04第四章磁与电磁感应要点

合集下载

大学物理知识点(磁学与电磁感应)

大学物理知识点(磁学与电磁感应)
F
y
Idl B
B

dF
dF
I
Idl
x L 任意闭合平面载流导线在均匀磁场中所受的力为零 。 F3 P 注:载流线圈在均匀磁 F2 M 场中所受力矩不一定为 零 B I O F 1 M Npm B en N F4
在均匀磁场中
F BIL
o
P
**应用介质中安培环路定理解题方法**
I 0 Bo
2R
2 IR 0 pm B 0 3 3
2x
2πx
注意:在一定的x处,磁场强弱随载流环的半径变 化,故可用求极值的方法讨论轴线某一定点处磁 场随载流环半径变化的趋势。
无限长柱面电流的磁场
无限长柱体电流的磁场
L1
r
R
I
L2
r
B
0 I
2π R
o R
r
二、磁场的基本性质
1、 感生电动势
S定
B dS i s t
方向由楞次定律判断
o
B变
2、 感生电场
B Ei dl s t dS
感生电场是涡旋场,其电场线与磁感 应强度增大的方向成左手螺旋关系。
3、 感生电场与感生电动势的计算 感生电场 : 当变化的磁场的分布具有特殊对称性时: 1 dB Ei r (r R) 2 dt
五、磁场的能量
1、通电线圈的自感磁能 2、磁场的磁能
1 2 Wm LI 2
目前范畴内:
1 1 2 1 2 w m H B BH 2 2 2
W m V w m dV
电磁学基本物理图象
运动
电荷
激 发
电流
激 发

磁感应强度与电磁感应

磁感应强度与电磁感应

磁感应强度与电磁感应磁感应强度与电磁感应是物理学中两个重要的概念,它们之间存在着密切的联系与相互影响。

本文将围绕这两个主题展开,依次介绍磁感应强度以及电磁感应的基本概念、原理与相关应用。

1. 磁感应强度磁感应强度是描述磁场强度的物理量,通常用符号B表示。

在磁场中,磁感应强度的大小和方向决定了物体受到的磁力大小和方向。

磁感应强度的单位为特斯拉(T)。

磁感应强度的计算可以利用安培环路定理和法拉第定律等相关的物理原理。

对于无限长直导线产生的磁场,安培环路定理可以表达为:磁感应强度乘以环路的长度等于导线的电流乘以导线与环路之间的夹角的余弦值。

而对于电流变化产生的磁场,法拉第定律可以用来计算磁感应强度的变化。

磁感应强度的方向则遵循右手定则。

磁感应强度的应用非常广泛,例如在电动机、发电机、电磁铁等各种电磁设备中都涉及到了磁感应强度的计算和控制。

2. 电磁感应电磁感应是指当磁通量发生变化时,在电路中会产生感应电动势,导致电流的产生。

这是由法拉第的电磁感应定律给出的。

按照法拉第的电磁感应定律,当一个线圈或导线突然进入、退出一个磁场时,线圈中就会产生感应电流。

这个感应电流的大小和方向与磁通量的变化率相关。

同时,根据楞次定律,感应电流的方向会使得产生它的磁通量发生变化的原因减弱。

这种现象称为自感,是电磁感应的一个重要特性。

电磁感应在生活中也有很多应用,例如变压器、感应电动机等都是基于电磁感应原理而设计的。

3. 磁感应强度与电磁感应的关系磁感应强度和电磁感应之间存在着密不可分的关系。

根据法拉第的电磁感应定律,感应电动势的大小与磁感应强度的变化率成正比。

也就是说,如果磁感应强度的变化速度越快,感应电动势就会越大。

此外,当导线的长度、磁场的强度以及导线与磁场的夹角等条件给定时,根据安培环路定理可以计算出磁感应强度的大小。

因此,通过改变磁场强度或者调整导线的位置和方向,可以控制电磁感应的大小。

4. 电磁感应的应用借助电磁感应的原理,我们可以实现一些非常实用的应用。

电磁感应知识点

电磁感应知识点

第四章电磁感应知识点(总7页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--第四章电磁感应第一模块:电磁感应、楞次定律(先介绍右手螺旋定则)『基础知识』一、划时代的发现1、奥斯特梦圆“电生磁”奥斯特实验:在1820年4月的一次讲演中,奥斯特碰巧在南北方向的导线下面放置了一枚小磁针、当电源接通时,小磁针居然转动了(如右图)。

随后的实验证明了电流的确能使磁针偏转,这种作用称为电流的磁效应。

突破:电与磁是联系的2、法拉第心系“磁生电”1831年8月29日,法拉第终于发现了电磁感应:把两个线圈绕在同一铁环上(如右图),一个线圈接入接到电源上,另一个线圈接入“电流表”,在给一个线圈通电或断电瞬间,另一个线圈也出现了电流,这种磁生电的效应终于被发现了。

物理学中把这种现象叫做电磁感应.由电磁感应产生的电流叫做感应电流.二、感应电流的产生1、N极插入、停在线圈中和抽出(S极插入、停在线圈中和抽出)有无感应电流(如图)。

磁铁动作表针摆动方向磁铁动作表针摆动方向极插入线圈偏转S极插入线圈偏转N极停在线圈中不偏转S极停在线圈中不偏转N极从线圈中抽出偏转S极从线圈中抽出偏转实验表明产生感应电流的条件与磁场的变化有关。

2、闭合回路中的一部分导体在磁场中做切割磁感应线运动时,导体中就产生感应电流。

实验表明磁场的强弱没有变化,但是导体棒切割磁感的运动是闭合的回路EFAB包围的面积在发生变化。

这种情况下线圈中同样有感应电流。

3、磁通量定义:磁感应强度B与面积S的乘积,叫做穿过这个面的磁通量定义式:φ=BS(B与S垂直) φ=BScosθ(θ为B与S之间的夹角)单位:韦伯(Wb)物理意义:表示穿过磁场中某个面的磁感线条数磁通量虽然是标量,但有正负之分。

三、楞次定律1、S极插入线圈和抽出线圈中会有感应电流,那么他的方向会如何呢。

条形磁铁运动的情况N 极向下插入线圈N 极向上拔出线圈S极向下拔出线圈S极向上插入线圈原磁场方向(向上或向下)?向下?向下?向上?向上穿过线圈的磁通量变化情况(增加或减少)?增加?减少?减少?增加感应电流的方向(流过灵敏电流计的方向)?向左?向右?向左?向右结论:楞次定律:感应电流的磁场总是阻碍引起感应电流的磁通量的变化2、对楞次定律中阻碍二字的正确理解“阻碍”不是阻止,这里是阻而未止。

磁感应和电磁感应

磁感应和电磁感应

磁感应和电磁感应磁感应和电磁感应是电磁学的重要内容,它们描述了磁场与电流、电荷之间的相互作用过程和现象。

在本文中,我们将深入探讨磁感应和电磁感应的基本原理、应用以及相关概念。

一、磁感应磁感应是指物体在磁场中受到的磁力作用。

根据安培定律,电流会产生磁场,而磁场的存在又会对电流产生力的作用。

1. 磁感应的原理当电流通过导线时,会在导线周围产生磁场。

该磁场的强弱与电流的大小成正比,与导线形状和材料有关。

一般来说,电流越大,磁场越强。

2. 磁感应的应用磁感应在现实生活和科技应用中发挥着重要作用。

例如,电动机和发电机就是利用磁感应原理来转换电能和机械能的。

磁感应也广泛应用于磁力计、磁共振成像等领域。

二、电磁感应电磁感应是指通过磁场变化引起的电场变化,进而引发电流产生的现象。

法拉第(Faraday)发现了电磁感应的规律,也就是法拉第电磁感应定律。

1. 法拉第电磁感应定律法拉第电磁感应定律表明,当一个闭合线圈或弯曲导线的磁通量发生变化时,闭合线圈或弯曲导线内将会产生感应电流。

感应电流的方向和大小受到磁通量变化率的影响。

2. 电磁感应的应用电磁感应在现代科学和工程中有着广泛应用。

电磁感应技术被应用于变压器、感应电动机、发电机等设备中。

此外,电磁感应也用于无线电通信、电磁波传播等领域。

三、相互关系和共同应用磁感应和电磁感应密切相关,它们互相影响并共同应用。

1. 电磁感应的磁场根据法拉第电磁感应定律,变化的磁场可以引起感应电流。

因此,电磁感应是磁感应的一种特殊情况。

2. 电磁感应的电磁辐射电磁感应也可以通过电磁波的辐射方式传播。

当一个变化的电场和磁场同时存在时,它们相互作用产生的波动称为电磁波。

无线电、微波、可见光都是电磁波的一种。

结语磁感应和电磁感应是电磁学重要的基础概念。

磁感应描述了磁场与电流之间的相互作用,而电磁感应描述了磁场和电场相互作用引发的电流现象。

它们不仅在理论物理学中有重要应用,也广泛应用于现实生活和工业技术中。

第四章 第四节 法拉第电磁感应定律

第四章  第四节 法拉第电磁感应定律

上 页
下 页
课堂互动讲练
随堂达标自测
课时活页训练
基础知识梳理
核心要点突破
第 四 章 电 磁 感 应
基础知识梳理
一、感应电动势 1.在电磁感应现象中产生的电动势叫 . 做感应电动势 ,产生感应电动势的那部分导 体相当于 电源 . 2.在电磁感应现象中,既然闭合电路 .在电磁感应现象中, 中有磁通量的变化 ,这个电路就一定有 感应 电流 ;电路断开时,虽然没有感应电流,但 电路断开时,虽然没有感应电流, 依然存在. 感应电动势 依然存在.
上 页
下 页
课堂互动讲练
随堂达标自测
课时活页训练
基础知识梳理
核心要点突破
第 四 章 电 磁 感 应
二、电磁感应定律 1.定律内容:电路中感应电动势的大小, .定律内容:电路中感应电动势的大小, 成正比. 跟穿过这一电路的磁通量的 变化率 成正比. 2.表达式: E= ∆Φ/∆t (单匝线圈 , 单匝线圈), .表达式: = 单匝线圈 ∆Φ E=n (多匝线圈 . 多匝线圈). = 多匝线圈 ∆t
上 页
下 页
课堂互动讲练
随堂达ห้องสมุดไป่ตู้自测
课时活页训练
基础知识梳理
核心要点突破
第 四 章 电 磁 感 应
如果一个开路中磁通量发生变化, 如果一个开路中磁通量发生变化, 电路中虽无感应电流, 电路中虽无感应电流,但仍有感应电动 其判定方法可采取假设法; 势,其判定方法可采取假设法;假设电 路闭合, 路闭合,应用楞次定律或右手定则确定 内电路中假想电流的方向即为感应电动 势的方向. 势的方向.
上 页
下 页
课堂互动讲练
随堂达标自测
课时活页训练

4.4法拉第电磁感应定律

4.4法拉第电磁感应定律

【针对训练】
1、单匝矩形线圈在匀强磁场中匀速转动,若线圈所围面积里磁通 量随时间变化的规律如图所示(正弦图象一部分),则( ) A.线圈中0时刻感应电动势为0 B.线圈中0时刻感应电动势最大 C.线圈中D时刻感应电动势为0 D.线圈中A时刻感应电动势大于B时刻感应电动势
斜率表示Φ的
变化率
2、如图所示,两足够长平行光滑的金属导轨 MN 、 PQ 相距为 L=1m , 导轨平面与水平面夹角θ= 30°,导轨上端跨接一定值电阻 R=2Ω, 导轨电阻不计。整个装置处于方向垂直于导轨平面向上的匀强磁场 B 中,长为 L 的金属棒 ab 垂直于 MN 、 PQ 放置在导轨上,且与导轨 保持电接触良好,金属棒的质量为 m=1kg 、电阻为 r=2Ω,现将金属 棒由静止释放,当金属棒沿导轨下滑距离为 s=6m 时,速度达到最大 值 v=5m/s 。g=10m/s 2,求:
1、定义:在电磁感应现象中产生的电动势叫感应电动势(E).产生感应电
动势的那部分导体相当于电源. 2、产生条件:只要穿过电路的磁通量发生变化,电路中就产生感应电动势。 3、方向判断:在内电路中,由电源的负极指向正极,跟内电路的电流方向 一致。 感应电动势是形成感应电流的必要条件,有感应电动势不一定存在感应电 流(要看电路是否闭合),有感应电流一定存在感应电动势。
穿过回路的磁通 量变化了多少
磁通量变化率 穿过回路的磁通
ΔΦ/Δt
量变化的快慢
产生感应电动 势的条件
决定感应电动 势的大小
弄清(1)磁通量大,电动势一定大吗?
(2)磁通量变化大,电动势一定大吗?
4、用公式 E n Φ 求E的二种常见情况:
t
(1)磁感应强度B不变,垂直于磁场的回路面积S发生变化。

电磁感应知识点总结

电磁感应知识点总结

高中物理电磁感应知识点1.★电磁感应现象:利用磁场产生电流的现象叫做电磁感应,产生的电流叫做感应电流. (1)产生感应电流的条件:穿过闭合电路的磁通量发生变化,即ΔΦ≠0.(2)产生感应电动势的条件:无论回路是否闭合,只要穿过线圈平面的磁通量发生变化,线路中就有感应电动势.产生感应电动势的那部分导体相当于电源.(2)电磁感应现象的实质是产生感应电动势,如果回路闭合,则有感应电流,回路不闭合,则只有感应电动势而无感应电流.2.磁通量(1)定义:磁感应强度B与垂直磁场方向的面积S的乘积叫做穿过这个面的磁通量,定义式:Φ=BS.如果面积S与B不垂直,应以B乘以在垂直于磁场方向上的投影面积S′,即Φ=BS′,国际单位:Wb求磁通量时应该是穿过某一面积的磁感线的净条数.任何一个面都有正、反两个面;磁感线从面的正方向穿入时,穿过该面的磁通量为正.反之,磁通量为负.所求磁通量为正、反两面穿入的磁感线的代数和.3.★楞次定律(1)楞次定律:感应电流的磁场,总是阻碍引起感应电流的磁通量的变化.楞次定律适用于一般情况的感应电流方向的判定,而右手定则只适用于导线切割磁感线运动的情况,此种情况用右手定则判定比用楞次定律判定简便.(2)对楞次定律的理解①谁阻碍谁———感应电流的磁通量阻碍产生感应电流的磁通量.②阻碍什么———阻碍的是穿过回路的磁通量的变化,而不是磁通量本身.③如何阻碍———原磁通量增加时,感应电流的磁场方向与原磁场方向相反;当原磁通量减少时,感应电流的磁场方向与原磁场方向相同,即“增反减同”.④阻碍的结果———阻碍并不是阻止,结果是增加的还增加,减少的还减少.(3)楞次定律的另一种表述:感应电流总是阻碍产生它的那个原因,表现形式有三种:①阻碍原磁通量的变化;②阻碍物体间的相对运动;③阻碍原电流的变化(自感).★★★★4.法拉第电磁感应定律电路中感应电动势的大小,跟穿过这一电路的磁通量的变化率成正比.表达式E=nΔΦ/Δt当导体做切割磁感线运动时,其感应电动势的计算公式为E=BLvsinθ.当B、L、v三者两两垂直时,感应电动势E=BLv.(1)两个公式的选用方法E=nΔΦ/Δt 计算的是在Δt时间内的平均电动势,只有当磁通量的变化率是恒定不变时,它算出的才是瞬时电动势.E=BLvsinθ中的v若为瞬时速度,则算出的就是瞬时电动势:若v为平均速度,算出的就是平均电动势.(2)公式的变形①当线圈垂直磁场方向放置,线圈的面积S保持不变,只是磁场的磁感强度均匀变化时,感应电动势:E=nSΔB/Δt .②如果磁感强度不变,而线圈面积均匀变化时,感应电动势E=Nbδs/Δt .5.自感现象(1)自感现象:由于导体本身的电流发生变化而产生的电磁感应现象.(2)自感电动势:在自感现象中产生的感应电动势叫自感电动势.自感电动势的大小取决于线圈自感系数和本身电流变化的快慢,自感电动势方向总是阻碍电流的变化.6.日光灯工作原理(1)起动器的作用:利用动触片和静触片的接通与断开起一个自动开关的作用,起动的关键就在于断开的瞬间.(2)镇流器的作用:日光灯点燃时,利用自感现象产生瞬时高压;日光灯正常发光时,利用自感现象,对灯管起到降压限流作用.7.电磁感应中的电路问题在电磁感应中,切割磁感线的导体或磁通量发生变化的回路将产生感应电动势,该导体或回路就相当于电源,将它们接上电容器,便可使电容器充电;将它们接上电阻等用电器,便可对用电器供电,在回路中形成电流.因此,电磁感应问题往往与电路问题联系在一起.解决与电路相联系的电磁感应问题的基本方法是:(1)用法拉第电磁感应定律和楞次定律确定感应电动势的大小和方向. (2)画等效电路. (3)运用全电路欧姆定律,串并联电路性质,电功率等公式联立求解.8.电磁感应现象中的力学问题(1)通过导体的感应电流在磁场中将受到安培力作用,电磁感应问题往往和力学问题联系在一起,基本方法是:①用法拉第电磁感应定律和楞次定律求感应电动势的大小和方向.②求回路中电流强度.③分析研究导体受力情况(包含安培力,用左手定则确定其方向).④列动力学方程或平衡方程求解.(2)电磁感应力学问题中,要抓好受力情况,运动情况的动态分析,导体受力运动产生感应电动势→感应电流→通电导体受安培力→合外力变化→加速度变化→速度变化→周而复始地循环,循环结束时,加速度等于零,导体达稳定运动状态,抓住a=0时,速度v达最大值的特点.9.电磁感应中能量转化问题导体切割磁感线或闭合回路中磁通量发生变化,在回路中产生感应电流,机械能或其他形式能量便转化为电能,具有感应电流的导体在磁场中受安培力作用或通过电阻发热,又可使电能转化为机械能或电阻的内能,因此,电磁感应过程总是伴随着能量转化,用能量转化观点研究电磁感应问题常是导体的稳定运动(匀速直线运动或匀速转动),对应的受力特点是合外力为零,能量转化过程常常是机械能转化为内能,解决这类问题的基本方法是:(1)用法拉第电磁感应定律和楞次定律确定感应电动势的大小和方向.(2)画出等效电路,求出回路中电阻消耗电功率表达式.(3)分析导体机械能的变化,用能量守恒关系得到机械功率的改变与回路中电功率的改变所满足的方程.10.电磁感应中图像问题电磁感应现象中图像问题的分析,要抓住磁通量的变化是否均匀,从而推知感应电动势(电流)大小是否恒定.用楞次定律判断出感应电动势(或电流)的方向,从而确定其正负,以及在坐标中的范围.。

磁与磁路感应

磁与磁路感应

Φ Blvt e Blv t t
如果导体和磁感线之间有相对运动时,用右 手定则判断感应电流方向较为方便; 如果导线与磁感线之间无相对运动,只是穿 过闭合回路的磁通发生了变化,则用楞次定律来 判断感应电流的方向。
§4-6
自感
一、自感现象
合上开关,HL2比HL1 亮的慢
断开开关,灯泡闪亮一 下才熄灭
三、自感电动势
由Nφ=LI,有
N Φ = LI
Φ 代入 eL N ,可得 t
I eL L t
四、RL电路过渡过程
电感线圈与电容器相似,都是电路中的储能 元件。
开关SA刚刚闭合时,电流不可能一下子由零 变到稳定值,而是逐渐地增大;而当切断电源时, 电流也不是立即消失,而是逐渐减小而消失。
NΦ L I
L的单位是亨利,用H表示。常采用较小的 单位有毫亨(mH)和微亨(μH)。
线圈的电感是由线圈本身的特性决定的。线 圈越长,单位长度上的匝数越多,截面积越大, 电感就越大。有铁心的线圈,其电感要比空心线 圈的电感大得多。 有铁心的线圈,其电感也不是一个常数,称 为非线性电感。电感为常数的线圈称为线性电感。 空心线圈当其结构一定时,可近似地看成线性电 感。
各种电器的线圈中,一般都装有铁心以获得 较强的磁场。而且在设计时,常常是将其工作磁 通取在磁化曲线的膝部,还常将铁心制成闭合的 形状,使磁感线沿铁心构成回路。
三、磁滞回线
理想状态下的磁滞回线:
实际的磁滞回线:
磁感应强度B的变化落后于磁场强度H 的变化,这一现象称为磁滞。 铁心在反复磁化的过程中,由于要不 断克服磁畴惯性将损耗一定的能量,称为 磁滞损耗,这将使铁心发热。
用ΔΦ表示时间间隔Δt内一个单匝线圈 中的磁通变化量,则一个单匝线圈产生的 感应电动势的大小为
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

4.1磁感应强度和磁通一、教学目标1、了解磁场、磁感线的概念。

2、了解载流体与线圈产生的磁场。

3、了解磁感应强度、磁通的概念。

二、教学重点、难点分析重点:磁感应强度是描述磁场性质的物理量,建立磁感强度的基本概念。

难点:建立磁感强度的基本概念。

三、教具条形磁铁;蹄形磁铁;针形磁铁;通电直导线;通电线圈;通电螺线管。

电化教学设备。

四、教学方法讲授法,演示法,多媒体课件。

五、教学过程I.导入复习电场,为用类比法建立磁感应强度概念作准备。

提问:电场的基本特性是什么?(对其中的电荷有电场力的作用。

)空间有点电场Q建立的电场,如在其中的A点放一个检验电荷qi,受电场力Fi,如改放电荷q2,受电场力F2,则旦与旦有何关系,说明什么?(比值q i q2为包量,反映场的性质,叫电场强度。

)II.新课一、磁体与磁感线(复习巩固旧知识,扩充学习新知识)提问一:同学们在初中的学习中都了解到了哪些关丁磁体、磁场的知识啊?答:略。

归纳明确基本概念:某些物体具有吸引铁、锐、钻等物质的性质叫磁性。

具有磁性的物体叫磁体。

常见的磁体有条形磁铁、马蹄形磁铁和针形磁铁。

磁铁两端的磁性最强,磁性最强的地方叫磁极。

分别是南极,用 S 表示;北 极,用N 表示。

1、 磁场提问二:两个磁体相互接近时,它们之间的作用遵循什么规律? 答:同名磁极互相排斥,异名磁极互相吸引。

观察:同名磁极,异名磁极的相互作用.进一步加深感性认识. 提问三:磁体之间的相互作用是怎样发生的? 答:磁体之间的相互作用是同过磁场发生的。

提问四:只有磁铁可以产生磁场吗? 答:电流也可以产生磁场。

明确概念:磁极之间的作用力是通过磁极周围的磁场传递的。

在磁力作用的 空间,有一种特殊的物质叫 磁场。

学生讨论:电荷之间的相互作用是通过电场;磁体之间的相互作用是通过磁 场。

电场和磁场一样都是一种物质。

2、 磁感线设问:电场分布可以用电力线来描述,那么磁场如何描述呢? 观察:如图1条形磁铁周围小磁针静止时 N 极所指的方向是不同的.说明:磁场中各点有不同的磁场方向. 设问:磁场中各点的磁场方向如何判定呢? 将一个小磁针放在磁场中某一点,小磁针静止 时,北极N 所指的方向,就是该点的磁场方向.设问:如何形象地描写磁场中各点的磁场方 向?正像电场中可以利用电力线来形象地描写各点的电场方向一样,在磁场中可以利用磁感线来形象地描写各点的磁场方向磁感线:是在磁场中画出一些有方向的曲线,在这些曲线上,每点的曲线方向,亦即 该点的切线方向都有跟该点的磁场方向相同.@ ® ®® ____ _® ■■ZZZJ® @ ®图1磁感线的特性:(1) 磁场的强弱可用磁感线的疏密表 示,磁感线密的地方磁场强;疏的 地方磁场弱。

(2) 在磁铁外部,磁感线从 N 极到S 极;在磁铁内部,磁感线从S 极到 N 极。

磁感线是闭合曲线。

(3)磁感线不相交。

二、电流的磁效应通电导体的周围存在磁场,这种现象叫电流的磁效应。

磁场方向决定丁电流方向,可以用右手螺旋定则来判断。

1、通电长直导线的磁场方向右手螺旋法则:右手握住导线并把 拇指伸开,用拇指指向电流方向,那么 四指环绕的方向就是磁场方向(磁感线 方向),如图3所示。

2、通电螺线管的磁场方向右手螺旋法则:右手握住螺线管并 把拇指伸开,弯曲的四指指向电流方 向,拇指所指方向就是磁场北极(N) 的方向,如图4所示。

三、磁感应强度和磁通 观察实验:(如图5所示)(1) 实验表明通电直导线垂直放置在确定的磁场中受到的磁场力 F 跟通过 的电流强度I 和导线长度L 成正比,或者说跟I L 的乘积成正比。

这就是说无论 怎样改变电流强度I 和导线长度L,乘积IL 增大多少倍,则F 也增大多少倍 比值F/IL 是包量。

图2条形磁铁磁场分布图3通电长直导线的磁场方向图4通电螺线管的磁场方向图5通电导线在磁场中受力(2)如果改变在磁场中的位置,垂直磁场放置的通电导线F/IL比值乂会是新的包量。

表明:F/IL反映了磁场的特性。

正如电场特性用电场强度来描述一样,磁场特性用一个新的物理量一一磁感应强度来描述。

1、磁感应强度(1)定义:在磁场中垂直丁此磁场方向的通电导线,所受到的磁场力F跟电流强度I和导线长度L的乘积IL的比值,叫做通电导线所在处的磁感应强度,用B表小。

(2)计算公式:B=j (磁感应强度定义式) (式4-1)(3)欠量:B的方向与磁场方向相同,即与小磁针N极受力方向相同。

(4)单位:特斯拉(T)。

匀强磁场:如果磁场中各点的磁感应强度B的大小和方向完全相同,那么这种磁场叫做匀强磁场。

其磁感线平■行且等距。

2、磁通(①)在后面的电学学习中,我们要讨论穿过某一个面的磁场情况。

我们知道,磁场的强弱(即磁感应强度)可以用磁感线的疏密来表示。

如果一个面积为S的面垂直一个磁感应强度为B的匀强磁场放置,则穿过这个面的磁感线的条数就是确定的。

我们把B与S的乘积叫做穿过这个面的磁通量。

(1)定义:磁感应强度B和其垂直的某一截面积S的乘积,叫做穿过该面积的磁通量,用①表示。

(2)计算公式:^=BS (磁通定义式)(式4-2)(3)单位:韦伯(Wb)IWbET m2注意:由式4-2可得B=全,这说明在匀强磁场中,磁感应强度就是与磁场S垂直的单位面积上的磁通。

所以,磁感应强度乂叫做磁通密度(简称磁密)。

III.例题讲解,巩固练习略。

(见教材§4-1例题1,例题2)IV.小结(1)磁感应强度既反映了磁场的强弱乂反映了磁场的方向,它和磁通量都是描述磁场性质的物理量,应注意定义中所规定的条件,对其单位也应加强记忆。

(2)磁通量的计算很简单,只要知道匀强磁场的磁感应强度B和所讨论面的面积S,在面与磁场方向垂直的条件下C)=B S (不垂直可将面积做垂直磁场方向上的投影。

)磁通量是表示穿过讨论面的磁感线条数的多少。

在今后的应用中往往根据穿过面的净磁感线条数的多少定性判断穿过该面的磁通量的大小。

V.作业略。

4.2磁场强度一、教学目标1、了解磁导律、磁场强度的概念。

2、了解集中常见载流导体的磁场强度。

二、教学重点、难点分析重点:1、磁场强度概念的建立。

2、几种常见载流导体的磁场强度计算。

难点:1、磁场强度概念的建立。

三、教具电化教学设备。

四、教学方法讲授法,多媒体课件。

五、教学过程I.导入复习4.1节磁感应强度与磁通量的内容。

提问:通电导体周围存在磁场,磁场的方向如何判断?答:右手螺旋法则。

(作课堂练习)提问:磁感应强度的概念是什么?如何计算?方向如何判断?答:(1)定义:在磁场中垂直丁此磁场方向的通电导线,所受到的磁场力F跟电流强度I和导线长度L的乘积IL的比值,叫做通电导线所在处的磁感应强度,用B表示。

(2)计算公式:B=、(磁感应强度定义式) (式4-1)(3)欠量:B的方向与磁场方向相同,即与小磁针N极受力方向相同。

判断方法同磁场方向判断方法。

II.新课一、磁导率(1)含义:物质导磁性能的强弱用磁导率卜表示。

卜的单位是亨[利]每米,符号为H/m。

' (2)意义:在相同条件下,卜值越大,磁感应强度B越大,磁场越强;P值越小,磁感应强度B越小,磁场越弱。

(3)相对磁导率真空中的磁导率是一个常数,P°=4V10「H/m,为了便丁对各种物质的导磁性能进行比较,以真空中的磁导率卜为基准,将其它物质的磁导率卜和%比较,其比值叫相对磁导率,用七表示,即:(4)分类:根据相对磁导率七的大小,可将物质分为三类:表1分类作用举例顺磁物质巴略大丁1对磁场影响不大。

空气、氧、锡、铝、铅等反磁物质七<1在磁场中放置反磁物质,磁感应器强度B减小。

氢、铜、石墨、银、锌等铁磁物质出>>1在磁场顷置铁磁物质,可使磁感应器强度B增加几千甚全几万倍。

铁、钢、铸铁、锐、钻等(二)磁场强度1、定义:磁场中某点的磁场强度等丁该点磁感应强度与介质磁导率卜的比值,用字母H表示。

3、欠量:方向与该点磁感应强度的方向相同三、几种常见载流导体的磁场强度1、载流长直导线A .计算大小:在载流长直导线产生的磁场中,有一点P,它与导线的距离为r,如图4-9所示(见教材)。

实验证明该点磁场强度的大小与导线中的电流成正比,与r成反比,即H =—(式4-4)2 二rB.方向判断:右手螺旋法则。

2、载流螺线管A .计算大小:如果螺线管的匝数为N,长度为L,通电电流为I,如图4-10所示(见教材)。

理论和实验证明,其内部磁场强度为:L(式4-5)B.方向判断:右手螺旋法则。

III.例题讲解,巩固练习略。

(见教材§4-2例题1,例题2)注意:在本章学习中,新接触的概念、定义、单位较多,在进行计算时注意公式的正确使用,单位代入要使用国际标准单位。

IV.小结(1)根据物质磁导率的不同,可以将物质分为顺磁物质、反磁物质、铁磁物质三类。

复习表1。

(2)磁场强度的概念、数值计算、方向判断。

(3)载流长直导线、载流螺线管所产生磁场强度的计算与方向判断。

V.作业略。

4.3磁路的欧姆定律一、教学目标1、了解磁路及磁路的欧姆定律。

二、教学重点、难点分析无。

(本节内容了解即可。

)三、教具电化教学设备。

四、教学方法讲授法,多媒体课件。

五、教学过程I .复习提问(1)根据物质磁导率的不同,可以将物质分为顺磁物质、反磁物质、铁磁物质三类。

(2)磁场强度的概念、数值计算、方向判断。

II.新课_、磁路磁通所经过的路径叫做磁路。

为了使磁通集中在一定的路径上来获得较强的磁场,常常把铁磁材料制成一定形状的铁心,构成各种电气设备所需的雌鹿,如图1所示为几种常见磁路形式。

利用铁磁材料可以尽可能地将磁通集中在磁路中,与电路相比,漏磁现象比漏电现象严重的多。

全部在磁路内部闭合的磁通叫做主磁通。

部分经过磁路,部3)电磁铁的磁路变压器的磁路© 直流电机的磁路图1磁路分经过磁路周围物质的闭合磁通叫做漏磁通。

为了计算简便,在漏磁不严重的情况下可将其忽略,只计算主磁通即可。

二、磁路的欧姆定律如果磁路的平■均长度为L,横截面积为S,通电线圈的匝数为N,磁路的平均长度为L,线圈中的电流为I,螺线管内的磁场可看作匀强磁场时,磁路内部磁通为,NI NI=」HSS =- L L与般将上式写成欧姆定律得形式,即磁路欧姆定律R m式中F m磁通势,单位是女培, 符号为 A;R m ―磁阻,单位是1 亨[利] ,符号为H -1;中——磁通,单位是- 后[伯], 符号为Wb 。

其中,F m=N| ,它与电路中的电动势相似,R m 钱,它与电阻定律R =P 壹相似。

III.小结IV.作业 略。

(式 4-6)4.4电磁感应现象& 4.5电磁感应定律一、教学目标1、启发学生观察实验现象,从中分析归纳通过磁场产生电流的条件,理解电磁感应现象本质。

相关文档
最新文档