高二人教A版必修系列教案111正弦定理
高中数学正弦定理教案

高中数学正弦定理教案
主题:正弦定理
目标:使学生能够理解和应用正弦定理解决三角形中的问题。
教学目标:
1. 了解正弦定理的定义和公式。
2. 掌握如何应用正弦定理解决三角形中的问题。
3. 能够利用正弦定理计算三角形内角和和边长。
教学内容:
1. 正弦定理的定义和公式。
2. 正弦定理的应用举例。
3. 练习题目。
教学过程:
一、导入
1. 引导学生回顾几何学中三角形的相关知识,特别是角的概念。
2. 提出问题:在三角形中,当知道一个角和一边的关系时,如何求解另外两个角和两边的关系?
二、讲解正弦定理
1. 讲解正弦定理的定义:在任意三角形 ABC 中,边 a、b、c 与角 A、B、C 之间有如下关系:
\[ \frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} \]
2. 举例说明正弦定理的应用。
三、练习
1. 让学生自己尝试应用正弦定理解决一些三角形中的问题。
2. 逐步增加难度,让学生巩固应用正弦定理的能力。
四、总结
1. 对正弦定理的应用进行总结,并强调练习的重要性。
2. 鼓励学生多多练习,掌握正弦定理的运用。
五、作业
布置相关的练习题目,让学生进行巩固练习。
教学反思:
在教学过程中,要不断引导学生思考,激发他们解决问题的兴趣和能力。
同时,要以学生为中心,注重培养学生的自主学习能力和解决问题的方法。
希望通过这次教学,学生能够牢固掌握正弦定理的应用,为将来的学习打下坚实基础。
高二数学人教A版必修5教学教案1-1-1正弦定理(2)_1

正弦定理一、教学内容的分析“正弦定理”是人教A版必修五第一章第一节的主要内容。
其主要任务是引入并证明正弦定理.做好正弦定理的教学,不仅能复习巩固旧知识,使学生掌握新的有用的知识,体会联系、发展等辩证观点,而且能培养学生的应用意识和实践操作能力,以及提出问题、解决问题等研究性学习的能力.二、学生学习情况分析在初中学生已经学习过关于任意三角形中大边对大角、小边对小角的边角关系,本节内容是处理任意三角形中的边角关系,与初中学习的三角形的边与角的基本关系有着密切的联系;这里的一个重要问题是:是否能得到这个边、角关系准确量化的表示.也就是如何从已知的两边和它们的夹角计算出三角形的另一边和两个角的问题.这样,用联系的观点,从新的角度看过去的问题,使学生对过去的知识有了新的认识,同时使新知识建立在已有知识的坚实基础上,形成良好的知识结构.三、设计思想培养学生学会学习、学会探究是全面发展学生能力的重要前提,是高中新课程改革的主要任务。
这就要求教师在教学中引导学生在一定的情境中,运用已有的学习经验,并通过与他人(在教师指导和学习伙伴的帮助下)协作,主动建构而获得知识。
所以本节课的教学将以学生为中心,视学生为认知的主体,教师只对学生的意义建构起帮助和促进作用。
四、三维目标1、知识与技能通过对任意三角形边长和角度关系的探索,掌握正弦定理的内容及证明方法,并能解决一些简单的三角形问题。
2、过程与方法通过对特殊三角形边长和角度关系的探索,发现正弦定理,初步学会用特殊到一般的思想方法发现数学规律。
3、情感态度与价值观通过生活实例的探究引出正弦定理,体现数学来源于生活,并应用于生活,激发学生学习数学的兴趣,并体会数学的应用价值。
五、教学重难点重点:正弦定理的证明及其基本运用.难点:(1)正弦定理的探索和证明;(2)已知两边和其中一边的对角解三角形时,判断解的个a cb O B C A 数.六、教学过程设计(一)新课导入如图,河流两岸有A 、B 两村庄,有人说利用测角器与直尺,不过河也可以得到A 、B 两地的距离(假设现在的位置是A 点),请同学们讨论设计一个方案解决这个问题。
正弦定理教案

《正弦定理》教案一、教学内容分析:本节课是人教版高中新课标数学A版必修(五)的第一章《解三角形》第一节《正弦定理和余弦定理》的第一课时,它既是初中解直角三角形在高中知识下的直接延拓,也是对高中坐标和圆等相关知识的综合运用,是生产和生活中解决实际问题的重要工具。
正弦定理给出了任意三角形边角的一个等量关系,它与后面即将要讲授的另一个边角关系——余弦定理都是解三角形的重要工具。
本节课的主要内容是引入证明正弦定理及正弦定理的基本应用,在课型上属于“定理教学课”。
学生在教师的引导下发现并证明正弦定理,不仅能复习巩固旧知识,掌握新的有用的知识,而其还能够体会数学知识之间的相互联系,开阔自己的思路,锻炼自己的数学思维能力。
学生通过对定理证明的探究和讨论,体验到数学理论发现和发展的过程,进而培养学生提出问题、解决问题等研究性学习的能力。
二、学情分析:对于高中的学生,一方面已经学习了平面几何、解直角三角形等知识,另一方面也具备了一定的观察分析和解决问题的能力;但是学生往往会在对新知识的理解应用以及与已学知识的联系上出现思维障碍,思维灵活性、深刻性受到制约。
根据以上特点,教师恰当引导,提高学生学习主动性,注意前后知识间的联系,引导学生直接参与分析问题、解决问题。
三、设计思想:培养学生学会学习、学会探究是全面发展学生能力的重要方面,也是高中新课程改革的主要任务。
如何培养学生学会学习、学会探究呢?这就要求在教学过程中以学生为主体,充分的发挥学生的主观能动性,也就是使学生在教师的指导下,自主进行思考和探究活动。
建构主义认为:“知识不是被动吸收的,而是由认知主体主动建构的。
”这个观点从教学的角度来理解就是:知识不仅是通过教师传授得到的,更重要的是学生在一定的情境中,运用已有的学习经验,并通过与他人(在教师指导和学习伙伴的帮助下)协作,主动建构而获得的,建构主义教学模式强调以学生为中心,视学生为认知的主体,教师只对学生的意义建构起帮助和促进作用。
高中数学《正弦定理》公开课优秀教学设计

2016年全国高中青年数学教师优秀课教学设计2016年10月正弦定理第一课时一、教学内容解析本节课《正弦定理》第一课时,出自新人教A版必修5第一章第一节《正弦定理和余弦定理》。
课程安排在“三角、向量”知识之后,是三角函数知识在三角形中的具体运用,更是初中“三角形边角关系”和“解直角三角形”内容的直接延续和拓展,同时也是处理可转化为三角形计算的其他数学问题及生产生活实际问题的重要工具。
本节课的内容共分为三个层次:第一,从实际问题导入,在解直角三角形的边角关系的基础上,触碰解斜三角形的思维困惑点,自然生成疑问,激发学生探究欲望,从熟悉的解直角三角形顺利过渡到即将要面对的解任意三角形,实现知识的螺旋式上升,符合学生的认知思维;第二,带着疑问,在探究得到直角三角形边角量化关系的基础上,以此作为启发点,首先对特殊的斜三角形边角量化关实验验证。
其次是严密的数学推导证明,得到正弦定理,以解直角三角形为知识基础,验证和证明,教学过程中充分体现了转化化归的数学思想;第三,解决引例,首尾呼应,并学以致用。
正弦定理其实是把“大边对大角、小边对小角”这一几何关系的解析化。
从三角学的历史发展来看,三角函数其实就是有关三角形、圆的性质的解析表达。
这样在悄无声息中,渗透了学科发展中研究观点和研究方法的嬗变。
这其实是一个推陈出新的过程。
通过这三个层次:探索发现——推导证明——实际应用。
从实际中来,到实际中去。
课堂上,引导学生充分体验、直观感知、大胆猜想、实验探究、理论验证以及实际应用。
二、教学目标设置《数学课程标准》中关于本节课的课程目标要求是:“在本章中,学生将在已有知识的基础上,通过对任意三角形边角关系的探究,发现并掌握三角形中的边长和角度之间的数量关系,并认识运用它们可以解决一些与测量和几何计算有关的实际问题。
”根据课程目标,依据教材内容和学生情况,确定本节课的学习目标为:1、通过观察、实验、验证、猜想、证明,从特殊到一般得到正弦定理;2、证明正弦定理,了解正弦定理的一些推导方法;3、初步熟知正弦定理的两个重要应用。
高中数学《正弦定理》教案4篇

高中数学《正弦定理》教案4篇高中数学《正弦定理》教案1教材地位与作用:本节学问是必修五第一章《解三角形》的第一节内容,与学校学习的三角形的边和角的基本关系有亲密的联系与判定三角形的全等也有亲密联系,在日常生活和工业生产中也时常有解三角形的问题,而且解三角形和三角函数联系在高考当中也时常考一些解答题。
因此,正弦定理的学问特别重要。
学情分析:作为高一同学,同学们已经把握了基本的三角函数,特殊是在一些特别三角形中,而同学们在解决任意三角形的边与角问题,就比较困难。
教学重点:正弦定理的内容,正弦定理的证明及基本应用。
教学难点:正弦定理的探究及证明,已知两边和其中一边的对角解三角形时推断解的个数。
(依据我的教学内容与学情分析以及教学重难点,我制定了如下几点教学目标)教学目标分析:学问目标:理解并把握正弦定理的证明,运用正弦定理解三角形。
力量目标:探究正弦定理的证明过程,用归纳法得出结论。
情感目标:通过推导得出正弦定理,让同学感受数学公式的干净对称美和数学的实际应用价值。
教法学法分析:教法:采纳探究式课堂教学模式,在老师的启发引导下,以同学自主和合作沟通为前提,以“正弦定理的发觉”为基本探究内容,以生活实际为参照对象,让同学的思维由问题开头,到猜测的得出,猜测的探究,定理的推导,并逐步得到深化。
学法:指导同学把握“观看——猜测——证明——应用”这一思维方法,实行个人、小组、集体等多种解难释疑的尝试活动,将自己所学学问应用于对任意三角形性质的探究。
让同学在问题情景中学习,观看,类比,思索,探究,动手尝试相结合,增添同学由特别到一般的数学思维力量,锲而不舍的求学精神。
教学过程(一)创设情境,布疑激趣“爱好是最好的老师”,假如一节课有个好的开头,那就意味着胜利了一半,本节课由一个实际问题引入,“工人师傅的一个三角形的模型坏了,只剩下如右图所示的部分,∠a=47°,∠b=53°,ab 长为1m,想修好这个零件,但他不知道ac和bc的长度是多少好去截料,你能帮师傅这个忙吗?”激发同学关心别人的热忱和学习的爱好,从而进入今日的学习课题。
正弦定理 教案-人教A版数学高二必修五第一章1.1.1

第一章解三角形1.2正弦定理和余弦定理1.1.1正弦定理课型:新授课课时:第一课时教学目标1.通过对任意三角形边长和角度关系的探索,掌握正弦定理的内容及其证明方法;会运用正弦定理与三角形内角和定理解斜三角形的两类基本问题。
2.让学生从已有的几何知识出发,共同探究在任意三角形中,边与其对角的关系,引导学生通过观察,推导,比较,由特殊到一般归纳出正弦定理,并进行定理基本应用的实践操作。
3.培养学生在方程思想指导下处理解三角形问题的运算能力;培养学生合情推理探索数学规律的数学思思想能力,通过三角形函数、正弦定理、向量的数量积等知识间的联系来体现事物之间的普遍联系与辩证统一。
教学重点和难点重点:正弦定理的探索和证明及其基本应用。
难点:运用正弦定理解决两类基本的解三角形问题.专家建议正弦定理是刻画三角形边和角关系的基本定理,也是最基本的数量关系之一。
此节内容从地位上讲起到承上启下的作用:承上,可以说正弦定理是初中锐角三角函数(直角三角形内问题)的拓广与延续,是对初中相关边角关系的定性知识的定量解释,即对“在任意三角形中有大边对大角,小边对小角”这一定性知识的定量解释,即正弦定理得到这个边、角的关系准确的量化的表示,实现了边角的互化。
它是三角函数一般知识和平面向量知识在三角形中的具体应用,同时教材这样编写也体现了新课标中“体现相关内容的联系,帮助学生全面地理解和认识数学”这一指导思想;启下,正弦定理解决问题具有一定的局限性,产生了余弦定理,二者一起成为解决任意三角形问题重要定理。
同时正弦定理为后续第二节的《应用举例》作以铺垫,正弦定理的知识和方法可解决一些与测量和几何计算有关的实际问题,这样也体现了课标中注重“数学的三大价值(科学价值、应用价值、文化价值)之一的应用价值。
”本节课宜采用“发现学习”的模式,即由“结合实例提出问题——观察特例提出猜想——数学实验深入探究——证明猜想得出定理——运用定理解决问题”五个环节组成的“发现学习”模式,在教学中贯彻“启发性”原则,通过提问不断启发学生,引导学生自主探索与思考;并贯彻“以学定教”原则,即根据教学中的实际情况及时地调整教学方案。
高中数学正弦定理教案(最新4篇)

高中数学正弦定理教案(最新4篇)高中数学正弦定理教案篇一一、教材分析1.教材地位和作用在初中,学生已经学习了三角形的边和角的基本关系;同时在必修4 ,学生也学习了三角函数、平面向量等内容。
这些为学生学习正弦定理提供了坚实的基础。
正弦定理是初中解直角三角形的延伸,是揭示三角形边、角之间数量关系的重要公式,本节内容同时又是学生学习解三角形,几何计算等后续知识的基础,而且在物理学等其它学科、工业生产以及日常生活等常常涉及解三角形的问题。
依据教材的上述地位和作用,我确定如下教学目标和重难点2.教学目标(1)知识目标:①引导学生发现正弦定理的内容,探索证明正弦定理的方法;②简单运用正弦定理解三角形、初步解决某些与测量和几何计算有关的实际问题。
(2)能力目标:①通过对直角三角形边角数量关系的研究,发现正弦定理,体验用特殊到一般的思想方法发现数学规律的过程。
②在利用正弦定理来解三角形的过程中,逐步培养应用数学知识来解决社会实际问题的能力。
(3)情感目标:通过设立问题情境,激发学生的学习动机和好奇心理,使其主动参与双边交流活动。
通过对问题的提出、思考、解决培养学生自信、自立的优良心理品质。
通过教师对例题的讲解培养学生良好的学习习惯及科学的学习态度。
3.教学的重﹑难点教学重点:正弦定理的内容,正弦定理的证明及基本应用;教学难点:正弦定理的探索及证明;教学中为了达到上述目标,突破上述重难点,我将采用如下的教学方法与手段二、教学方法与手段1.教学方法教学过程中以教师为主导,学生为主体,创设和谐、愉悦教学环境。
根据本节课内容和学生认知水平,我主要采用启导法、感性体验法、多媒体辅助教学。
2.学法指导学情调动:学生在初中已获得了直角三角形边角关系的初步知识,正因如此学生在心理上会提出如何解决斜三角形边角关系的疑问。
学法指导:指导学生掌握“观察——猜想——证明——应用”这一思维方法,让学生在问题情景中学习,再通过对实例进行具体分析,进而观察归纳、演练巩固,由具体到抽象,逐步实现对新知识的理解深化。
《正弦定理》的说课稿优秀5篇

《正弦定理》的说课稿优秀5篇作为一名默默奉献的教育工作者,往往需要进行说课稿编写工作,借助说课稿可以让教学工作更科学化。
怎样写说课稿才更能起到其作用呢?旧书不厌百回读,熟读精思子自知,本文是美丽的编辑给大伙儿找到的《正弦定理》的说课稿优秀5篇,希望对大家有所帮助。
《正弦定理》的说课稿篇一大家好,今天我说课的题目是《正弦定理》。
新课标指出:高中教育属于基础教育,具有基础性,且具有多样性与选择性,使不同的学生在数学上得到不同的发展。
今天我将贯彻这一理念从教材分析、学情分析、教学过程等几个方面展开我的说课。
一、说教材教师对教材的掌握程度,是评判一位教师是否能上好一堂课的基本标准。
在正式内容开始之前,我要先谈一谈对教材的理解。
《正弦定理》是人教A版必修5一章一节的内容,其主要内容是正弦定理及其应用。
此前学习了三角函数的相关知识,且积累很多的证明、推导的经验,为本节课的学习都起到了一定的铺垫作用。
本节课的学习,也为以后学习和解决生活中的一些问题提供帮助。
因此本节的学习有着特别重要的地位。
二、说学情合理把握学情是上好一堂课的基础,下面我来谈谈学生的实际情况。
这一阶段的学生已经具备了一定的分析问题、解决问题的能力,且在知识方面也有了一定的积累。
所以,教学中,利用学生的特点以及原有经验进行教学,增强学生的课堂参与度。
三、说教学目标根据以上对教材的分析以及对学情的把握,我制定了如下三维教学目标:(一)知识与技能能证明正弦定理,并能利用正弦定理解决实际问题。
(二)过程与方法通过正弦定理的'推导过程,提高分析问题、解决问题的能力。
(三)情感、态度与价值观在正弦定理的推导过程中,感受数学的严谨,提升对数学的兴趣。
四、说教学重难点我认为一节好的数学课,从教学内容上说一定要突出重点、突破难点。
而教学重点的确立与我本节课的内容肯定是密不可分的。
那么根据授课内容可以确定本节课的教学重点为:正弦定理。
难点:正弦定理的证明。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章解斜三角形
1. 1. 1正弦定理
(一)教学目标
1.知识与技能:通过对任意三角形边长和角度关系的探索, 掌握正弦定理的 内容
及其证明方法;会运用正弦定理与三角形内角和定理解斜三角形中的一类简 单问题
2. 过程与方法:让学生从已有的几何知识出发,共同探究在任意三角形中, 边与
其对角的关系,弓I 导学生通过观察,推导,比较,由特殊到一般归纳出正弦 定理,并进行定理基本应用的实践操作。
3. 情态与价值:培养学生在方程思想指导下处理解三角形问题的运算能力; 培养
学生合情推理探索数学规律的数学思思想能力,通过三角形函数、正弦定理、 向量的数量积等知识间的联系来体现事物之间的普遍联系与辩证统一。
(二)教学重、难点
重点:正弦定理的探索和证明及其基本应用 难点:正弦定理的推导即理解 (三)学法与教学用具
学法:引导学生首先从直角三角形中揭示边角关系: 接着就一般斜三角形进行探索,发现也有这一关系;分别利用传统证
法和向量证 法对正弦定理进行推导,让学生发现向量知识的简捷,新颖
教学用具:直尺、投影仪、计算器 (四)教学过程
1[创设情景]
如图1.1-1,固定 ABC 勺边CB 及 B ,使边AC 绕着顶点C 转动
A
思考: C 的大小与它的对边AB 的长度之间有怎样的数量关系? 显然,边AB 的长度随着其对角 C 的大小的增大而增大。
能否| 用一个等式把这种关系精确地表示出来?
a b c sin A sin B sin C ,
2[探索研究] (图 1. 1-1)
在初中,我们已学过如何解直角三角形,下面就首先来探讨直角三角形中,
(图 1. 1-2)
思考:那么对于任意的三角形,以上关系式是否仍然成立? (由学生讨论、分析)
可分为锐角三角形和钝角三角形两种情况:
(图 1. 1-3)
思考:是否可以用其它方法证明这一等式?由于涉及边长问题, 从而可以考
虑用向量来研究这个问题。
uir HE uir
由向量的加法可得 AB AC CB
角与边的等式关系。
如图1.1-2,在 Rt ABC 中,设 BC=a,AC=b,AB=c,根据锐
角三角函数中正弦函数的定义,有
sin A ,
则矗為品c
从而在直角三角形ABC 中,
a sin A b
sin B sin C
如图1. 1-3,当 ABC 是锐角三角形时,设边 三角函数的定义,有 CD 乞sin B b sin A,则聶
AB 上的高是CD 根据任意角
b
B
sin 同理可得聶
b sin B ,
从而
sin B si n C
u Hi
(证法二):过点A 作j AC ,
u rnr u iLE uir j AB j (AC CB
b
c
u iur u uuu u uur ••• j AB j AC j CB —
,, r uuu
同理,过点C 作j BC ,可得
sin A sin B sin C
类似可推出,当 ABC 是钝角三角形时,以上关系式仍然成立。
(由学生课 后自己推导)
从上面的研探过程,可得以下定理
正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,即 a b c
sin A sin B sin C
[理解定理]
(1)正弦定理说明同一三角形中,边与其对角的正弦成正比,且比例系数
为同一正数,即存在正数
k 使a k si n A , b k si n B , c k si n C ;
从而知正弦定理的基本作用为:
②已知三角形的任意两边与其中一边的对角可以求其他角的正弦值,如
sin A
sin B 。
b
一般地,已知三角形的某些边和角,求其他的边和角的过程叫作 解三角形
3[例题分析]
例 1•在 ABC 中,已知 A 32.0°,B 81.8°,a 42.9 cm,解三角形。
解:根据三角形内角和定理,
C 1800 (A B) 1800 (32.00 81.80)
r uuu 0 j AB cos 90° A
jCBcos 90°
• ••
csinA asinC
'即蟲
c si nC
b c sinB sinC
从而
(2)
a sin A b
sin B
b c
sin B , sin C sin B ' sin A sin C
①已知三角形的任意两角及其一边可以求其他边,如
b sin A sin B
7
66.2°
根据正弦定理,
asinB 42.9s in 81.8°
sin A sin32.0°
根据正弦定理,
评述:对于解三角形中的复杂运算可使用计算器。
例2如图,在△ ABC 中, Z A 的平分线AD 与边BC 相交于点D,求证:昱 少
DC AC 证明:如图在△ ABD^P A CAD 中,由正弦定理,
(2)已知 A ABC 已知 A=450, B=750, b=8;求边 a=()
A 8
B 4
C 4
3 -3 D 8
3 -8
(3) 正弦定理的内容是 -------------------------
(4) 已知 a+b=12 B=45 0 A=600则则则 a= ------------------------ b= ----------------------
(5) 已知在A ABC 中,三内角的正弦比为4:5:6,有三角形的周长为7.5 ,
贝U 其三边长分别为 ----------------
六,课堂小结(有学生自己总结) 七课外作业:P10. A1, B1
80.1(cm);
as
inC sin A 42.9s in 66.20
sin32.00 74.1(cm). 得旦
sin
AB DC sin sin
AC AC
sin (180° ) sin
两式相除得
BD
DC
AB AC
五巩固深化反馈研究
1已知A ABC 已知A=60,
A3
B 2
C ,3 D
(6).在A ABC 中,利用正弦定理证明
sin A sin B
si nC
A。