三流体动力学基础作业题
流体动力学基础

流体动力学基础第3章流体动力学基础一、单项选择题1、当液体为恒定流时,必有()等于零。
A .当地加速度 B.迁移加速度 C.向心加速度 D.合加速度2、均匀流过流断面上各点的()等于常数。
A.p B.z+g p ρ C. g p ρ+g u 22 D. z+g p ρ+gu 223、过流断面是指与()的横断面。
A .迹线正交 B.流线正交 C.流线斜交 D.迹线斜交4、已知不可压缩流体的流速场为Ux=f(y,z),Uy=f(x),Uz=0,则该流动为()。
A.一元流B.二元流C.三元流D.均匀流5、用欧拉法研究流体运动时,流体质点的加速度a=( ). A. 22dtr d B.t u ?? C.(u ·▽)u D. t u ??+(u ·▽)u 6、在恒定流中,流线与迹线在几何上()。
A.相交B.正交C.平行D.重合7、控制体是指相对于某个坐标系来说,( ).A .由确定的流体质点所组成的流体团B.有流体流过的固定不变的任何体积 C.其形状,位置随时间变化的任何体积 D.其形状不变而位置随时间变化的任何体积.8、渐变流过流断面近似为( ).A.抛物面B.双曲面C.对数曲面D.平面9、在图3.1所示的等径长直管流中,M-M 为过流断面,N-N 为水平面,则有( ).A.p1=p2B.p3=p4C.z1+g p ρ1 =z2+g p ρ2D.z3+g p ρ3 =z4+gp ρ4 10、已知突然扩大管道突扩前后管段的管径之比21d d =0.5, 则突扩前后断面平均流速之比v1:v2=( ).A. 4B.2C.1D.0.511、根据图3.2 所示的三通管流,可得()。
A .qv 1+qv 2=qv 3 B.qv 1-qv 2=qv 3 C.qv 1=qv 2+qv 3 D.qv 1+qv 2+qv 3=0 12、根据图3.3 所示的三通管流,可得()。
A .qv 1+qv 2=qv 3 B.qv 1-qv 2=qv 3 C.qv 1=qv 2+qv 3 D.qv 1+qv 2+qv 3=0 13、测压管水头坡度Jp=()。
流体力学(流体动力学)历年真题试卷汇编2

流体力学(流体动力学)历年真题试卷汇编2(总分:70.00,做题时间:90分钟)一、解答题(总题数:8,分数:16.00)1.(北京航空航天大学2007年考研试题)(3,1,2)处的加速度。
(分数:2.00)__________________________________________________________________________________________ 正确答案:(正确答案:由题意可知,x、y、z三个方向的速度分别为u=xy 2,v=一3y,w=2z 2,由欧拉表示的加速度公式可求得x、y、z三个方向上的加速度分别为:)解析:2.(北京航空航天大学2007年考研试题)试求t=0时过M(一1,一1)点的流线。
(分数:2.00)__________________________________________________________________________________________正确答案:(正确答案:设x方向的速度为u,y方向的速度为v,由题意可知:u=x+t,v=一y+t 两边积分得: ln(x+t)=一ln(y一t)+C(C为积分常数) 化简得: ln(x+t)(y-t)=C 1所以有: (x+t)(y-t)=C 2由于t=0,则xy=C 2。
又因为流线过点(一1,一1),于是得: C 2 =1 所以流线为: xy=1 关于流动方向:因为cos(x,u)= (x<0),则可知cos(x,u)<0 所以流线的图形如图3—3所示。
) 解析:3.(北京航空航天大学2006年考研试题)试求在t=2时刻空间点(1,2,3)处的加速度。
(分数:2.00)__________________________________________________________________________________________ 正确答案:(正确答案:由流线上加速度公式得:将数据代入各方向上的加速度表达式可得,在t=2时刻空间点(1,2,3))解析:4.(北京航空航天大学2006年考研试题)已知流体的流动速度为a为常数,试求t=1时,过(0,b)点的流线。
第三章流体动力学基础复习题

第三章流体动力学基础复习题部门: xxx时间: xxx整理范文,仅供参考,可下载自行编辑第三章流体动力学基础复习题一、概念部分1、描述流体运动的方法有和;前者以为研究对象,而后者以为研究对象。
2、流体运动的几何描述有:,,和。
3、流线有什么特点?流线、脉线和迹线有什么区别和联系?4、流体微团基本运动形式有,和变形运动等,而变形运动又包括和两种。
5、描述有旋运动几何要素有、和。
6、判断正误:理想流体不存在有旋运动是否正确?为什么?试举例说明。
7、表征涡流的强弱的参数有和。
8、在无涡流空间画出的封闭周线上的速度环量为。
9、简述汤姆孙定理的内容10、速度势函数j存在的条件是什么?流函数存在的条件是什么?11、简述流函数的物理意义的内容,并证明。
12、流网存在的条件是什么?简述流网的性质所包含的内容?13、无环量圆柱绕流运动由流、流和流叠加而成,有环量的圆柱绕流运动是无环量的圆柱绕流运动与流叠加而成。
b5E2RGbCAP14、是驻点。
通过驻点的流线一定是零流线,是否正确?为什么?零流线是。
轮廓线是。
15、描述流体运动的微分方程有、和。
写出它们的表达式。
16、纳维-斯托克斯方程中的速度只能是平均速度,是否正确?为什么?17、写出总水头和测压管水头的表达式,并说明各项的物理意义。
18、写出总压、全压和势压得表达式,并说明各项的物理意义。
19、简述系统和控制体的定义和特点二、计算部分1、已知拉格朗日描述:求速度与加速度的欧拉描述2、试判断下列流场的描述方式:并转换成另一种描述方式3、已知用欧拉法表示的流场速度分布规律为:试求在t=0时刻位于点<a,b>的流体质点的运动轨迹及拉格朗日法表示的速度场4、粘性流体在半径为R的直圆管内做定常流动。
设圆管截面<指垂直管轴的平面截面)上有两种速度分布,一种是抛物线分布u1(r>,另一种是1/7指数分布u2(r>:p1EanqFDPw上式中um1,um2分别为两种速度分布在管轴上的最大速度。
流体力学考试题库

流体力学考试题库第一题:静力学基础1. 结合静力学的基本原理,解释什么是平衡状态,并推导出平衡状态的条件。
2. 画一剖面图,标明各物体的重力以及各处支持力的方向,并利用物体的平衡条件求解未知力。
3. 在一个封闭的液体容器中,液体表面受到一个压强,推导出液体内各点的压力与深度的关系。
4. 一个高度为H的圆柱形液体容器,其上方有一个可以测量压力的装置,利用加权法求解液体的密度。
5. 两个连接在同一液体容器中的水池,在不同位置(水位高度不同)处测量液面的压力。
应用压强传递原理,计算出液体的密度。
第二题:运动学1. 从基本原理出发,推导出Bernoulli方程,并给出各项物理量的含义和单位。
2. 根据相似性原理和尺度分析,列出三个具有相似性质的物理量与尺度的比例关系,并解释它们在流体力学中的应用。
3. 分析绕流体柱的流体流动,推导出液体流动速度的分布公式,并根据该公式解释为什么流体分子在柱面上停留的时间较长。
4. 利用欧拉方程和伯努利方程,推导出Pitot静压管的原理,并解释为何可以利用Pitot静压管测量飞机的空速。
5. 画出流速与管道横截面半径的关系图,并解释为什么在管道中我们可以忽略黏性的影响。
第三题:动力学1. 从基本方程出发,推导出一维不可压缩稳态流体的动力学方程,并解释方程中各项的物理意义。
2. 两种流体在Y型管汇流处相遇,从基本方程出发,推导出经典的迎风相遇问题,并解释为什么会出现分离区域。
3. 利用雷诺运动方程推导出流体粘滞性的表达式,并解释为什么流体的粘滞性与流体速度呈正比。
4. 从基本方程出发,推导出涡量的守恒方程,并解释该方程对流体流动的意义。
5. 画出截面积与液体速度关系的曲线,并解释为什么在压缩过程中,液体的速度增大而密度增大。
总结:通过本次流体力学考试题库,我们对静力学、运动学和动力学等方面的理论和应用有了更深入的了解。
通过解答这些题目,我们巩固了对流体力学基本原理和公式的理解,并且学会了如何应用这些原理和公式解决实际问题。
流体动力学 习题答案

流体动力学习题答案流体动力学习题答案流体动力学是研究流体运动规律以及与固体的相互作用的学科。
它广泛应用于航空航天、海洋工程、能源工程等领域。
在学习流体动力学的过程中,习题是不可或缺的一部分。
下面我将为大家提供一些流体动力学习题的答案,希望能帮助大家更好地理解和掌握这门学科。
1. 什么是流体的黏性?黏性对流体流动有什么影响?答:流体的黏性是指流体内部分子之间的相互作用力。
黏性对流体流动有重要影响。
当流体黏性较小时,流体流动较为快速,流线较为平滑;当流体黏性较大时,流体流动较为缓慢,流线较为弯曲。
黏性还会导致流体内部的能量损失,使得流体流动变得不稳定。
2. 什么是雷诺数?雷诺数的大小对流动有何影响?答:雷诺数是描述流体流动状态的一个无量纲参数,它由流体的惯性力和黏性力之比确定。
雷诺数越大,惯性力相对于黏性力的作用就越显著,流体流动越不稳定,容易产生湍流现象。
雷诺数越小,黏性力相对于惯性力的作用就越显著,流体流动越稳定,容易产生层流现象。
3. 什么是伯努利方程?它适用于哪些流动情况?答:伯努利方程是描述流体在无黏性、定常、不可压缩条件下流动的基本方程。
它表达了流体的动能、压力和重力势能之间的关系。
伯努利方程适用于流体在光滑管道中的流动、流体通过收缩管道的流动等情况。
4. 什么是流体的黏滞阻力?黏滞阻力与流体速度和黏性有何关系?答:流体的黏滞阻力是流体在流动过程中受到的阻碍力。
黏滞阻力与流体速度和黏性有密切关系。
当流体速度较小时,黏滞阻力较小;当流体速度较大时,黏滞阻力较大。
同时,黏滞阻力还与流体的黏性有关,黏性越大,黏滞阻力越大。
5. 什么是流体的旋转流?旋转流与无旋流有何区别?答:流体的旋转流是指流体在流动过程中存在旋转的情况。
旋转流与无旋流的区别在于流体速度场的旋度。
旋转流的旋度不为零,表示流体在流动过程中存在旋转;无旋流的旋度为零,表示流体在流动过程中没有旋转。
以上是对一些流体动力学习题的答案解析。
流体力学(平时的作业题)

第一章 绪论1-6.图示为一水平方向运动的木板,其速度为1m s,平板浮在油面上,油深 1mm δ=,油的0.09807Pa s μ=,求作用于平板单位面积上的阻力?⎡⎤⎣⎦解10.0980798.070.001du Pa dy τμ==⨯= 1-7. 温度为20℃的空气,在直径为2.5cm 管中流动,距管壁上1mm 处的空气速度为3cm/s 。
求作用于单位长度管壁上的粘滞切应力为多少? 解: f=m N dyduA/103.410/1031105.2100183.053223-----⨯=⨯⨯⨯⨯⨯⨯=πμ 1-8.一底面积为4045cm ⨯,高为1cm 的木板,质量为5kg ,沿着涂有润滑油的斜面等速向下运动,已知1m v s=,1mm δ=,求润滑油的动力黏度?⎡⎤⎣⎦解0T GSin α-= 55255131313T GSin G g g α==⋅=⨯⨯=所以 10.400.451800.001du T A dy μμμ==⨯=但 259.8070.10513180Pa s μ⨯==⋅⨯所以5第二章 流体静力学2-6.封闭容器水面的绝对压强20107.7KNp m=,当地大气压强298.07a KNp m =,试求(1)水深0.8h m =的A 点的绝对压强和相对压强?(2)若容器水面距基准面高度5Z m =,求A 点的测压管高度和测压管水头。
并图示容器内液体各点的测压管水头线;(3)压力表M 和酒精(27.944KNm γ=)测压计h 的读数值?hh 1AM p 0⎡⎤⎣⎦解(1)201107.79.8070.8115.55A KN p p h m γ'=+=+⨯= 2115.5598.0717.48A A a KN p p p m '=-=-=(2)217.481.789.807Ap h m γ=== 25 1.78 6.78n A H Z h m =+=+=(3)20107.798.079.63M a KNp p p m =-=-=9.631.217.944Mp h m γ=== 2-16. 已知水箱真空表M 的读数为0.98kPa ,水箱与油箱的液面差H =1.5m ,水银柱差m 2.02=h ,3m /kg 800=油ρ,求1h 为多少米?解:取等压面1-1,则()()()()()12122211332800.29809800 1.50.2 5.610008009.8a a Hg Hg P P g H h h P gh gh gh P g H h h gmρρρρρρρ-+++=+++-+=-⨯+-⨯+==-⨯油油2-20.图为倾斜水管上测定压差的装置,已知cm 20=z ,压差计液面之差cm 12=h ,求当(1)31kg/m 920=ρ的油时;(2)1ρ为空气时;A 、B 两点的压差分别为多少?解:(1)取等压面1-1 PaghgZ gh P P ghgZ P gh P A B B A 92.1865)12.02.0(980012.08.992011=-⨯+⨯⨯=-+=---=-ρρρρρρ(2)同题(1)可得Pagh gZ P P gZP gh P A B B A 784)12.02.0(9800=-⨯=-=--=-ρρρρ2-36.有一圆滚门,长度10l m =,直径4D m =,上游水深14H m =,下游水深22H m =,求水作用于圆滚门上的水平和铅直分压力?⎡⎤⎣⎦解2212121()2x x x p p p l H H γ=-=- 2219.80710(42)5902KN =⨯⨯⨯-=23439.8074109204z p V Al R lKN γγγππ==∙==⨯⨯⨯=2-44. 一洒水车以等加速度2/98.0s m a =在平地上行驶,水车静止时,B 点位置m x 5.11=,m h 1=,求运动后该点的静水压强。
流体力学例题及思考题-第三章

第三章流体运动学与动力学基础主要内容基本概念欧拉运动微分方程连续性方程——质量守恒*伯努利方程——能量守恒** 重点动量方程——动量守恒** 难点方程的应用第一节研究流体运动的两种方法流体质点:物理点。
是构成连续介质的流体的基本单位,宏观上无穷小(体积非常微小,其几何尺寸可忽略),微观上无穷大(包含许许多多的流体分子,体现了许多流体分子的统计学特性)。
空间点:几何点,表示空间位置。
流体质点是流体的组成部分,在运动时,一个质点在某一瞬时占据一定的空间点(x,y,z)上,具有一定的速度、压力、密度、温度等标志其状态的运动参数。
拉格朗日法以流体质点为研究对象,而欧拉法以空间点为研究对象。
一、拉格朗日法(跟踪法、质点法)Lagrangian method1、定义:以运动着的流体质点为研究对象,跟踪观察个别流体质点在不同时间其位置、流速和压力的变化规律,然后把足够的流体质点综合起来获得整个流场的运动规律。
2、拉格朗日变数:取t=t0时,以每个质点的空间坐标位置为(a,b,c)作为区别该质点的标识,称为拉格朗日变数。
3、方程:设任意时刻t,质点坐标为(x,y,z) ,则:x = x(a,b,c,t)y = y(a,b,c,t) z = z(a,b,c,t) 4、适用情况:流体的振动和波动问题。
5、优点: 可以描述各个质点在不同时间参量变化,研究流体运动轨迹上各流动参量的变化。
缺点:不便于研究整个流场的特性。
二、欧拉法(站岗法、流场法)Eulerian method1、定义:以流场内的空间点为研究对象,研究质点经过空间点时运动参数随时间的变化规律,把足够多的空间点综合起来得出整个流场的运动规律。
2、欧拉变数:空间坐标(x ,y ,z )称为欧拉变数。
3、方程:因为欧拉法是描写流场内不同位置的质点的流动参量随时间的变化,则流动参量应是空间坐标和时间的函数。
位置: x = x(x,y,z,t)y = y(x,y,z,t) z = z(x,y,z,t)速度: u x =u x (x,y,z,t )u y =u y (x,y,z,t ) u z =u z (x,y,z,t )同理: p =p (x,y,z,t ) ,ρ=ρ(x,y,z,t) 说明: x 、y 、z 也是时间t 的函数。
第三章流体动力学基础(1)

A Control Volume is a region in space, mass can cross its boundary 8
2019/3/27
流体力学基础
第三章 流体动力学基础
§2 流体运动中的几个基本概念
一、物理量的质点导数(全导数) • 运动中的流体质点所具有的物理量N(例如速度、压强、 密度、温度、质量、动量、动能等)对时间的变化率称 为物理量N的质点导数。 • 流体质点处于静止状态,则不存在质点导数概念; • 质点导数是针对某一物理量; • 质点导数必然是数学上多元复合函数对独立自变量t的 导数
流体微团的标识:通常取 t0 时刻该流体微团的初始空间坐标 (a, b, c )作为该流体微团的标识 (a, b, c )可以是直角坐标系下,也可以任选,只要能把所 研究的流体微团彼此区别开即可
2019/3/27
流体力学基础
2
第三章 流体动力学基础
• 拉格朗日变数 : ( a, b, c ) 和 t • 任一时刻流体微团(a, b, c )的运动空间坐标(x, y,z)
r t
(2)
2019/3/27
流体力学基础
16
第三章 流体动力学基础
• 欧拉参数转换为拉格朗日参数
若已知欧拉法表示的速度场为 v = v (r, t) = v (x, y, z, t ) 利用流体质点的速度关系式: dr/dt = v(r, t) 或分量形式: dx/dt = u(x, y, z, t) dy/dt = v(x, y, z, t) dz/dt = w(x, y, z, t) 设此组常微分方程组的解为: x = x(c1, c2, c3, t) y = y(c1, c2, c3, t) z = z(c1, c2, c3, t) 由起始条件确定积分常数,t=t0时有: a = x(c1, c2, c3, t0) b = y(c1, c2, c3, t0) c = z(c1, c2, c3, t0) 积分常数由拉格朗日参数(a, b, c)表示,获得拉氏与欧氏 参数关系:x=x (a, b, c, t), y=y (a, b, c, t), z=z (a, b, c, t), 原速度场:v = v [x(a,b,c,t), y(a,b,c,t), z(a,b,c,t), t] = v (a,b,c,t) 完成欧氏参数向拉氏参数转换 流体力学基础 17
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三章流体动力学基础复习题
一、概念部分
1、描述流体运动的方法有和;前者以为研究对象,而后者以为研究对象。
2、流体运动的几何描述有:,,和。
3、流线有什么特点?流线、脉线和迹线有什么区别和联系?
4、流体微团基本运动形式有,和变形运动等,
而变形运动又包括和两种。
5、描述有旋运动几何要素有、和。
6、判断正误:理想流体不存在有旋运动是否正确?为什么?试举例说明。
7、表征涡流的强弱的参数有和。
8、在无涡流空间画出的封闭周线上的速度环量为。
9、简述汤姆孙定理的内容
10、速度势函数ϕ存在的条件是什么?流函数存在的条件是什么?
11、简述流函数的物理意义的内容,并证明。
12、流网存在的条件是什么?简述流网的性质所包含的内容?
13、无环量圆柱绕流运动由流、流和流叠加而成,有环量的圆柱绕流运动是无环量的圆柱绕流运动与流叠加而成。
14、是驻点。
通过驻点的流线一定是零流线,是否正确?为什么?零流线是。
轮廓线是。
15、描述流体运动的微分方程有、和。
写出它们的表达式。
16、纳维-斯托克斯方程中的速度只能是平均速度,是否正确?为什么?
17、写出总水头和测压管水头的表达式,并说明各项的物理意义。
18、写出总压、全压和势压得表达式,并说明各项的物理意义。
19、简述系统和控制体的定义和特点
二、计算部分 1、已知拉格朗日描述:求速度与加速度的欧拉描述 2、试判断下列流场的描述方式:并转换成另一种描述方式 3、已知用欧拉法表示的流场速度分布规律为: 试求在t=0时刻位于点(a,b)的流体质点的运动轨迹及拉格朗日法表示的速度场 4、粘性流体在半径为R 的直圆管内做定常流动。
设圆管截面(指垂直管轴的平面截面)上⎪⎩⎪⎨⎧==-t t be y ae x ()()⎪⎩⎪⎨⎧+-=+-=-t y t x e
b u e a u 1111⎩⎨⎧+=+=t
y u t x u y x
有两种速度分布,一种是抛物线分布u 1(r),另一种是1/7指数分布u 2(r):
上式中u m1,u m2分别为两种速度分布在管轴上的最大速度。
试求两种速度分布的(1)流量Q 的表达式;(2)截面上的平均速度v 。
5、速度场
求(1)t =2s 时,在(2,4)点的加速度;
(2)是恒定流还是非恒定流;
(3)是均匀流还是非均匀流。
6、速度场u x =a ,u y =bt ,u z =0(a 、b 为常数)
求:(1)流线方程及t =0、1、2时流线图;
(2)迹线方程及t =0时过(0,0)点的迹线
7、直径为1.2m ,长50m 的圆柱体,以90r/min 的角速度绕其轴逆时针旋转,空气流以80km/h 的速度沿与圆柱体轴相垂直的方向绕流圆柱体。
试求升力大小及θ=π,7π /8, 5π /8 , π/2处的压强值和速度值。
8、直径为1.2m ,长50m 的圆柱体,以90r/min 的角速度绕其轴逆时针旋转,空气流以u=40+20y 的剪切流速度沿与圆柱体轴相垂直的方向绕流圆柱体。
试求升力大小及θ=π,7π /8, 5π /8 , π/2处的压强值和速度值。
9、水平设置的输水弯管,转角θ=60o ,直径由d 1=200mm 变为d 2=150mm ,已知转弯前断面的压强p 1=18kN/m 2(相对压强)输水流量Q=0.1m 3/s ,不计水头损失,试求水流对弯管作用力的大小。
10、如图所示,使带有倾斜光滑板的小车逆着射流的方向以速度u 移动,若射流固定不动,射流断面为A,流速为u 0,不计小车于地面的摩擦力,求推动小车所需的功率。
⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭
⎫
⎝⎛-=2111R r u u m 7
1221⎪⎭⎫ ⎝⎛-=R r u u m j t )x y (i t )x y (u ρρρ9664-+-=
习题3-9,习题3-12,3-22,3-23,3-26,3-29,3-30,3-32,3-33,3-34,3-35,3-36,7-1,7-6,7-7,7-8,7-9,8-10。