-⋅22222cos30x x =+-⋅24x =-+.故BD =在PBD ∆中,PD AD x ==,2PB BA ==.由余弦定理可得222cos 2PD PB BD BPD PD PB +-∠===⋅,所以30BPD ∠=. 由此可得,将△ABD 沿BD 翻折后可与△PBD 重合,无论点D 在任何位置,只要点D 的位置确定,当平面PBD ⊥平面BDC 时,四面体PBCD 的体积最大(欲求最大值可不考虑不垂直的情况).EDC B A P过P 作直线BD 的垂线,垂足为O .设PO d =,则11sin 22PBD S BD d PD PB BPD =⨯=⋅∠△,12sin 302d x =⋅,解得d = 而△BCD的面积111sin )2sin 30(2)222S CD BC BCD x x=⋅∠=⋅=.当平面PBD ⊥平面BDC 时:四面体PBCD 的体积111)332BCD V S d x=⨯=⨯△=.观察上式,易得)2x x x x +≤,当且仅当x x -,即x 时取等号,同时我们可以发现当x x PBCD 的体积最大,为1.211.【2016高考新课标1卷】平面α过正方体ABCD -A 1B 1C 1D 1的顶点A ,α//平面CB 1D 1,α平面ABCD =m ,α平面AB B 1A 1=n ,则m 、n 所成角的正弦值为 (A)2(B )2(C)3 (D)13【解析】设平面11CB D 平面ABCD ='m ,平面11CB D 平面11ABB A ='n ,因为α∥平面11CB D ,所以','m m n n ∥∥,则,m n 所成的角等于','m n 所成的角.过1D 作11D E B C ∥,交AD 的延长线于点E,连接CE ,则CE 为'm .连接1A B ,过B 1作111B F A B ∥,交1AA 的延长线于点1F ,则11B F 为'n .连接BD ,则111,BD CE B F A B ∥∥,则','m n 所成的角即为1,A B BD 所成的角,为60︒,故,m n 所成角的正弦值为32,选A.12.【2016高考新课标3理数】在封闭的直三棱柱111ABC A B C -内有一个体积为V 的球,若AB BC ⊥,6AB =,8BC =,13AA =,则V 的最大值是( )(A )4π (B )92π (C )6π (D )323π 【解析】要使球的体积V 最大,必须球的半径R 最大.由题意知球的与直三棱柱的上下底面都相切时,球的半径取得最大值32,此时球的体积为334439()3322R πππ==,故选B . 13.【2016高考天津理数】已知一个四棱锥的底面是平行四边形,该四棱锥的三视图如图所示(单位:m ),则该四棱锥的体积为_______m 3.【解析】由三视图知四棱锥高为3,底面平行四边形的一边长为2,其对应的高为1,因此所求四棱锥的体积1(21)323V =⨯⨯⨯=.故答案为2.。

高一数学ppt课件 空间向量与立体几何课件4

高一数学ppt课件 空间向量与立体几何课件4

→ → 所以BD=(-3a,3b,0),EA=(0,-3b,-3c).
→ 1→ → 1→ 因为BM=3BD=(-a,b,0),NA=3EA=(0,-b,-c), → → → → 所以NM=NA+AB+BM
=(0,-b,-c)+(3a,0,0)+(-a,b,0)=(2a,0,-c).
→ 又平面 CDE 的一个法向量是AD=(0,3b,0), → → 由NM· AD=(2a,0,-c)· (0,3b,0)=0, → → 得到NM⊥AD.
AB=5,
∴AC、BC、C1C两两垂直.
如图,以C为坐标原点,CA、CB、CC1所在直线 分别为x轴、y轴、z轴建立空间直角坐标系. 则C(0,0,0),A(3,0,0),C1(0,0,4),B(0,4,0),
→ → ∵AC=(-3,0,0),BC1=(0,-4,4),
→ → → → ∴AC· BC1=0.∴AC⊥BC1,即 AC⊥BC1.
1 3 1 → → ∴MN=(-4, 4 ,4),AB1=(1,0,1),
1 1 → → ∴MN· AB1=-4+0+4=0.
→ → ∴MN⊥AB1,∴AB1⊥MN.
要点二 利用空间向量证明平行关系
例 2 如图所示,已知矩形 ABCD 和矩形 ADEF 所在平面互相垂直,点 M,N 分别在对角线 BD, 1 1 AE 上,且 BM=3BD,AN=3AE.求证:MN∥平面 CDE.
c2),则l∥m⇔a∥b⇔
.
⇔ a=kb
a1=ka2,b1=kb2,c1=kc2,
k∈R
(2)线面平行 设直线l的方向向量为a=(a1,b1,c1),平面α的法向量为u= (a2,b2,c2),则l∥α⇔a⊥u⇔ ⇔ . a· u=0 a1a2+b1b2+c1c2=0 (3)面面平行 设平面 α , β 的法向量分别为 u = (a1 , b1 , c1) , v = (a2 , b2 , c2),则α∥β⇔u∥v⇔ ⇔ u=kv a1=ka2,b1=kb2,c1=kc2,

2014-2019年高考数学真题分类汇编专题10:立体几何4(球的切接问题)带详细答案

2014-2019年高考数学真题分类汇编专题10:立体几何4(球的切接问题)带详细答案

2014-2019年高考数学真题分类汇编专题10:立体几何(球的切接问题)选择题1.(2014•大纲版理)正四棱锥的顶点都在同一球面上,若该棱锥的高为4,底面边长为2,则该球的表面积为( )A .814πB .16πC .9πD .274π 【考点】球的体积和表面积;球内接多面体【分析】正四棱锥P ABCD -的外接球的球心在它的高1PO 上,记为O ,求出1PO ,1OO ,解出球的半径,求出球的表面积.【解答】解:设球的半径为R ,则棱锥的高为4,底面边长为2,222(4)R R ∴=-+,94R ∴=, ∴球的表面积为29814()44ππ=. 故选:A .【点评】本题考查球的表面积,球的内接几何体问题,考查计算能力,是基础题.2.(2014•陕西理)已知底面边长为1为( )A .323πB .4πC .2πD .43π 【考点】球的体积和表面积【分析】由长方体的对角线公式,算出正四棱柱体对角线的长,从而得到球直径长,得球半径1R =,最后根据球的体积公式,可算出此球的体积.【解答】解:正四棱柱的底面边长为1,又正四棱柱的顶点在同一球面上,∴正四棱柱体对角线恰好是球的一条直径,得球半径1R = 根据球的体积公式,得此球的体积为34433V R ππ==. 故选:D .【点评】本题给出球内接正四棱柱的底面边长和侧棱长,求该球的体积,考查了正四棱柱的性质、长方体对角线公式和球的体积公式等知识,属于基础题.3.(2015•新课标Ⅱ文)已知A ,B 是球O 的球面上两点,90AOB ∠=︒,C 为该球面上的动点,若三棱锥O ABC -体积的最大值为36,则球O 的表面积为( )A .36πB .64πC .144πD .256π【考点】球的体积和表面积【分析】当点C 位于垂直于面AOB 的直径端点时,三棱锥O ABC -的体积最大,利用三棱锥O ABC -体积的最大值为36,求出半径,即可求出球O 的表面积.【解答】解:如图所示,当点C 位于垂直于面AOB 的直径端点时,三棱锥O ABC -的体积最大,设球O 的半径为R ,此时2311136326O ABC C AOB V V R R R --==⨯⨯⨯==,故6R =,则球O 的表面积为24144R ππ=, 故选:C .【点评】本题考查球的半径与表面积,考查体积的计算,确定点C 位于垂直于面AOB 的直径端点时,三棱锥O ABC -的体积最大是关键.4.(2016•新课标Ⅱ文)体积为8的正方体的顶点都在同一球面上,则该球面的表面积为( )A .12πB .323πC .8πD .4π【考点】球的体积和表面积【分析】先通过正方体的体积,求出正方体的棱长,然后求出球的半径,即可求出球的表面积.【解答】解:正方体体积为8,可知其边长为2,所以球的表面积为24(3)12ππ=.故选:A .【点评】本题考查学生的空间想象能力,体积与面积的计算能力,是基础题.5.(2016•新课标Ⅲ文理)在封闭的直三棱柱111ABC A B C -内有一个体积为V 的球,若AB BC ⊥,6AB =,8BC =,13AA =,则V 的最大值是( )A .4πB .92πC .6πD .323π 【考点】棱柱、棱锥、棱台的体积【分析】根据已知可得直三棱柱111ABC A B C -的内切球半径为32,代入球的体积公式,可得答案. 【解答】解:AB BC ⊥,6AB =,8BC =, 10AC ∴=. 故三角形ABC 的内切圆半径681022r +-==, 又由13AA =, 故直三棱柱111ABC A B C -的内切球半径为32, 此时V 的最大值3439()322ππ=, 故选:B .【点评】本题考查的知识点是棱柱的几何特征,根据已知求出球的半径,是解答的关键.6.(2017•新课标Ⅲ文理)已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为( )A .πB .34πC .2πD .4π 【考点】棱柱、棱锥、棱台的体积;LR :球内接多面体【分析】推导出该圆柱底面圆周半径r =,由此能求出该圆柱的体积. 【解答】解:圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,∴该圆柱底面圆周半径r ==,∴该圆柱的体积:2314V Sh ππ==⨯⨯=.故选:B .【点评】本题考查面圆柱的体积的求法,考查圆柱、球等基础知识,考查推理论证能力、运算求解能力、空间想象能力,考查化归与转化思想,是中档题.7.(2018•新课标Ⅲ文理)设A ,B ,C ,D 是同一个半径为4的球的球面上四点,ABC ∆为等边三角形且面积为D ABC -体积的最大值为( )A .B .C .D .【考点】棱柱、棱锥、棱台的体积;球的内接多面体;【分析】求出,ABC ∆为等边三角形的边长,画出图形,判断D 的位置,然后求解即可.【解答】解:ABC ∆为等边三角形且面积为2AB =6AB =, 球心为O ,三角形ABC 的外心为O ',显然D 在O O '的延长线与球的交点如图:263O C '==,2OO '=, 则三棱锥D ABC -高的最大值为:6,则三棱锥D ABC -体积的最大值为:3163=. 故选:B .【点评】本题考查球的内接多面体,棱锥的体积的求法,考查空间想象能力以及计算能力.8.(2019•新课标Ⅰ理12)已知三棱锥P ABC -的四个顶点在球O 的球面上,PA PB PC ==,ABC ∆是边长为2的正三角形,E ,F 分别是PA ,AB 的中点,90CEF ∠=︒,则球O 的体积为( )A .B .C . D【考点】球的体积和表面积,,多面体外接球体。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

空间角和距离一、选择题(本大题共10个小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.直线m 与平面α间距离为d ,那么到m 与α距离都等于2d 的点的集合是 ( )A .一个平面B .一条直线C .两条直线D .空集2.异面直线a 、b 所成的角为θ,a 、b 与平面α都平行,b ⊥平面β,则直线a 与平面β所成的角 ( ) A .与θ相等 B .与θ互余 C .与θ互补 D .与θ不能相等.3.在正方体ABCD —A 'B 'C 'D '中,BC '与截面BB 'D 'D 所成的角为 ( )A .3πB .4πC .6πD .arctan24.在正方形SG 1G 2G 3中,E ,F 分别是G 1G 2及G 2G 3的中点,D 是EF 的中点,现在沿SE ,SF 及EF 把这个正方形折成一个四面体,使G 1,G 2,G 3三点重合,重合后的点记为G ,那么,在四面体S -EFG 中必有 ( ) A .SG ⊥△EFG 所在平面 B .SD ⊥△EFG 所在平面C .GF ⊥△SEF 所在平面D .GD ⊥△SEF 所在平面5.有一山坡,它的倾斜角为30°,山坡上有一条小路与斜坡底线成45°角,某人沿这条小路向上走了200米,则他升高了 ( ) A .1002米B .502米C .256米D .506米6.已知三棱锥D -ABC 的三个侧面与底面全等,且AB =AC =3,BC =2,则以BC 为棱,以面BCD 与面BCA 为面的二面角的大小为 ( )A .arccos 33B .arccos 31 C .2π D .32π7.正四面体A —BCD 中E 、F 分别是棱BC 和AD 之中点,则EF 和AB 所成的角 ( )A .45︒B .60︒C .90︒D .30︒8.把∠A =60°,边长为a 的菱形ABCD 沿对角线BD 折成60°的二面角,则AC 与BD 的距离为 ( )A .43a B .43 a C .23 a D .46a 9.若正三棱锥的侧面均为直角三角形,侧面与底面所成的角为α,则下列各等式中成立的是 ( )A .0<α<6π B .6π<α<4π C .4π<α<3π D .3π<α<2π10.已知A (1,1,1),B (-1,0 ,4),C (2 ,-2,3),则〈AB ,CA 〉的大小为( )A .6πB .65πC .3π D .32π二、填空题(本大题共4小题,每小题6分,共24分)11.从平面α外一点P 引斜线段PA 和PB ,它们与α分别成45︒和30︒角,则∠APB 的最大值是______最小值是_______12.∆ABC 中∠ACB=90︒,PA ⊥平面ABC ,PA=2,AC=2 3 ,则平面PBC 与平面PAC ,平面ABC 所成的二角的大小分别是______、_________. 13.在三棱锥P-ABC中,90=∠ABC ,30=∠BAC ,BC=5,又PA=PB=PC=AC,则点P到平面ABC的距离是 .14.球的半径为8,经过球面上一点作一个平面,使它与经过这点的半径成45°角,则这个平面截球的截面面积为 . 三、解答题(共计76分)15.(本小题满分12分)已知SA ⊥平面ABC ,SA=AB ,AB ⊥BC ,SB=BC ,E 是SC 的中点,DE ⊥SC 交AC 于D .(1) 求证:SC ⊥面BDE ;(2)求二面角E —BD —C 的大小. 16.(本小题满分12分)如图,点P 为斜三棱柱111C B A ABC -的侧棱1BB 上一点,1BB PM ⊥交1AA 于点M , 1BB PN ⊥交1CC 于点N .(1) 求证:MN CC ⊥1; (2) 在任意DEF ∆中有余弦定理:DFE EF DF EF DF DE ∠⋅-+=cos 2222.拓展到空间,类比三角形的余弦定理,写出斜三棱柱的三个侧面面积与其中两个侧面所成的二面角之间的关系式,并予以证明. 17.(本小题满分12分)如图,四棱锥S —ABCD 的底面是边长为1的正方形, SD 垂直于底面ABCD ,SB=3. (1)求证BC ⊥SC ;(2)求面ASD 与面BSC 所成二面角的大小;(3)设棱SA 的中点为M ,求异面直线DM 与SB 所成角的大小.1AB=a,(如图一)将△ADC 18.(本小题满分12分)在直角梯形ABCD中,∠D=∠BAD=90︒,AD=DC=2沿AC折起,使D到D'.记面AC D'为α,面ABC为β.面BC D'为γ.(1)若二面角α-AC-β为直二面角(如图二),求二面角β-BC-γ的大小;(2)若二面角α-AC-β为60︒(如图三),求三棱锥D'-ABC的体积.19.(本小题满分14分)如图,已知正方形ABCD和矩形ACEF所在的平面互相垂直,AB=2,AF=1,M是线段EF的中点.(1)求证AM//平面BDE;(2)求二面角A-DF-B的大小;(3)试在线段AC上确定一点P,使得PF与BC所成的角是60︒.20.(本题满分14分)如图,正方形ABCD 、ABEF 的边长都是1,而且平面ABCD 、ABEF互相垂直.点M 在AC 上移动,点N 在BF 上移动,若a BN CM ==)20(<<a .(1)求MN 的长;(2)当a 为何值时,MN 的长最小;(3)当MN 长最小时,求面MNA 与面MNB 所成的二面角α的大小.参考答案一.选择题(本大题共10小题,每小题5分,共50分)题号 1 2 3 4 5 6 7 8 9 10 答案CBCABCAADD二.填空题(本大题共4小题,每小题6分,共24分)11.750,15012.900,30013.35 14. π32 三、解答题(本大题共6题,共76分)15.(12分) (1)证明:(1)∵SB=BC E 是SC 的中点 ∴BE ⊥SC ∵DE ⊥SC ∴SC ⊥面BDE(2)解:由(1)SC ⊥BD ∵SA ⊥面ABC ∴SA ⊥BD ∴BD ⊥面SAC ∴∠EDC 为二面角E-BD-C 的平面角设SA=AB=a,则SB=BC=a 2.,2,a SC SBC Rt =∆∴中在,30,0=∠∆∴DCE SAC Rt 中在060,=∠∆∴EDC DEC Rt 中在.16.(12分) (1) 证:MN CC PMN CC PN CC PM CC BB CC ⊥⇒⊥∴⊥⊥⇒111111,,//平面 ; (2)解:在斜三棱柱111C B A ABC -中,有αcos 21111111111222A ACC B BCC A ACC B BCC A ABB S S S S S ⋅-+=, 其中α为 平面B B CC 11与平面A A CC 11所组成的二面角.∴⊥,1PMN CC 平面 上述的二面角为MN P ∠,在PMN ∆中,cos 2222⇒∠⋅-+=MNP MN PN MN PN PMMNP CC MN CC PN CC MN CC PN CC PM ∠⋅⋅⋅-+=cos )()(211111222222,由于111111111,,BB PM S CC MN S CC PN S A ABB A ACC B BCC ⋅=⋅=⋅=,∴有αcos 21111111111222A ACC B BCC A ACC B BCC A ABB S S S S S ⋅-+=. 17.(12分) (1)证法一:如,∵底面ABCD 是正方形, ∴BC ⊥DC . ∵SD ⊥底面ABCD ,∴DC 是SC 在平面ABCD 上的射影, 由三垂线定理得BC ⊥SC .证法二:如图1,∵底面ABCD 是正方形, ∴BC ⊥DC .∵SD ⊥底面ABCD , ∴SD ⊥BC ,又DC ∩SD=D ,∴BC ⊥平面SDC ,∴BC ⊥SC .(2)解:如图2,过点S 作直线,//AD l l ∴在面ASD 上,∵底面ABCD 为正方形,l BC AD l ∴∴,////在面BSC 上, l ∴为面ASD 与面BSC 的交线.l ∴,,,,SC l SD l SC BC AD SD ⊥⊥∴⊥⊥∴∠CSD 为面ASD 与面BSC 所成二面角的平面角.(以下同解法一) (3)解1:如图2,∵SD=AD=1,∠SDA=90°,∴△SDA 是等腰直角三角形.又M 是斜边SA 的中点,∴DM ⊥SA .∵BA ⊥AD ,BA ⊥SD ,AD ∩SD=D ,∴BA ⊥面ASD ,SA 是SB 在面ASD 上的射影.由三垂线定理得DM ⊥SB . ∴异面直线DM 与SB 所成的角为90°. 解2:如图3,取AB 中点P ,连结MP ,DP .在△ABS 中,由中位线定理得 MP//SB ,DMP∠∴是异面直线DM 与SB 所成的角.2321==SB MP ,又,25)21(1,222=+==DP DM ∴在△DMP 中,有DP 2=MP 2+DM 2,︒=∠∴90DMP ∴异面直线DM 与SB 所成的角为90°.18.(12分) 解:(1)在直角梯形ABCD 中, 由已知∆DAC 为等腰直角三角形, ∴ 45,2=∠=CAB a AC , 过C 作CH ⊥AB ,由AB=2a ,可推得 AC=BC=.2a ∴ AC ⊥BC .取 AC 的中点E ,连结E D ', 则 E D '⊥AC 又 ∵ 二面角β--AC a 为直二面角, ∴ E D '⊥β 又 ∵ ⊂BC 平面β ∴ BC ⊥E D ' ∴ BC ⊥a ,而a C D ⊂',∴ BC ⊥C D ' ∴ CA D '∠为二面角γβ--BC 的平面角. 由于45='∠CA D , ∴二面角γβ--BC 为45. (2)取AC 的中点E ,连结E D ',再过D '作β⊥'O D ,垂足为O ,连结OE .∵ AC ⊥E D ', ∴ AC ⊥OE ∴ EO D '∠为二面角β--AC a 的平面角,∴ EO D '∠ 60=. 在OE D Rt '∆中,a AC E D 2221==',∴O D S V ABC ABC D '⋅=∆-'31O D BC AC '⋅⋅⨯=2131a a a 462261⨯⨯⨯=.1263a =19.(14分)解法一: (1)记AC 与BD 的交点为O,连接OE, ∵O、M 分别是AC 、EF 的中点,ACEF 是矩形,∴四边形AOEM 是平行四边形,图1图2图3CD MPQ∴AM∥OE.∵⊂OE平面BDE , ⊄AM 平面BDE ,∴AM∥平面BDE .(2)在平面AFD 中过A 作AS⊥DF 于S ,连结BS ,∵AB⊥AF, AB⊥AD, ,A AF AD = ∴AB⊥平面ADF ,∴AS 是BS 在平面ADF 上的射影,由三垂线定理得BS⊥DF.∴∠BSA 是二面角A —DF —B 的平面角. 在RtΔASB 中,,2,36==AB AS ∴,60,3tan ︒=∠=∠ASB ASB ∴二面角A —DF —B 的大小为60º.(3)设CP=t (0≤t≤2),作PQ⊥AB 于Q ,则PQ∥AD, ∵PQ⊥AB,PQ⊥AF,A AF AB = ,∴PQ⊥平面ABF ,⊂QE 平面ABF ,∴PQ⊥QF.在RtΔPQF 中,∠FPQ=60º,PF=2PQ .∵ΔPAQ 为等腰直角三角形,∴).2(22t PQ -=又∵ΔPAF 为直角三 角形,∴1)2(2+-=t PF ,∴).2(2221)2(2t t -⋅=+-所以t=1或t=3(舍去),即点P 是AC 的中点. 解法二: (1)建立如图所示的空间直角坐标系.设N BD AC = ,连接NE , 则点N 、E 的坐标分别是()0,22,22、(0,0,1),∴)1,22,22(--=NE , 又点A 、M 的坐标分别是)0,2,2(,()1,22,22∴AM =()1,22,22--∴AM NE =且NE 与AM 不共线,∴NE∥AM.又∵⊂NE 平面BDE , ⊄AM 平面BDE ,∴AM∥平面BDF . (2)∵AF ⊥AB ,AB ⊥AD ,AF ,A AD = ∴AB ⊥平面ADF .∴AB )0,0,2(-=为平面DAF 的法向量.∵DB NE ⋅=()1,22,22--·)0,2,2(-=0,∴NF NE ⋅=()1,22,22--·)0,2,2(=0得 DB NE ⊥,NF NE ⋅,∴NE 为平面BDF 的法向量.∴cos <>⋅NE AB =21∴AB 与NE 的夹角是60º.即所求二面角A —DF —B 的大小是60º. (3)设P(t,t,0)(0≤t≤2)得PF ),1,2,2(t t --=∴BC =(2,0,0)又∵PF和BC所成的角是60º.∴21)2()2(2)2(60cos 22⋅+-+-⋅-=︒t t t解得22=t 或223=t (舍去),即点P 是AC 的中点. 20.(14分) 解:(1)作MP ∥AB 交BC 于点P ,NQ ∥AB 交BE 于点Q ,连结PQ ,依题意可得MP ∥NQ ,且MP =NQ ,即MNQP 是平行四边形∴MN =PQ由已知a BN CM ==,1===BE AB CB∴2==BF AC 又21a CP =,21aBQ =, 即2a BQ CP ==∴MN=PQ =22)1(BQ CP +-=22)2()21(a a +-=21)22(2+-a )20(<<a(2)由(Ⅰ),MN=21)22(2+-a ,所以,当22=a 时,MN=22即M 、N 分别移动到AC 、BF 的中点时,MN 的长最小,最小值为22.(3)取MN 的中点G ,连结AG 、BG ,∵AN AM =,BN BM =,G 为MN 的中点∴AG ⊥MN ,BG ⊥MN ,∠AGB 即为二面角α的平面角,又AG =BG 46=,所以,由余弦定理有314646214646cos 22-=⋅⋅-⎪⎪⎭⎫⎝⎛+⎪⎪⎭⎫ ⎝⎛=α, 故所求二面角⎪⎭⎫⎝⎛-=31arccos α。

相关文档
最新文档