2015-2016年甘肃省白银市会宁五中八年级(上)数学期中试卷及参考答案
甘肃省 八年级(上)期中数学试卷(含答案)

八年级(上)期中数学试卷一、选择题(本大题共10小题,共30.0分)1.下列长度的各组线段中,能组成三角形的是()A. 6,6,11B. 8,8,16C. 4,5,10D. 6,7,142.如图,某同学把一块三角形的玻璃打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是()A. 带去B. 带去C. 带去D. 带和去3.下列图形中有稳定性的是()A. 正方形B. 长方形C. 直角三角形D. 平行四边形4.一个正多边形每个外角都是30°,则这个多边形边数为()A. 10B. 11C. 12D. 135.下列命题中:(1)形状相同的两个三角形是全等形;(2)在两个全等三角形中,相等的角是对应角,相等的边是对应边;(3)全等三角形对应边上的高、中线及对应角平分线分别相等,其中真命题的个数有()A. 3个B. 2个C. 1个D. 0个6.如图,△ABC≌△DEC,则结论 BC=EC,∠DCA=∠ACE,CD=AC,④∠DCA=∠ECB,其中结论正确的个数是()A. 1个B. 2个C. 3个D. 4个7.如图,在∠AOB的两边上截取AO=BO,OC=OD,连接AD、BC交于点P,连接OP,则图中全等三角形共有()对.A. 2B. 3C. 4D. 58.如图,已知△ABC的六个元素,则下面甲、乙、丙三个三角形中和△ABC全等的图形是()A. 甲和乙B. 乙和丙C. 只有乙D. 只有丙9.一个多边形的内角和比它的外角的和的2倍还大180°,这个多边形的边数是()A. 5B. 6C. 7D. 810.如图,△ABN≌△ACM,AB=AC,BN=CM,∠B=50°,∠ANC=120°,则∠MAC的度数等于()A. B. C. D.二、填空题(本大题共10小题,共30.0分)11.角平分线上的点到______的距离相等.12.已知三角形两边长分别为4和9,则第三边的取值范围是______ .13.如图所示,AC,BD相交于点O,△AOB≌△COD,∠A=∠C,则其它对应角分别为______ ,对应边分别为______ .14.如图示,△ABC中,∠C=90°,AD平分∠BAC,AB=5,CD=2,则△ABD的面积是______.15.图示,点B在AE上,∠CBE=∠DBE,要使△ABC≌△ABD,还需添加一个条件是______(填上适当的一个条件即可)16.如图,AC⊥BD于O,BO=OD,图中共有全等三角形______对.17.已知△ABC≌△A′B′C′,△ABC的周长为12cm,AB=3cm,BC=4cm,则A′C′=______cm.18.三角形三边的比为3:4:5,周长为48,则三角形三边的长分别为______ .19.一个多边形的每一个外角都等于36°,则该多边形的内角和等于______度.20.如图,E点为△ABC的边AC中点,CN∥AB,过E点作直线交AB与M点,交CN于N点,若MB=6cm,CN=4cm,则AB= ______ cm.三、解答题(本大题共7小题,共60.0分)21.尺规作图已知∠AOB,求作∠A′O′B′.使∠AOB=∠A′O′B′.(保留作图痕迹,不写作法)22.已知等腰三角形的周长为13,其中一边长为3,求另外两边长.23.如图,点E、F在BC上,BE=FC,AB=DC,∠B=∠C.求证:∠A=∠D.24.如图,已知AC⊥AB,DB⊥AB,AC=BE,AE=BD,试猜想线段CE与DE的大小与位置关系,并证明你的结论.25.如图,△ABC的∠ABC的外角的平分线BD与∠ACB的外角的平分线CE相交于P.求证:点P到三边AB,BC,CA所在的直线的距离相等.26.如图,CE=CB,CD=CA,∠DCA=∠ECB,求证:DE=AB.27.如图,在△ABC中,AD是△ABC中的角平分线,BD=CD,DE⊥AB,DF⊥AC,请你在图中找出三对全等的三角形,并任选一对进行证明.__________________.答案和解析1.【答案】A【解析】解:A、6,6,11满足三角形三边关系,任意两边之和大于第三边,故此选项正确;B、8,8,16不满足三角形三边关系,8+8=16,故此选项错误;C、4,5,10不满足三角形三边关系,5+4<10,故此选项错误;D、6,7,14不满足三角形三边关系,6+7<14,故此选项错误;故选:A.根据三角形的三边关系进行判断,两条较短的线段长度之和大于第三条线段的长度即可判定这三条线段能构成一个三角形.本题主要考查了三角形的三边关系的运用,三角形两边之和大于第三边,三角形的两边差小于第三边.2.【答案】C【解析】解:A、带①去,仅保留了原三角形的一个角和部分边,不能得到与原来一样的三角形,故A选项错误;B、带②去,仅保留了原三角形的一部分边,也是不能得到与原来一样的三角形,故B选项错误;C、带③去,不但保留了原三角形的两个角还保留了其中一个边,符合ASA 判定,故C选项正确;D、带①和②去,仅保留了原三角形的一个角和部分边,同样不能得到与原来一样的三角形,故D选项错误.故选:C.此题可以采用全等三角形的判定方法以及排除法进行分析,从而确定最后的答案.主要考查学生对全等三角形的判定方法的灵活运用,要求对常用的几种方法熟练掌握.3.【答案】C【解析】解:根据三角形具有稳定性,可得四个选项中只有直角三角形具有稳定性.故选:C.稳定性是三角形的特性.稳定性是三角形的特性,这一点需要记忆.4.【答案】C【解析】解:多边形的外角的个数是360÷30=12,所以多边形的边数是12.故选C.利用任何多边形的外角和是360°即可求出答案.本题主要考查了多边形的外角和定理,已知外角求边数的这种方法是需要熟记的内容.5.【答案】C【解析】解:(1)形状相同、大小相等的两个三角形是全等形,而原说法没有指出大小相等这一点,故(1)错误;(2)在两个全等三角形中,对应角相等,对应边相等,而非相等的角是对应角,相等的边是对应边,故(2)错误;(3)全等三角形对应边上的高、中线及对应角平分线分别相等,故(3)正确.综上可得只有(3)正确.故选:C.根据全等三角形的概念:能够完全重合的图形是全等图形,及全等图形性质:全等图形的对应边、对应角分别相等,分别对每一项进行分析即可得出正确的命题个数.本题考查了全等三角形的概念和全等三角形的性质,在解题时要注意灵活应用全等三角形的性质和定义是本题的关键.6.【答案】C【解析】解:∵△ABC≌△DEC,∴BC=EC,CD=AC,∠DCE=∠ACB,∴∠DCE-∠ACE=∠ACB-∠ACE,即∠DCA=∠BCE,正确的结论有①③④,共3个,故选:C.根据全等三角形对应边相等可得BC=EC,CD=AC,根据全等三角形对应角相等可得∠DCE=∠ACB,再利用等式的性质可得∠DCA=∠ECB.此题主要考查了全等三角形的性质,关键是掌握全等三角形的对应边相等,全等三角形的对应角相等.7.【答案】C【解析】解:∵AO=BO,OC=OD,∠AOB=∠BOA,∴△AOD≌△BOC∴AD=BC,∠A=∠B,AC=BD,∠ACP=∠BDP∴△ACP≌△BDP从而可得CP=DP,∴可得△OCP≌△ODP同理可证得△APO≌△BPO故选C.根据所给条件证明三角形的全等,然后可得出共有几对.本题主要考查全等三角形的证明,属基础题,从已知条件入手,结合全等的判定方法,通过分析推理,对选项一个个进行验证,做到由易到难,不重不漏.8.【答案】B【解析】解:图甲不符合三角形全等的判定定理,即图甲和△ABC不全等;图乙符合SAS定理,即图乙和△ABC全等;图丙符合AAS定理,即图丙和△ABC全等;故选B.全等三角形的判定定理有SAS,ASA,AAS,SSS,根据定理逐个判断即可.本题考查了全等三角形的判定的应用,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS.9.【答案】C【解析】解:多边形的内角和是2×360+180=900度,设这个多边形的边数是n,根据题意得:(n-2)180°=900°,解得n=7,即这个多边形的边数是7.故选C.多边形的外角和是360度,多边形的内角和比它的外角和的2倍还大180°,则多边形的内角和是2×360+180=900度;n边形的内角和是(n-2)180°,则可以设这个多边形的边数是n,这样就可以列出方程(n-2)180°=900°,解之即可.本题考查了多边形的内角和公式和外角和定理.10.【答案】B【解析】解:∵∠ANC=120°,∴∠ANB=180°-120°=60°,∵∠B=50°,∴∠BAN=180°-60°-50°=70°,∵△ABN≌△ACM,∴∠BAN=∠MAC=70°.故选:B.利用三角形内角和定理得出∠BAN的度数,再利用全等三角形的性质得出∠MAC的度数.此题主要考查了全等三角形的性质,得出∠BAN的度数是解题关键.11.【答案】角的两边【解析】解:角平分线上的点到角的两边的距离相等.故答案为:角的两边.根据角平分线的性质解答即可.本题考查了角平分线的性质,是基础题,熟记性质是解题的关键.12.【答案】5<第三边<13【解析】解:根据三角形的三边关系,得第三边大于9-4=5,而小于9+4=13.即:5<第三边<13,故答案为:5<第三边<13.根据三角形的第三边大于两边之差,而小于两边之和求得第三边的取值范围.本题考查了三角形的三边关系,即三角形的第三边大于两边之差,而小于两边之和,此题基础题,比较简单.13.【答案】∠B和∠D,∠AOB和∠COD;OA和OC,OB和OD,AB和CD【解析】解:∵△AOB≌△COD,∠A=∠C,∴A和C、B和D、O和O,分别为对应点,∴对应角为∠B和∠D,∠AOB和∠COD,对应边分别为:OA和OC,OB和OD,AB和CD,故答案为:∠B和∠D,∠AOB和∠COD;OA和OC,OB和OD,AB和CD.由全等且点A和点C对应,可得出答案.本题主要考查全等三角形的对应关系,掌握相等的角为对应角,相等的边为对应边是解题的关键.14.【答案】5【解析】解:作DE⊥AB于E,∵AD平分∠BAC,∠C=90°,DE⊥AB,∴DE=DC=2,∴△ABD的面积=×AB×DE=5,故答案为:5.根据角平分线的性质求出DE,根据三角形的面积公式计算即可.本题考查的是角平分线的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.15.【答案】BC=BD【解析】解:BC=BD,理由是:∵∠CBE=∠DBE,∠CBE+∠ABC=180°,∠DBE+∠ABD=180°,∴∠ABC=∠ABD,在△ABC和△ABD中∴△ABC≌△ABD,故答案为:BC=BD.求出∠ABC=∠ABD,根据全等三角形的判定定理SAS推出即可.本题考查了全等三角形的判定和性质的应用,全等三角形的判定定理有SAS,ASA,AAS,SSS,主要考查学生的推理能力.16.【答案】3【解析】解:①∵AC⊥BD,∴∠AOB=∠AOD=∠BOC=∠DOC,在△AOB和△AOD中,,∴△AOB≌△AOD(SAS),∴AB=AD;②∵在△BOC和△DOC中,,∴△BOC≌△DOC(SAS),∴BC=DC;③∵在△ABC和△ADC中,,∴△ABC≌△ADC(SSS),∴图中共有全等三角形3对.故答案为3.根据三角形全等的性质来判定,在△AOB和△AOD中,AC⊥BD,BO=DO,AO 为公共边,∴△AOB≌△AOD.同样的道理推出△BOC≌△DOC.再由AB=AD,BC=DC,AC为公共边,推出△ABC≌△ADC,故得出有三对全等三角形.本题重点考查了三角形全等的判定定理,普通两个三角形全等共有四个定理,即AAS、ASA、SAS、SSS,本题考查了后两个定理的应用.17.【答案】5【解析】解:∵△ABC的周长为12cm,AB=3cm,BC=4cm,∴AC=12-3-4=5(cm),∵△ABC≌△A′B′C′,∴A′C′=AC=5cm,故答案为:5.由三角形的周长可求得AC=5cm,再利用全等三角形的性质可求得A′C′=AC=5cm.本题主要考查全等三角形的性质,掌握全等三角形的对应边相等、对应角相等是解题的关键.18.【答案】12、16、20【解析】解:∵三角形三边的比为3:4:5,∴可设三角形的三边分别为3x,4x和5x,由题意可知3x+4x+5x=48,解得x=4,∴三角形三边的长分别为12、16、20,故答案为:12、16、20.可设三角形的三边分别为3x,4x和5x,利用周长可求得x的值,则可求得三角形的三边长.本题主要考查三角形的周长,利用三角形的三边之比设出边长,利用三角形的周长得到方程是解题的关键.19.【答案】1440【解析】解:∵任何多边形的外角和等于360°,∴多边形的边数为360°÷36°=10,∴多边形的内角和为(10-2)•180°=1440°.故答案为:1440.任何多边形的外角和等于360°,可求得这个多边形的边数.再根据多边形的内角和等于(n-2)•180°即可求得内角和.本题需仔细分析题意,利用多边形的外角和求出边数,从而解决问题.20.【答案】10【解析】解:∵CN∥AB,∴∠NCE=∠MAE,又∵E是AC中点,∴AE=CE,而∠AEM=∠CEN,△CHE≌△MAE,∴AM=CN,∴AB=AM+BM=CN+BM=4+6=10.先证△CNE≌△AME,得出AM=CN,那么就可求AB的长.本题利用了三角形全等的判定和性质.21.【答案】解:如图所示,∠A′O′B′就是所要求作的角..【解析】先作射线O′B′,然后以点O为圆心,以任意长为半径,画弧分别与OA、OB相交于点E、F,以O′为圆心,以相同的长度为半径画弧与OB′相交于点E′,再以点E′为圆心,以EF的长度为半径画弧,与前弧相交于点F′,过点O′、F′作射OA′,则∠A′O′B′即为所求.本题主要考查了作一个角等于已知角,是基本作图,需熟练掌握.22.【答案】解:当腰为3时,另一腰也为3,则底为13-2×3=7,∵3+3=6<7,∴这样的三边不能构成三角形.当底为3时,腰为(13-3)÷2=5,∴以3,5,5为边能构成三角形.故另外两边长为5,5.【解析】由于长为3的边可能为腰,也可能为底边,故应分两种情况讨论.本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键23.【答案】证明:∵BE=FC,∴BE+EF=CF+EF,即BF=CE;又∵AB=DC,∠B=∠C,∴△ABF≌△DCE(SAS),∴∠A=∠D.【解析】可通过证△ABF≌△DCE,来得出∠A=∠D的结论.此题考查简单的角相等,可以通过全等三角形来证明,判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.24.【答案】解:CE=DE,CE⊥DE,理由如下:∵AC⊥AB,DB⊥AB,AC=BE,AE=BD,∴△CAE≌△EBD.∴∠CEA=∠D.∵∠D+∠DEB=90°,∴∠CEA+∠DEB=90°.即线段CE与DE的大小与位置关系为相等且垂直.【解析】先利用HL判定△CAE≌△EBD,从而得出全等三角形的对应角相等,再利用角与角之间的关系,可以得到线段CE与DE的大小与位置关系为相等且垂直.此题主要考查学生对全等三角形的性质及全等三角形的判定方法的掌握情况.判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意做题格式.25.【答案】证明:如图,过点P作PF⊥BC于F,PG⊥AB于G,PH⊥AC于H,∵△ABC的∠ABC的外角的平分线BD与∠ACB的外角的平分线CE相交于P,∴PF=PG,PG=PH,∴PF=PG=PH,∴点P到三边AB、BC、CA所在直线的距离相等.【解析】过点P作PF⊥BC于F,PG⊥AB于G,PH⊥AC于H,然后根据角平分线上的点到角的两边的距离相等可得PF=PG=PH.本题考查了角平分线的性质,掌握角平分线上的点到角的两边的距离相等的性质熟记性质是解题的关键.26.【答案】证明:∵∠DCA=∠ECB,∴∠DCA+∠ACE=∠BCE+∠ACE,∴∠DCE=∠ACB,∵在△DCE和△ACB中,∴△DCE≌△ACB,∴DE=AB.【解析】求出∠DCE=∠ACB,根据SAS证△DCE≌△ACB,根据全等三角形的性质即可推出答案.本题考查了全等三角形的性质和判定的应用,主要考查学生能否运用全等三角形的性质和判定进行推理,题目比较典型,难度适中.27.【答案】△ABD≌△ACD;△BDE≌△CDF;△ADE≌△ADF【解析】解:①△ABD≌△ACD,②△BDE≌△CDF,③△ADE≌△ADF;故答案为:△ABD≌△ACD,△BDE≌△CDF,△ADE≌△ADF;∵AD是△ABC中的角平分线,DE⊥AB,DF⊥AC,∴∠AED=∠AFD=90°,DE=DF,在Rt△AED与Rt△AFD中,,∴Rt△AED≌Rt△AFD.根据角平分线的性质得到DE=DF,然后根据全等三角形的判定定理即可得到结论.本题考查了全等三角形的判定、角平分线的性质,解题的关键是:(1)结合已知找出3对全等的三角形;(2)找出满足SAS的相等的边角.本题属于基础题,难度不大,解决该题型题目时,根据等腰三角形的性质找出相等的边角关系是关键.。
白银2015-2016学年八年级上月考数学考试卷(11月)含解析

2.若 a+b=3,a﹣b=7,则 ab=( ) A.﹣10 B.﹣40 C.10 D.40 【考点】完全平方公式. 【专题】计算题. 【分析】联立已知两方程求出 a 与 b 的值,即可求出 ab的值.
【解答】解:联立得:
,
解得:a=5,b=﹣2, 则 ab=﹣10. 故选 A.
第 5 页(共 20 页)
A.a>1 B.a<1 C.a>0 D.a<0 4.已知两数 x,y 之和是 10,x 比 y 的 3 倍大 2,则下面所列方程组正确的是( )
A.
B.
C.
D.
5.方程 2x+y=8的正整数解的个数是( ) A.4 B.3 C.2 D.1 6.如图,一次函数图象经过点 A,且与正比例函数 y=﹣x 的图象交于点 B,则该一次函数的表达式 为( )
A.x﹣5y=6z B.5xy+3=0 C. +2y=3 D.x=
【考点】二元一次方程的定义. 【分析】根据二元一次方程的定义:方程中只含有 2 个未知数;含未知数项的最高次数为一次;方 程是整式方程,可得答案. 【解答】解:A、是三元一次方程,故 A 错误; B、是二元二次方程,故 B 错误; C、是分式方程,故 C 错误; D、是二元一次方程,故 D 正确; 故选:D. 【点评】本题考查了二元一次方程,二元一次方程必须符合以下三个条件:方程中只含有 2 个未知 数;含未知数项的最高次数为一次;方程是整式方程.
2015-2016 学年甘肃省白银八年级(上)月考数学考试卷(11 月份)
一、选择题 1.下列方程中,是二元一次方程的是( ) A.x﹣5y=6z B.5xy+3=0 C. +2y=3 D.x= 2.若 a+b=3,a﹣b=7,则 ab=( ) A.﹣10 B.﹣40 C.10 D.40 3.已知一次函数 y=(a﹣1)x+b的图象如图所示,那么 a 的取值范围是( )
白银xx中学八级上期中数学试卷含答案解析

2015-2016学年甘肃省白银XX中学八年级(上)期中数学试卷一、选择题(每小题3分,共30分)1.下列各组数中,不能构成直角三角形的一组是()A.6,8,1 B.1,2,C.3,4,5 D.1,2,2.在﹣1.414,,π,2+,3.212212221…,3.14这些数中,无理数的个数为()A.5 B.2 C.3 D.43.已知,那么a=()A.0 B.0或1 C.0或﹣1 D.0,﹣1或14.已知a>0,b<0,那么点P(a,b)在()A.第一象限 B.第二象限 C.第三象限 D.第四象限5.一支蜡烛长20厘米,点燃后每小时燃烧5厘米,燃烧时剩下的高度h(厘米)与燃烧时间t(时)的函数关系的图象是()A.B.C.D.6.直角坐标系中,点A(﹣3,4)与点B(3,﹣4)关于()A.原点中心对称 B.y轴轴对称C.x轴轴对称D.以上都不对7.如果点P(m+3,m+1)在x轴上,则点P的坐标为()A.(0,2)B.(2,0)C.(4,0)D.(0,﹣4)8.下列说法中,不正确的是()A.3是(﹣3)2的算术平方根B.±3是(﹣3)2的平方根C.﹣3是(﹣3)2的算术平方根D.﹣3是(﹣3)3的立方根9.点P1(x1,y1),点P2(x2,y2)是一次函数y=﹣4x+3图象上的两个点,且x1<x2,则y1与y2的大小关系是()A.y1>y2B.y1>y2>0 C.y1<y2D.y1=y210.函数的图象经过(1,﹣1),则函数y=kx+2的图象是()A.B.C.D.二、填空(每题3分,共30分)11.如果2a﹣18=0,那么a的算术平方根是.12.一个三角形三边满足(a+b)2﹣c2=2ab,则这个三角形是三角形.13.观察分析下列数据,按规律填空:,2,,2,,…,(第n个数).14.图象经过点A(﹣2,5)的正比例函数的关系式为.15.如果将电影票上“6排3号”简记为(6,3),那么“10排5号”可表示为.16.点P(﹣4,3)到x轴的距离是,到y轴的距离是,到原点的距离是.17.有一个长为12cm,宽为4cm,高为3cm的长方形铁盒,在其内部要放一根笔直的铅笔,则铅笔最长是.18.直线y=﹣2x﹣4与两坐标轴围成的三角形面积是.19.已知点A(2,y)与点B(x,﹣3)关于y轴对称,则xy=.20.函数y=﹣x+2的图象不经过象限.三、解答题(共20分)21.计算下列各题(1)+﹣4(2)|﹣2|﹣()0+(3)(+)(﹣)﹣(4)(﹣2)2.四、解答题(共40分)22.如图,一高层住宅发生火灾,消防车立即赶到距大厦9米处(车尾到大厦墙面),升起云梯到火灾窗口,已知云梯长15米,云梯底部距地面2米,问:发生火灾的住户窗口距离地面多高?23.△ABC在直角坐标系内的位置如图所示.(1)分别写出A、B、C的坐标;(2)请在这个坐标系内画出△A1B1C1,使△A1B1C1与△ABC关于y轴对称,并写出B1的坐标;(3)请在这个坐标系内画出△A2B2C2,使△A2B2C2与△ABC关于原点对称,并写出A2的坐标.24.当m为何值时,函数y=﹣(m﹣2)+(m﹣4)是一次函数.25.汽车油箱中的余油量Q(升)是它行驶的时间t(小时)的一次函数.某天该汽车外出时,油箱中余油量与行驶时间的变化关系如图:(1)根据图象,求油箱中的余油Q与行驶时间t的函数关系式,并写出自变量t的取值范围;(2)从开始算起,如果汽车每小时行驶50千米,当油箱中余油20升时,该汽车行驶了多少千米?26.A、B两辆汽车同时从相距330千米的甲、乙两地相向而行,s(千米)表示汽车与甲地的距离,t(分)表示汽车行驶的时间,如图,l1,l2分别表示两辆汽车的s与t的关系.(1)l1表示哪辆汽车到甲地的距离与行驶时间的关系?(2)汽车B的速度是多少?(3)求l1、l2分别表示的两辆汽车的s与t的关系式.(4)行驶多长时间后,A、B两车相遇?五、附加题27.小明的生日快要到了,小军决定送给他一件小礼物,他告诉小明,他已将礼物藏在学校体育场内.具体地点忘了,只知道坐标是(6,6),还知道体育场内的两个标志点的坐标分别是A(﹣2,﹣3)和B(2,﹣3),小明怎样才能找到小军送他的礼物?28.阅读下列解题过程:已知a,b,c为△ABC的三边长,且满足a2c2﹣b2c2=a4﹣b4,试判断△ABC的形状.解:∵a2c2﹣b2c2=a4﹣b4,①∴c2(a2﹣b2)=(a2+b2)(a2﹣b2),②∴c2=a2+b2,③∴△ABC为直角三角形.④回答下列问题:(1)在上述解题过程中,从哪一步开始出现错误?该步的序号为:;(2)错误的原因为:;(3)请你将正确的解答过程写下来.29.直线OC、BC的函数关系式分别是y1=x和y2=2x+6,动点P(x,0)在OB上运动(0<x<3)过点P作直线m 与x轴垂直.(1)求点C的坐标,并回答当x取何值时y1>y2?(2)设△COB中位于直线m左侧部分的面积为s,求出s与x之间函数关系式.2015-2016学年甘肃省白银XX中学八年级(上)期中数学试卷参考答案与试题解析一、选择题(每小题3分,共30分)1.下列各组数中,不能构成直角三角形的一组是()A.6,8,1 B.1,2,C.3,4,5 D.1,2,【考点】勾股定理的逆定理.【分析】求出两短边的平方和、长边的平方,看看是否相等即可.【解答】解:A、∵12+62≠82,∴以6、8、1不能组成直角三角形,故本选项正确;B、∵12+()2=22,∴以1、2、能组成直角三角形,故本选项错误;C、∵32+42=52,∴以3、4、5能组成直角三角形,故本选项错误;D、∵12+22=()2,∴以1、2、不能组成直角三角形,故本选项错误;故选A.2.在﹣1.414,,π,2+,3.212212221…,3.14这些数中,无理数的个数为()A.5 B.2 C.3 D.4【考点】无理数.【分析】根据无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数,结合所给数据进行判断即可.【解答】解:所给数据中无理数有:,π,2+,3.212212221…,共4个.故选D.3.已知,那么a=()A.0 B.0或1 C.0或﹣1 D.0,﹣1或1【考点】算术平方根.【分析】由于已知,由此得到a的算术平方根就是自己本身,根据“0的平方根是0,0的算术平方根也是0,1的算术平方根也是1”即可求解.【解答】解:∵=a,∴a=0或1.故选B.4.已知a>0,b<0,那么点P(a,b)在()A.第一象限 B.第二象限 C.第三象限 D.第四象限【考点】点的坐标.【分析】根据各象限点的坐标特点进行判断即可.【解答】解:∵a>0,b<0,∴点P(a,b)在第四象限.故选D.5.一支蜡烛长20厘米,点燃后每小时燃烧5厘米,燃烧时剩下的高度h(厘米)与燃烧时间t(时)的函数关系的图象是()A.B.C.D.【考点】一次函数的应用;一次函数的图象.【分析】随着时间的增多,蜡烛的高度就越来越小,由于时间和高度都为正值,所以函数图象只能在第一象限,由此即可求出答案.【解答】解:设蜡烛点燃后剩下h厘米时,燃烧了t小时,则h与t的关系是为h=20﹣5t,是一次函数图象,即t越大,h越小,符合此条件的只有D.故选D.6.直角坐标系中,点A(﹣3,4)与点B(3,﹣4)关于()A.原点中心对称 B.y轴轴对称C.x轴轴对称D.以上都不对【考点】关于原点对称的点的坐标;关于x轴、y轴对称的点的坐标.【分析】观察点A与点B的坐标,依据关于原点对称的点,横坐标与纵坐标都互为相反数可得答案.【解答】解:根据题意,易得点A(﹣3,4)与点B(3,﹣4)的纵横坐标互为相反数,则这两点关于原点中心对称.故选A.7.如果点P(m+3,m+1)在x轴上,则点P的坐标为()A.(0,2)B.(2,0)C.(4,0)D.(0,﹣4)【考点】点的坐标.【分析】根据点P在x轴上,即y=0,可得出m的值,从而得出点P的坐标.【解答】解:∵点P(m+3,m+1)在x轴上,∴y=0,∴m+1=0,解得:m=﹣1,∴m+3=﹣1+3=2,∴点P的坐标为(2,0).故选:B.8.下列说法中,不正确的是()A.3是(﹣3)2的算术平方根B.±3是(﹣3)2的平方根C.﹣3是(﹣3)2的算术平方根D.﹣3是(﹣3)3的立方根【考点】立方根;平方根;算术平方根.【分析】根据平方根、算术平方根、立方根的含义和求法,逐项判断即可.【解答】解:∵3是(﹣3)2的算术平方根,∴选项A正确;∵±3是(﹣3)2的平方根,∴选项B正确;∵3是(﹣3)2的算术平方根,∴选项C不正确;∵﹣3是(﹣3)3的立方根,∴选项D正确.故选:C.9.点P1(x1,y1),点P2(x2,y2)是一次函数y=﹣4x+3图象上的两个点,且x1<x2,则y1与y2的大小关系是()A.y1>y2B.y1>y2>0 C.y1<y2D.y1=y2【考点】一次函数图象上点的坐标特征.【分析】根据一次函数y=kx+b(k≠0,k,b为常数),当k<0时,y随x的增大而减小解答即可.【解答】解:根据题意,k=﹣4<0,y随x的增大而减小,因为x1<x2,所以y1>y2.故选A.10.函数的图象经过(1,﹣1),则函数y=kx+2的图象是()A.B.C.D.【考点】反比例函数图象上点的坐标特征;一次函数的图象.【分析】易得k的符号为负,则一次函数y=kx+2的图象应经过一二四象限.【解答】解:∵函数的图象经过(1,﹣1),∴k=1×(﹣1)=﹣1,∴一次函数y=kx+2的图象应经过二四象限,∵常数项大于0,∴一次函数y=kx+2的图象应经过一二四象限,故选C.二、填空(每题3分,共30分)11.如果2a﹣18=0,那么a的算术平方根是3.【考点】算术平方根.【分析】先根据2a﹣18=0求得a=9,再根据算术平方根的定义即可求a的算术平方根.【解答】解:∵2a﹣18=0,∴a=9,∴a的算术平方根是3.12.一个三角形三边满足(a+b)2﹣c2=2ab,则这个三角形是直角三角形.【考点】勾股定理的逆定理.【分析】化简等式,可得a2+b2=c2,由勾股定理逆定理,进而可得其为直角三角形.【解答】解:(a+b)2﹣c2=2ab,即a2+b2+2ab﹣c2=2ab,所以a2+b2=c2,则这个三角形为直角三角形.故答案为:直角.13.观察分析下列数据,按规律填空:,2,,2,,…,(第n个数).【考点】规律型:数字的变化类.【分析】第一数为;第二个数为;第3个数为,那么第n个数为.【解答】解:第n个数为.14.图象经过点A(﹣2,5)的正比例函数的关系式为y=﹣2.5x.【考点】待定系数法求正比例函数解析式.【分析】本题可设所求正比例函数的关系式为y=kx,然后把点A(﹣2,5)的坐标代入,从而求得k的值,进而求出解析式.【解答】解:设图象经过点A(﹣2,5)的正比例函数的关系式为y=kx则有5=﹣2k即:k=﹣2.5∴图象经过点A(﹣2,6)的正比例函数的关系式为y=﹣2.5x.故答案为y=﹣2.5x.15.如果将电影票上“6排3号”简记为(6,3),那么“10排5号”可表示为(10,5).【考点】坐标确定位置.【分析】根据第一个数表示排数,第二个数表示号数写出即可.【解答】解:∵“6排3号”简记为(6,3),∴“10排5号”可表示为(10,5).故答案为:(10,5).16.点P(﹣4,3)到x轴的距离是3,到y轴的距离是4,到原点的距离是5.【考点】点的坐标;两点间的距离公式.【分析】求得P的纵坐标绝对值即可求得P点到x轴的距离,求得P的横坐标绝对值即可求得P点到y轴的距离,求点OP的长度可得出到原点的距离.【解答】解:∵点P坐标为(﹣4,3),∴到x轴的距离是:|3|=3;到y轴的距离:|﹣4|=4,到原点的距离为:=5.故答案为:3、4、5.17.有一个长为12cm,宽为4cm,高为3cm的长方形铁盒,在其内部要放一根笔直的铅笔,则铅笔最长是13cm.【考点】勾股定理的应用.【分析】本题根据题目中所给的信息,可以构造出直角三角形,再利用勾股定理解答即可.【解答】解:铅笔的长为==13cm.故答案为:13cm.18.直线y=﹣2x﹣4与两坐标轴围成的三角形面积是4.【分析】首先求出直线y=﹣2x﹣4与x轴、y轴的交点的坐标,然后根据三角形的面积公式,得出结果.【解答】解:令x=0,则y=﹣4,令y=0,则x=﹣2,故直线y=﹣2x﹣4与两坐标轴的交点分别为(0,﹣4)、(﹣2,0),故直线y=﹣2x﹣4与两坐标轴围成的三角形面积=×|﹣4|×|﹣2|=4.故答案为4.19.已知点A(2,y)与点B(x,﹣3)关于y轴对称,则xy=6.【考点】关于x轴、y轴对称的点的坐标.【分析】根据关于y轴对称点的坐标特点:横坐标互为相反数,纵坐标不变,可得到x、y的值,进而计算出答案.【解答】解:∵点A(2,y)与点B(x,﹣3)关于y轴对称,∴x=﹣2,y=﹣3,∴xy=6,故答案为:6.20.函数y=﹣x+2的图象不经过第三象限.【考点】一次函数的性质.【分析】利用两点法画出函数图象可得出答案.【解答】解:在y=﹣x+2中,令y=0可得﹣x+2=0,解得x=3,令x=0可得y=2,∴函数图象与x轴交于点(3,0),与y轴交于点(0,2),其图象如图所示,∴函数图象不经过第三象限,故答案为:第三.三、解答题(共20分)21.计算下列各题(1)+﹣4(2)|﹣2|﹣()0+(3)(+)(﹣)﹣(4)(﹣2)2.【考点】实数的运算;零指数幂.(2)原式利用绝对值的代数意义,零指数幂法则,以及分母有理化计算即可得到结果;(3)原式利用平方差公式,以及算术平方根定义计算即可得到结果;(4)原式利用完全平方公式化简即可得到结果.【解答】解:(1)原式=3+﹣2=2;(2)原式=2﹣1+=3﹣1;(3)原式=3﹣2﹣5=﹣4;(4)原式=3﹣4+20=23﹣4.四、解答题(共40分)22.如图,一高层住宅发生火灾,消防车立即赶到距大厦9米处(车尾到大厦墙面),升起云梯到火灾窗口,已知云梯长15米,云梯底部距地面2米,问:发生火灾的住户窗口距离地面多高?【考点】勾股定理的应用.【分析】根据AB和AC的长度,构造直角三角形,根据勾股定理就可求出直角边BC的长.【解答】解:∵AC⊥BC,∴∠ACB=90°;根据勾股定理,得BC===12,∴BD=12+2=14(米);答:发生火灾的住户窗口距离地面14米.23.△ABC在直角坐标系内的位置如图所示.(1)分别写出A、B、C的坐标;(2)请在这个坐标系内画出△A1B1C1,使△A1B1C1与△ABC关于y轴对称,并写出B1的坐标;(3)请在这个坐标系内画出△A2B2C2,使△A2B2C2与△ABC关于原点对称,并写出A2的坐标.【考点】作图-旋转变换;作图-轴对称变换.【分析】(1)观察平面直角坐标系,根据点与坐标系的关系,即可求得A、B、C的坐标;(3)根据关于原点对称的图形的特点,首先求得各对称点的坐标,继而画出△A2B2C2.【解答】解:(1)A(0,3);B(﹣4,4);C(﹣2,1);(2)如图:B1的坐标为:(4,4);(3)如图:A2(0,﹣3).24.当m为何值时,函数y=﹣(m﹣2)+(m﹣4)是一次函数.【考点】一次函数的定义.【分析】根据一次函数的定义,自变量的次数为1列方程求出m的值,再根据比例系数k≠0求解得到m≠2,从而得解.【解答】解:由题意得,m2﹣3=1且m﹣2≠0,解得m=±2且m≠2,所以,m=﹣2.25.汽车油箱中的余油量Q(升)是它行驶的时间t(小时)的一次函数.某天该汽车外出时,油箱中余油量与行驶时间的变化关系如图:(1)根据图象,求油箱中的余油Q与行驶时间t的函数关系式,并写出自变量t的取值范围;(2)从开始算起,如果汽车每小时行驶50千米,当油箱中余油20升时,该汽车行驶了多少千米?【考点】一次函数的应用.【分析】(1)根据函数图象可以设出函数的解析式,从而可以求出油箱中的余油Q与行驶时间t的函数关系式,并写出自变量t的取值范围;(2)将Q=20代入(1)中的函数解析式,从而可以求得t的值,进而求得该汽车行驶的路程.【解答】解:(1)设油箱中的余油Q与行驶时间t的函数关系式是:Q=kt+b,∴Q=﹣5t+60,当Q=0时,t=12,即油箱中的余油Q与行驶时间t的函数关系式是:Q=﹣5t+60(0≤t≤12);(2)当Q=20时,20=﹣5t+60,解得,t=8,50×8=400(千米),即油箱中余油20升时,该汽车行驶了400千米.26.A、B两辆汽车同时从相距330千米的甲、乙两地相向而行,s(千米)表示汽车与甲地的距离,t(分)表示汽车行驶的时间,如图,l1,l2分别表示两辆汽车的s与t的关系.(1)l1表示哪辆汽车到甲地的距离与行驶时间的关系?(2)汽车B的速度是多少?(3)求l1、l2分别表示的两辆汽车的s与t的关系式.(4)行驶多长时间后,A、B两车相遇?【考点】一次函数的应用.【分析】(1)根据题意可以得到l1表示哪辆汽车到甲地的距离与行驶时间的关系;(2)根据函数图象可以得到汽车B的速度;(3)根据图象可以设出l1、l2的解析式,由函数图象上的点可以求得它们的解析式;(4)将(3)中的两个解析式联立方程组即可解答本题.【解答】解:(1)由题意和函数图象可知,l1表示汽车B到甲地的距离与行驶时间的关系;(2)由图象可得,汽车B的速度为:÷=90千米/时;(3)设l1对应的函数解析式为s=kt+b,得,即l1对应的函数解析式为s=﹣1.5t+330,设l2对应的函数解析式为s=mt,60m=60,得m=1,即l2对应的函数解析式为s=t;(4)由题意可得,,即行驶132分钟后,A、B两车相遇.五、附加题27.小明的生日快要到了,小军决定送给他一件小礼物,他告诉小明,他已将礼物藏在学校体育场内.具体地点忘了,只知道坐标是(6,6),还知道体育场内的两个标志点的坐标分别是A(﹣2,﹣3)和B(2,﹣3),小明怎样才能找到小军送他的礼物?【考点】坐标确定位置.【分析】先根据点A、B的坐标画出直角坐标系,然后根据直角坐标系由点B到点C的方法决定寻找的方向和路径.【解答】解:根据题意画出直角坐标系,C点坐标为(6,6),所以从B点出发,沿AB方向走4个单位,然后左转后走9个单位即可找到小军送他的礼物.28.阅读下列解题过程:已知a,b,c为△ABC的三边长,且满足a2c2﹣b2c2=a4﹣b4,试判断△ABC的形状.解:∵a2c2﹣b2c2=a4﹣b4,①∴c2(a2﹣b2)=(a2+b2)(a2﹣b2),②∴c2=a2+b2,③∴△ABC为直角三角形.④回答下列问题:(1)在上述解题过程中,从哪一步开始出现错误?该步的序号为:③;(2)错误的原因为:除式可能为零;(3)请你将正确的解答过程写下来.【考点】因式分解的应用.【分析】(1)(2)等式两边都除以a2﹣b2,而a2﹣b2的值可能为零,由等式的基本性质,等式两边都乘以或除以同一个不为0的整式,等式仍然成立.(3)根据等式的基本性质和勾股定理,分情况加以讨论.【解答】解:(1)③;(2)除式可能为零;(3)∵a2c2﹣b2c2=a4﹣b4,∴c2(a2﹣b2)=(a2+b2)(a2﹣b2),∴a2﹣b2=0或c2=a2+b2,当a2﹣b2=0时,a=b;当c2=a2+b2时,∠C=90°,∴△ABC是等腰三角形或直角三角形.故答案是③,除式可能为零.29.直线OC、BC的函数关系式分别是y1=x和y2=2x+6,动点P(x,0)在OB上运动(0<x<3)过点P作直线m 与x轴垂直.(1)求点C的坐标,并回答当x取何值时y1>y2?(2)设△COB中位于直线m左侧部分的面积为s,求出s与x之间函数关系式.【考点】一次函数与一元一次不等式.【分析】(1)根据题意列出二元一次方程组,求出点C的坐标,结合图形求出y1>y2时x的取值范围;(2)求出点B的坐标,根据三角形的面积公式解答.【解答】解:(1)由题意得,x=2x+6,解得:x=﹣6,即可得点C的坐标为(﹣6,﹣6);∵y1>y2,即x>2x+6,解得:x<﹣6;(2)y2=2x+6中当y=0时,x=﹣3,则点B的坐标为(﹣3,0),△COB中位于直线m左侧部分的面积为:s=×3×(2x+6)=3x+9.2016年12月8日。
白银五中-八年级上期中数学试卷含答案解析.doc

2016-2017学年甘肃省白银五中八年级(上)期中数学试卷一、选择题1.下列各式中计算正确的是()A.B.C.D.2.根据下列表述,能确定具体位置的是()A.某电影院2排 B.大桥南路C.北偏东30°D.东经118°,北纬40°3.如图,AB∥CD,∠A+∠E=75°,则∠C为()A.60° B.65° C.75° D.80°4.已知正比例函数y=kx(k≠0)的函数值y随x的增大而增大,则一次函数y=kx+k的图象大致是()A.B.C.D.5.下列命题是真命题的是()A.同旁内角互补B.直角三角形的两锐角互余C.三角形的一个外角等于它的两个内角之和D.三角形的一个外角大于内角6.每年的4月23日是“世界读书日”.某中学为了了解八年级学生的读书情况,随机调查了50名学生的册数,统计数据如表所示:则这50名学生读数册数的众数、中位数是()A.3,3 B.3,2 C.2,3 D.2,27.对于一次函数y=x+6,下列结论错误的是()A.函数值随自变量增大而增大B.函数图象与两坐标轴围成的三角形面积为18C.函数图象不经过第四象限D.函数图象与x轴交点坐标是(0,﹣6)8.我国古代数学家赵爽的“勾股方圆图”是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形(如图所示),如果大正方形的面积是25,小正方形的面积是1,直角三角形的两直角边分别是a和b,那么(a+b)2的值为()A.49 B.25 C.13 D.19.在平面直角坐标系中,已知点P的坐标是(﹣1,﹣2),则点P关于x轴对称的点的坐标是()A.(﹣1,2)B.(1,﹣2)C.(1,2) D.(2,1)10.如图,AB∥EF,∠C=90°,则α、β、γ的关系为()A.β=α+γ B.α+β+γ=180°C.β+γ﹣α=90°D.α+β﹣γ=90°二、填空题11. 25的算术平方根是.12.化简:×= .13.数据1,0,﹣3,6,3,2,﹣2的平均数是,方差是.14.如图,一个宽度相等的纸条按如图所示方法折叠一下,则∠1= 度.15.已知直角三角形两边的长分别为3cm,4cm,则以第三边为边长的正方形的面积为.16.某水池有水15m3,现打开进水管进水,进水速度5m3/h;xh后这个水池内有水y m3,则y关于x的关系式为.17.命题“同位角相等,两直线平行”中,条件是,结论是18.如果a、b同号,则点P(a,b)在象限.三、计算题:19.计算:①(﹣)②(﹣2)×﹣6③解方程组:④⑤已知和都是方程ax﹣y=b的解,求a与b的值.⑥计算:﹣(π﹣3)0﹣2+﹣.20.如图所示,BF∥DE,∠1=∠2,求证:GF∥BC.21.已知y是x的一次函数,且当x=8时,y=15:当x=﹣10时,y=﹣3,求:(1)这个一次函数的解析式;(2)当y=﹣2时,求x的值.22.如图,已知DE∥BC,CD是∠ACB的平分线,∠B=70°,∠ACB=50°,求∠EDC和∠BDC的度数.23.某中学为了绿化校园,计划购买一批榕树和香樟树,经市场调查榕树的单价比香樟树少20元,购买3棵榕树和2棵香樟树共需340元.请问榕树和香樟树的单价各多少?24.一个零件的形状如图所示,工人师傅按规定做得AB=3,BC=4,AC=5,CD=12,AD=13,假如这是一块钢板,你能帮工人师傅计算一下这块钢板的面积吗?25.了解学生零花钱的使用情况,校团委随机调查了本校部分学生每人一周的零花钱数额,并绘制了如图甲、乙所示的两个统计图(部分未完成).请根据图中信息,回答下列问题:(1)校团委随机调查了多少学生?请你补全条形统计图;(2)表示“50元”的扇形的圆心角是多少度?被调查的学生每人一周零花钱数的中位数是多少元?(3)四川雅安地震后,全校1000名学生每人自发地捐出一周零花钱的一半,以支援灾区建设.请估算全校学生共捐款多少元?26.一次函数的图象与x轴、y轴分别交于点A(8,0)和点B(0,6).(1)确定此一次函数的解析式.(2)求坐标原点O到直线AB的距离.(3)点P是线段AB上的一个动点,过点P作PM垂直于x轴于M,作PN垂直于y轴于N,记L=PM+PN,问L是否存在最大值和最小值?若存在,求出此时P点到原点O的距离,若不存在请说明理由.2016-2017学年甘肃省白银五中八年级(上)期中数学试卷参考答案与试题解析一、选择题1.下列各式中计算正确的是()A.B.C.D.【考点】立方根;算术平方根.【分析】根据算术平方根和立方根的概念计算即可求解.【解答】解:A、=9,故选项错误;B、=5,故选项错误;C、=﹣1,故选项正确;D、(﹣)2=2,故选项错误.故选:C.【点评】本题考查了算术平方根和立方根的概念.算术平方根的概念:一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a的算术平方根.立方根的性质:一个正数的立方根式正数,一个负数的立方根是负数,0的立方根式0.2.根据下列表述,能确定具体位置的是()A.某电影院2排 B.大桥南路C.北偏东30°D.东经118°,北纬40°【考点】坐标确定位置.【分析】根据坐标的定义,确定位置需要两个数据对各选项分析判断利用排除法求解.【解答】解:A、某电影院2排,不能确定具体位置,故本选项错误;B、大桥南路,不能确定具体位置,故本选项错误;C、北偏东30°,不能确定具体位置,故本选项错误;D、东经118°,北纬40°,能确定具体位置,故本选项正确.故选D.【点评】本题考查了坐标确定位置,理解确定坐标的两个数是解题的关键.3.如图,AB∥CD,∠A+∠E=75°,则∠C为()A.60° B.65° C.75° D.80°【考点】平行线的性质.【分析】根据三角形外角性质求出∠EOB,根据平行线性质得出∠C=∠EOB,代入即可得出答案.【解答】解:∵∠A+∠E=75°,∴∠EOB=∠A+∠E=75°,∵AB∥CD,∴∠C=∠EOB=75°,故选C.【点评】本题考查了平行线性质和三角形外角性质的应用,关键是得出∠C=∠EOB和求出∠EOB的度数.4.已知正比例函数y=kx(k≠0)的函数值y随x的增大而增大,则一次函数y=kx+k的图象大致是()A.B.C.D.【考点】一次函数的图象;正比例函数的性质.【分析】先根据正比例函数y=kx的函数值y随x的增大而增大判断出k的符号,再根据一次函数的性质即可得出结论.【解答】解:∵正比例函数y=kx的函数值y随x的增大而增大,∴k>0,∵b=k>0,∴一次函数y=kx+k的图象经过一、二、三象限.故选A.【点评】本题考查的是一次函数的图象与系数的关系,即一次函数y=kx+b(k≠0)中,当k>0,b>0时函数的图象在一、二、三象限.5.下列命题是真命题的是()A.同旁内角互补B.直角三角形的两锐角互余C.三角形的一个外角等于它的两个内角之和D.三角形的一个外角大于内角【考点】命题与定理.【分析】分别根据平行线的性质、直角三角形的性质、三角形的外角分别对每一项进行分析即可.【解答】解:A.两直线平行,同旁内角互补,故本选项错误,是假命题,B.直角三角形的两锐角互余,正确,是真命题,C.三角形的一个外角等于与它不相邻的两个内角之和,故本选项错误,是假命题,D.三角形的一个外角大于与它不相邻的内角,故本选项错误,是假命题,故选:B.【点评】此题考查了命题与定理,用到的知识点是平行线的性质、直角三角形的性质、三角形的外角,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.6.每年的4月23日是“世界读书日”.某中学为了了解八年级学生的读书情况,随机调查了50名学生的册数,统计数据如表所示:则这50名学生读数册数的众数、中位数是()A.3,3 B.3,2 C.2,3 D.2,2【考点】众数;中位数.【分析】在这组样本数据中,3出现的次数最多,所以求出了众数,将这组样本数据按从小到大的顺序排列,其中处于中间的两个数都是2,从而求出中位数是2;【解答】解:∵这组样本数据中,3出现了17次,出现的次数最多,∴这组数据的众数是3.∵将这组样本数据按从小到大的顺序排列,其中处于中间的两个数都是2,有=2,∴这组数据的中位数为2;故选B.【点评】本题考查的知识点有:用样本估计总体、众数以及中位数的知识,解题的关键是牢记概念及公式.7.对于一次函数y=x+6,下列结论错误的是()A.函数值随自变量增大而增大B.函数图象与两坐标轴围成的三角形面积为18C.函数图象不经过第四象限D.函数图象与x轴交点坐标是(0,﹣6)【考点】一次函数的性质.【分析】分别根据一次函数的图象与系数的关系、一次函数图象上点的坐标特点对各选项进行逐一分析即可.【解答】解:A、∵一次函数y=x+6中,k=1>0,∴函数值随自变量增大而增大,故本选项正确;B、∵一次函数y=x+6与两坐标轴的交点分别为(0,6),(﹣6,0),∴函数图象与两坐标轴围成的三角形面积=×6×6=18,故本选项正确;C、∵一次函数y=x+6中,k=1>0,b=6>0,∴函数图象不经过第四象限,故本选项正确;D、∵一次函数y=x+6中,当x=0时,y=6,∴函数图象与x轴交点坐标是(0,6),故本选项错误.故选D.【点评】本题考查的是一次函数的性质,熟知一次函数的增减性是解答此题的关键.8.我国古代数学家赵爽的“勾股方圆图”是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形(如图所示),如果大正方形的面积是25,小正方形的面积是1,直角三角形的两直角边分别是a和b,那么(a+b)2的值为()A.49 B.25 C.13 D.1【考点】勾股定理.【专题】图表型.【分析】根据正方形的面积公式以及勾股定理,结合图形进行分析发现:大正方形的面积即直角三角形斜边的平方25,也就是两条直角边的平方和是25,四个直角三角形的面积和是大正方形的面积减去小正方形的面积即2ab=24.根据完全平方公式即可求解.【解答】解:由于大正方形的面积25,小正方形的面积是1,则四个直角三角形的面积和是25﹣1=24,即4×ab=24,即2ab=24,a2+b2=25,则(a+b)2=25+24=49.故选:A.【点评】本题考查了勾股定理的应用,解题的关键是注意完全平方公式的展开:(a+b)2=a2+b2+2ab,还要注意图形的面积和a,b之间的关系.9.在平面直角坐标系中,已知点P的坐标是(﹣1,﹣2),则点P关于x轴对称的点的坐标是()A.(﹣1,2)B.(1,﹣2)C.(1,2) D.(2,1)【考点】关于x轴、y轴对称的点的坐标.【分析】根据关于x轴对称点的性质,横坐标不变,纵坐标改变符号,进而得出答案.【解答】解:∵点P的坐标是(﹣1,﹣2),∴点P关于x轴对称的点的坐标是:(﹣1,2).故选:A.【点评】此题主要考查了关于x轴对称点的性质,正确记忆横纵坐标关系是解题关键.10.如图,AB∥EF,∠C=90°,则α、β、γ的关系为()A.β=α+γ B.α+β+γ=180°C.β+γ﹣α=90°D.α+β﹣γ=90°【考点】平行线的性质;垂线.【专题】探究型.【分析】此题可以构造辅助线,利用三角形的外角的性质以及平行线的性质建立角之间的关系.【解答】解:延长DC交AB与G,延长CD交EF于H.直角△BGC中,∠1=90°﹣α;△EHD中,∠2=β﹣γ,因为AB∥EF,所以∠1=∠2,于是90°﹣α=β﹣γ,故α+β﹣γ=90°.故选D.【点评】此题主要是通过作辅助线,构造了三角形以及由平行线构成的内错角.掌握三角形的外角的性质以及平行线的性质:两条直线平行,内错角相等.二、填空题11.25的算术平方根是 5 .【考点】算术平方根.【分析】根据算术平方根的定义即可求出结果,算术平方根只有一个正根.【解答】解:∵52=25,∴25的算术平方根是5.故答案为:5.【点评】易错点:算术平方根的概念易与平方根的概念混淆而导致错误.规律总结:弄清概念是解决本题的关键.12.化简:×= .【考点】二次根式的性质与化简.【分析】根据二次根式的性质把化简,计算即可.【解答】解:原式=4×=,故答案为:.【点评】本题考查的是二次根式的化简,掌握二次根式的性质是解题的关键.13.数据1,0,﹣3,6,3,2,﹣2的平均数是 1 ,方差是8 .【考点】方差;算术平均数.【分析】先由平均数的公式计算出这组数据的平均数,再根据方差的公式进行计算即可.【解答】解:这组数据的平均数是: =1;则方差是: [(1﹣1)2+(0﹣1)2+(﹣3﹣1)2+(6﹣1)2+(3﹣1)2+(2﹣1)2+(﹣2﹣1)2]=8; 故答案为:1,8.【点评】本题考查了平均数和方差:一般地设n 个数据,x 1,x 2,…x n 的平均数为,则方差S 2= [(x 1﹣)2+(x 2﹣)2+…+(x n ﹣)2].14.如图,一个宽度相等的纸条按如图所示方法折叠一下,则∠1= 65 度.【考点】平行线的性质;翻折变换(折叠问题).【专题】计算题.【分析】根据两直线平行内错角相等,以及折叠关系列出方程求解则可.【解答】解:根据题意得2∠1与130°角相等,即2∠1=130°,解得∠1=65°.故填65.【点评】本题考查了平行线的性质和折叠的知识,题目比较灵活,难度一般.15.已知直角三角形两边的长分别为3cm ,4cm ,则以第三边为边长的正方形的面积为 7cm 2或25cm 2 .【考点】勾股定理.【分析】分两种情况考虑:当4cm 为直角三角形的斜边时,利用勾股定理求出第三边的平方,即为以第三边为边长的正方形的面积;当第三边为直角三角形的斜边时,利用勾股定理求出第三边的平方,即为以第三边为边长的正方形的面积.【解答】解:若4cm 为直角三角形的斜边,此时以第三边为边长的正方形的面积为42﹣32=16﹣9=7cm 2; 若x 为直角三角形的斜边,根据勾股定理得:x 2=32+42=9+16=25,此时以斜边为边长的正方形的面积为x=25,综上,以第三边为边长的正方形的面积为7cm2或25cm2.故答案为:7cm2或25cm2.【点评】此题考查了直角三角形斜边上的中线,勾股定理,以及正方形的面积,利用了分类讨论的思想,分类讨论时注意考虑问题要全面,做到不重不漏.16.某水池有水15m3,现打开进水管进水,进水速度5m3/h;xh后这个水池内有水y m3,则y关于x的关系式为y=5x+15 .【考点】函数关系式.【分析】原来的水的量15m3,加上xh进的水量就是y的值.【解答】解:y关于x的关系式为:y=5x+15.故答案是:y=5x+15.【点评】本题考查了列函数解析式,正确理解各个量之间的关系是关键.17.命题“同位角相等,两直线平行”中,条件是同位角相等,结论是两直线平行【考点】命题与定理.【分析】由命题的题设和结论的定义进行解答.【解答】解:命题中,已知的事项是“同位角相等”,由已知事项推出的事项是“两直线平行”,所以“同位角相等”是命题的题设部分,“两直线平行”是命题的结论部分.故空中填:同位角相等;两直线平行.【点评】命题由题设和结论两部分组成,命题的题设是已知事项,结论是由已知事项推出的事项.18.如果a、b同号,则点P(a,b)在第一、三象限.【考点】点的坐标.【分析】根据各象限内点的坐标特征解答.【解答】解:∵a、b同号,∴点P(a,b)在第一、三象限.故答案为:第一、三.【点评】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).三、计算题:19.(24分)(2016秋•平川区校级期中)计算:①(﹣)②(﹣2)×﹣6③解方程组:④⑤已知和都是方程ax﹣y=b的解,求a与b的值.⑥计算:﹣(π﹣3)0﹣2+﹣.【考点】二次根式的混合运算;零指数幂;二元一次方程的解;解二元一次方程组.【分析】①首先对二次根式化简,然后进行乘法计算;②首先利用分配律计算,然后化简二次根式,合并同类二次根式即可;③利用加减法即可求解;④利用加减法即可求解;⑤把两组数代入方程,解方程组即可求解;⑥首先计算0次幂,化简二次根式,然后合并同类二次根式即可.【解答】解:①原式=(2﹣4)=×(﹣2)=﹣6;②原式=3﹣6﹣3=﹣6;③,(1)+(2)得3x=6,解得:x=2,把x=2代入(1)得2+y=5,解得y=3,则方程组的解是;④,3×(1)﹣(2)得11y=﹣11,解得y=﹣1,把y=﹣1代入(1)得x﹣3=﹣1,解得x=2,则方程组的解是;⑤根据题意得:,解得:;⑥原式=﹣1﹣2+3﹣=﹣1+.【点评】本题考查了二次根式的混合运算,正确对二次根式进行化简是关键.20.如图所示,BF∥DE,∠1=∠2,求证:GF∥BC.【考点】平行线的判定与性质.【专题】证明题.【分析】先根据两直线平行,同位角相等,得∠2=∠FBC,再结合已知条件和等量代换证得内错角∠FBC=∠1,从而得GF∥BC.【解答】解:∵BF∥DE(已知),∴∠2=∠FBC(两直线平行,同位角相等),∵∠2=∠1(已知),∴∠FBC=∠1(等量代换),∴GF∥BC(内错角相等,两直线平行).【点评】本题主要考查平行线的性质及判定,熟练记忆公理和定义是学好数学的关键.21.已知y是x的一次函数,且当x=8时,y=15:当x=﹣10时,y=﹣3,求:(1)这个一次函数的解析式;(2)当y=﹣2时,求x的值.【考点】待定系数法求一次函数解析式.【专题】计算题;实数.【分析】(1)根据y是x的一次函数,设出解析式,把x与y的值代入计算确定出解析式即可;(2)把y的值代入解析式求出x的值即可.【解答】解:(1)设y=kx+b(k≠0),把x=8,y=15;x=﹣10,y=﹣3代入得:,解得:,则一次函数解析式为y=x+7;(2)把y=﹣2代入得:﹣2=x+7,解得:x=﹣9.【点评】此题考查了待定系数法求一次函数解析式,熟练掌握待定系数法是解本题的关键.22.如图,已知DE∥BC,CD是∠ACB的平分线,∠B=70°,∠ACB=50°,求∠EDC和∠BDC的度数.【考点】平行线的性质;三角形内角和定理.【分析】由CD是∠ACB的平分线,∠ACB=50°,根据角平分线的性质,即可求得∠DCB的度数,又由DE ∥BC,根据两直线平行,内错角相等,即可求得∠EDC的度数,根据两直线平行,同旁内角互补,即可求得∠BDE的度数,即可求得∠BDC的度数.【解答】解:∵CD是∠ACB的平分线,∠ACB=50°,∴∠BCD=∠ACB=25°,∵DE∥BC,∴∠EDC=∠DCB=25°,∠BDE+∠B=180°,∵∠B=70°,∴∠BDE=110°,∴∠BDC=∠BDE﹣∠EDC=110°﹣25°=85°.∴∠EDC=25°,∠BD C=85°.【点评】此题考查了平行线的性质与角平分线的定义.解此题的关键是掌握两直线平行,内错角相等与两直线平行,同旁内角互补定理的应用.23.某中学为了绿化校园,计划购买一批榕树和香樟树,经市场调查榕树的单价比香樟树少20元,购买3棵榕树和2棵香樟树共需340元.请问榕树和香樟树的单价各多少?【考点】二元一次方程组的应用.【专题】应用题.【分析】设榕树的单价为x 元/棵,香樟树的单价是y 元/棵,根据题意列出方程组,求出方程组的解即可得到结果.【解答】解:设榕树的单价为x 元/棵,香樟树的单价是y 元/棵,根据题意得:,解得:,答:榕树和香樟树的单价分别是60元/棵,80元/棵.【点评】此题考查了二元一次方程组的应用,找出题中的等量关系是解本题的关键.24.一个零件的形状如图所示,工人师傅按规定做得AB=3,BC=4,AC=5,CD=12,AD=13,假如这是一块钢板,你能帮工人师傅计算一下这块钢板的面积吗?【考点】勾股定理的逆定理.【分析】由勾股定理逆定理可得△ACD 与△ABC 均为直角三角形,进而可求解其面积.【解答】解:∵42+32=52,52+122=132,即AB 2+BC 2=AC 2,故∠B=90°,同理,∠ACD=90°∴S 四边形ABCD =S △ABC +S △ACD=×3×4+×5×12=6+30=36.【点评】熟练掌握勾股定理逆定理的运用,会求解三角形的面积问题.25.了解学生零花钱的使用情况,校团委随机调查了本校部分学生每人一周的零花钱数额,并绘制了如图甲、乙所示的两个统计图(部分未完成).请根据图中信息,回答下列问题:(1)校团委随机调查了多少学生?请你补全条形统计图;(2)表示“50元”的扇形的圆心角是多少度?被调查的学生每人一周零花钱数的中位数是多少元?(3)四川雅安地震后,全校1000名学生每人自发地捐出一周零花钱的一半,以支援灾区建设.请估算全校学生共捐款多少元?【考点】条形统计图;用样本估计总体;扇形统计图;中位数.【分析】(1)零用钱是40元的是10人,占25%,据此即可求得总人数,总人数乘以所占的比例即可求得零用钱是20元的人数,则统计图可以作出;(2)求出零用钱是50元的所占的比例,乘以360度即可求得对应的扇形的圆心角,根据中位数的定义可以求得中位数;(3)首先求得抽取的学生的零用钱的平均数,平均数的一半乘以1000即可求解.【解答】解:(1)随机调查的学生数是:10÷25%=40(人),零花钱是20元的人数是:40×15%=6(人).(2)50元的所占的比例是: =,则圆心角36°,中位数是30元;(3)学生的零用钱是: =33(元),则全校学生共捐款×33×1000=16500元.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.26.次函数的图象与x轴、y轴分别交于点A(8,0)和点B(0,6).(1)确定此一次函数的解析式.(2)求坐标原点O到直线AB的距离.(3)点P是线段AB上的一个动点,过点P作PM垂直于x轴于M,作PN垂直于y轴于N,记L=PM+PN,问L是否存在最大值和最小值?若存在,求出此时P点到原点O的距离,若不存在请说明理由.【考点】一次函数综合题.【专题】压轴题.【分析】(1)设一次函数解析式为y=kx+b,把点A、B的坐标代入函数解析式,利用待定系数法求一次函数解析式解答;(2)设点O到AB的距离为h,利用勾股定理列式求出AB,再利用△AOB的面积列式计算即可得解;(3)设AM=x,表示出OM即PN的长,再利用∠BAO的正切值表示出PM,然后列出PM+PN的表达式,再根据一次函数的增减性求解即可.【解答】解:(1)设一次函数解析式为y=kx+b,∵函数图象经过点A(8,0)和点B(0,6),∴,解得.所以,函数解析式为y=﹣x+6;(2)设点O到AB的距离为h,∵点A(8,0)和点B(0,6),∴OA=8,OB=6,由勾股定理得,AB===10,=×10h=×8×6,S△AOB解得h=4.8,所以,坐标原点O到直线AB的距离为4.8;(3)设AM=x,则OM=OA﹣AM=8﹣x,∵PM⊥x轴,PN⊥y轴,∴四边形OMPN是矩形,∴PN=OM=8﹣x,∵PM=AM•tan∠BAO=x=x,∴L=PM+PN=x+8﹣x=﹣x+8,∵点P是线段AB上的一个动点,∴点M在线段OA上,∴0≤x≤8,∵﹣<0,∴当x=0时,L值最大,最大值为8,此时,点P到原点O的距离为8,x=8时,L值最小,最小值为6,此时,点P到原点O的距离为6.【点评】本题是一次函数综合题型,主要利用了待定系数法求一次函数解析式,勾股定理,三角形的面积,解直角三角形,利用一次函数的增减性求最值问题,(2)利用三角形的面积公式列出方程是解题的关键,(3)难点在于列出L的表达式.第21页(共21页)。
白银市白银区2015-2016八年级数学上期中考试卷及答案

x … -2 -1 0 1 2 … y … -1 0 1 2 3 …
.
13. 点 P(﹣2,1)在平面直角坐标系中所在的象限是第
象限.
14.若一个数的立方根就是它本身,则这个数是
.
15.在△ABC中,a,b,c 为其三边长,푎 = 3,푏 = 7,푐2 = 58,则△ABC是_________.
16.下列函数中,是一次函数的是
.
① y 8x2,
② y x 1
)
A.y >y2
B.y =y2
C.y <y2
D.不能比较
y
1
1
1
6.已知一次函数 y=kx+b的图象如图所示,则 k,b的符号是( )
A. k>0, b>0
B. k>0, b<0
x
C. k<0, b>0
D. k<0, b<0
7.已知直角三角形两边的长分别为 3 和 4,则此三角形的周长为( )
A.12
21.A(0,0)、 B(2,0)、 C(2,2)、 D(0,2)(答案不唯一) 22.
座号
图略.
23.如图,AD 是 BC 边上的高线.
∵ AB=AC=10 cm,BC=12 cm , ∴ BD=CD=6 cm. ∴ 在 Rt△ABD 中,由勾股定理,得 AD=
AB2 BD2 = 102 62 =8(cm).
2
(3)
12
3 (1
3) 0
3
(4)
( 5 7)( 5 7) 2
20.(6 分)设一次函数 y=kx+b(k≠0)的图象经过 A(1,3),B(0,-2)两点,试求 k,b 的值.
白银XX中学2015-2016学年八年级上期中数学试卷含答案解析

2015-2016学年甘肃省白银XX中学八年级(上)期中数学试卷 一、选择题(每小题3分,共30分)1.下列各组数中,不能构成直角三角形的一组是( )A.6,8,1 B.1,2,C.3,4,5 D.1,2,2.在﹣1.414,,π,2+,3.212212221…,3.14这些数中,无理数的个数为( )A.5 B.2 C.3 D.43.已知,那么a=( )A.0 B.0或1 C.0或﹣1 D.0,﹣1或14.已知a>0,b<0,那么点P(a,b)在( )A.第一象限 B.第二象限 C.第三象限 D.第四象限5.一支蜡烛长20厘米,点燃后每小时燃烧5厘米,燃烧时剩下的高度h(厘米)与燃烧时间t(时)的函数关系的图象是( )A.B.C.D.6.直角坐标系中,点A(﹣3,4)与点B(3,﹣4)关于( )A.原点中心对称 B.y轴轴对称C.x轴轴对称D.以上都不对7.如果点P(m+3,m+1)在x轴上,则点P的坐标为( )A.(0,2)B.(2,0)C.(4,0)D.(0,﹣4)8.下列说法中,不正确的是( )A.3是(﹣3)2的算术平方根B.±3是(﹣3)2的平方根C.﹣3是(﹣3)2的算术平方根D.﹣3是(﹣3)3的立方根9.点P1(x1,y1),点P2(x2,y2)是一次函数y=﹣4x+3图象上的两个点,且x1<x2,则y1与y2的大小关系是( )A.y1>y2B.y1>y2>0 C.y1<y2D.y1=y210.函数的图象经过(1,﹣1),则函数y=kx+2的图象是( )A.B.C.D.二、填空(每题3分,共30分)11.如果2a﹣18=0,那么a的算术平方根是 .12.一个三角形三边满足(a+b)2﹣c2=2ab,则这个三角形是 三角形.13.观察分析下列数据,按规律填空:,2,,2,,…, (第n个数).14.图象经过点A(﹣2,5)的正比例函数的关系式为 .15.如果将电影票上“6排3号”简记为(6,3),那么“10排5号”可表示为 .16.点P(﹣4,3)到x轴的距离是 ,到y轴的距离是 ,到原点的距离是 .17.有一个长为12cm,宽为4cm,高为3cm的长方形铁盒,在其内部要放一根笔直的铅笔,则铅笔最长是 .18.直线y=﹣2x﹣4与两坐标轴围成的三角形面积是 .19.已知点A(2,y)与点B(x,﹣3)关于y轴对称,则xy= .20.函数y=﹣x+2的图象不经过 象限.三、解答题(共20分)21.计算下列各题(1)+﹣4(2)|﹣2|﹣()0+(3)(+)(﹣)﹣(4)(﹣2)2.四、解答题(共40分)22.如图,一高层住宅发生火灾,消防车立即赶到距大厦9米处(车尾到大厦墙面),升起云梯到火灾窗口,已知云梯长15米,云梯底部距地面2米,问:发生火灾的住户窗口距离地面多高?23.△ABC在直角坐标系内的位置如图所示.(1)分别写出A、B、C的坐标;(2)请在这个坐标系内画出△A1B1C1,使△A1B1C1与△ABC关于y轴对称,并写出B1的坐标;(3)请在这个坐标系内画出△A2B2C2,使△A2B2C2与△ABC关于原点对称,并写出A2的坐标.24.当m为何值时,函数y=﹣(m﹣2)+(m﹣4)是一次函数.25.汽车油箱中的余油量Q(升)是它行驶的时间t(小时)的一次函数.某天该汽车外出时,油箱中余油量与行驶时间的变化关系如图:(1)根据图象,求油箱中的余油Q与行驶时间t的函数关系式,并写出自变量t的取值范围;(2)从开始算起,如果汽车每小时行驶50千米,当油箱中余油20升时,该汽车行驶了多少千米?26.A、B两辆汽车同时从相距330千米的甲、乙两地相向而行,s(千米)表示汽车与甲地的距离,t(分)表示汽车行驶的时间,如图,l1,l2分别表示两辆汽车的s与t的关系.(1)l1表示哪辆汽车到甲地的距离与行驶时间的关系?(2)汽车B的速度是多少?(3)求l1、l2分别表示的两辆汽车的s与t的关系式.(4)行驶多长时间后,A、B两车相遇?五、附加题27.小明的生日快要到了,小军决定送给他一件小礼物,他告诉小明,他已将礼物藏在学校体育场内.具体地点忘了,只知道坐标是(6,6),还知道体育场内的两个标志点的坐标分别是A(﹣2,﹣3)和B(2,﹣3),小明怎样才能找到小军送他的礼物?28.阅读下列解题过程:已知a,b,c为△ABC的三边长,且满足a2c2﹣b2c2=a4﹣b4,试判断△ABC的形状.解:∵a2c2﹣b2c2=a4﹣b4,①∴c2(a2﹣b2)=(a2+b2)(a2﹣b2),②∴c2=a2+b2,③∴△ABC为直角三角形.④回答下列问题:(1)在上述解题过程中,从哪一步开始出现错误?该步的序号为: ;(2)错误的原因为: ;(3)请你将正确的解答过程写下来.29.直线OC、BC的函数关系式分别是y1=x和y2=2x+6,动点P(x,0)在OB上运动(0<x<3)过点P作直线m与x轴垂直.(1)求点C的坐标,并回答当x取何值时y1>y2?(2)设△COB中位于直线m左侧部分的面积为s,求出s与x之间函数关系式.2015-2016学年甘肃省白银XX中学八年级(上)期中数学试卷参考答案与试题解析一、选择题(每小题3分,共30分)1.下列各组数中,不能构成直角三角形的一组是( )A.6,8,1 B.1,2,C.3,4,5 D.1,2,【考点】勾股定理的逆定理.【分析】求出两短边的平方和、长边的平方,看看是否相等即可.【解答】解:A、∵12+62≠82,∴以6、8、1不能组成直角三角形,故本选项正确;B、∵12+()2=22,∴以1、2、能组成直角三角形,故本选项错误;C、∵32+42=52,∴以3、4、5能组成直角三角形,故本选项错误;D、∵12+22=()2,∴以1、2、不能组成直角三角形,故本选项错误;故选A.2.在﹣1.414,,π,2+,3.212212221…,3.14这些数中,无理数的个数为( )A.5 B.2 C.3 D.4【考点】无理数.【分析】根据无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数,结合所给数据进行判断即可.【解答】解:所给数据中无理数有:,π,2+,3.212212221…,共4个.故选D.3.已知,那么a=( )A.0 B.0或1 C.0或﹣1 D.0,﹣1或1【考点】算术平方根.【分析】由于已知,由此得到a的算术平方根就是自己本身,根据“0的平方根是0,0的算术平方根也是0,1的算术平方根也是1”即可求解.【解答】解:∵=a,∴a=0或1.故选B.4.已知a>0,b<0,那么点P(a,b)在( )A.第一象限 B.第二象限 C.第三象限 D.第四象限【考点】点的坐标.【分析】根据各象限点的坐标特点进行判断即可.【解答】解:∵a>0,b<0,∴点P(a,b)在第四象限.故选D.5.一支蜡烛长20厘米,点燃后每小时燃烧5厘米,燃烧时剩下的高度h(厘米)与燃烧时间t(时)的函数关系的图象是( )A.B.C.D.【考点】一次函数的应用;一次函数的图象.【分析】随着时间的增多,蜡烛的高度就越来越小,由于时间和高度都为正值,所以函数图象只能在第一象限,由此即可求出答案.【解答】解:设蜡烛点燃后剩下h厘米时,燃烧了t小时,则h与t的关系是为h=20﹣5t,是一次函数图象,即t越大,h越小,符合此条件的只有D.故选D.6.直角坐标系中,点A(﹣3,4)与点B(3,﹣4)关于( )A.原点中心对称 B.y轴轴对称C.x轴轴对称D.以上都不对【考点】关于原点对称的点的坐标;关于x轴、y轴对称的点的坐标.【分析】观察点A与点B的坐标,依据关于原点对称的点,横坐标与纵坐标都互为相反数可得答案.【解答】解:根据题意,易得点A(﹣3,4)与点B(3,﹣4)的纵横坐标互为相反数,则这两点关于原点中心对称.故选A.7.如果点P(m+3,m+1)在x轴上,则点P的坐标为( )A.(0,2)B.(2,0)C.(4,0)D.(0,﹣4)【考点】点的坐标.【分析】根据点P在x轴上,即y=0,可得出m的值,从而得出点P的坐标.【解答】解:∵点P(m+3,m+1)在x轴上,∴y=0,∴m+1=0,解得:m=﹣1,∴m+3=﹣1+3=2,∴点P的坐标为(2,0).故选:B.8.下列说法中,不正确的是( )A.3是(﹣3)2的算术平方根B.±3是(﹣3)2的平方根C.﹣3是(﹣3)2的算术平方根D.﹣3是(﹣3)3的立方根【考点】立方根;平方根;算术平方根.【分析】根据平方根、算术平方根、立方根的含义和求法,逐项判断即可.【解答】解:∵3是(﹣3)2的算术平方根,∴选项A正确;∵±3是(﹣3)2的平方根,∴选项B正确;∵3是(﹣3)2的算术平方根,∴选项C不正确;∵﹣3是(﹣3)3的立方根,∴选项D正确.故选:C.9.点P1(x1,y1),点P2(x2,y2)是一次函数y=﹣4x+3图象上的两个点,且x1<x2,则y1与y2的大小关系是( )A.y1>y2B.y1>y2>0 C.y1<y2D.y1=y2【考点】一次函数图象上点的坐标特征.【分析】根据一次函数y=kx+b(k≠0,k,b为常数),当k<0时,y随x的增大而减小解答即可.【解答】解:根据题意,k=﹣4<0,y随x的增大而减小,因为x1<x2,所以y1>y2.故选A.10.函数的图象经过(1,﹣1),则函数y=kx+2的图象是( )A.B.C.D.【考点】反比例函数图象上点的坐标特征;一次函数的图象.【分析】易得k的符号为负,则一次函数y=kx+2的图象应经过一二四象限.【解答】解:∵函数的图象经过(1,﹣1),∴k=1×(﹣1)=﹣1,∴一次函数y=kx+2的图象应经过二四象限,∵常数项大于0,∴一次函数y=kx+2的图象应经过一二四象限,故选C.二、填空(每题3分,共30分)11.如果2a﹣18=0,那么a的算术平方根是 3 .【考点】算术平方根.【分析】先根据2a﹣18=0求得a=9,再根据算术平方根的定义即可求a的算术平方根.【解答】解:∵2a﹣18=0,∴a=9,∴a的算术平方根是3.12.一个三角形三边满足(a+b)2﹣c2=2ab,则这个三角形是 直角 三角形.【考点】勾股定理的逆定理.【分析】化简等式,可得a2+b2=c2,由勾股定理逆定理,进而可得其为直角三角形.【解答】解:(a+b)2﹣c2=2ab,即a2+b2+2ab﹣c2=2ab,所以a2+b2=c2,则这个三角形为直角三角形.故答案为:直角.13.观察分析下列数据,按规律填空:,2,,2,,…, (第n个数).【考点】规律型:数字的变化类.【分析】第一数为;第二个数为;第3个数为,那么第n个数为.【解答】解:第n个数为.14.图象经过点A(﹣2,5)的正比例函数的关系式为 y=﹣2.5x .【考点】待定系数法求正比例函数解析式.【分析】本题可设所求正比例函数的关系式为y=kx,然后把点A(﹣2,5)的坐标代入,从而求得k的值,进而求出解析式.【解答】解:设图象经过点A(﹣2,5)的正比例函数的关系式为y=kx则有5=﹣2k即:k=﹣2.5∴图象经过点A(﹣2,6)的正比例函数的关系式为y=﹣2.5x.故答案为y=﹣2.5x.15.如果将电影票上“6排3号”简记为(6,3),那么“10排5号”可表示为 (10,5) .【考点】坐标确定位置.【分析】根据第一个数表示排数,第二个数表示号数写出即可.【解答】解:∵“6排3号”简记为(6,3),∴“10排5号”可表示为(10,5).故答案为:(10,5).16.点P(﹣4,3)到x轴的距离是 3 ,到y轴的距离是 4 ,到原点的距离是 5 .【考点】点的坐标;两点间的距离公式.【分析】求得P的纵坐标绝对值即可求得P点到x轴的距离,求得P的横坐标绝对值即可求得P点到y轴的距离,求点OP的长度可得出到原点的距离.【解答】解:∵点P坐标为(﹣4,3),∴到x轴的距离是:|3|=3;到y轴的距离:|﹣4|=4,到原点的距离为:=5.故答案为:3、4、5.17.有一个长为12cm,宽为4cm,高为3cm的长方形铁盒,在其内部要放一根笔直的铅笔,则铅笔最长是 13cm .【考点】勾股定理的应用.【分析】本题根据题目中所给的信息,可以构造出直角三角形,再利用勾股定理解答即可.【解答】解:铅笔的长为==13cm.故答案为:13cm.18.直线y=﹣2x﹣4与两坐标轴围成的三角形面积是 4 .【考点】一次函数图象上点的坐标特征.【分析】首先求出直线y=﹣2x﹣4与x轴、y轴的交点的坐标,然后根据三角形的面积公式,得出结果.【解答】解:令x=0,则y=﹣4,令y=0,则x=﹣2,故直线y=﹣2x﹣4与两坐标轴的交点分别为(0,﹣4)、(﹣2,0),故直线y=﹣2x﹣4与两坐标轴围成的三角形面积=×|﹣4|×|﹣2|=4.故答案为4.19.已知点A(2,y)与点B(x,﹣3)关于y轴对称,则xy= 6 .【考点】关于x轴、y轴对称的点的坐标.【分析】根据关于y轴对称点的坐标特点:横坐标互为相反数,纵坐标不变,可得到x、y 的值,进而计算出答案.【解答】解:∵点A(2,y)与点B(x,﹣3)关于y轴对称,∴x=﹣2,y=﹣3,∴xy=6,故答案为:6.20.函数y=﹣x+2的图象不经过 第三 象限.【考点】一次函数的性质.【分析】利用两点法画出函数图象可得出答案.【解答】解:在y=﹣x+2中,令y=0可得﹣x+2=0,解得x=3,令x=0可得y=2,∴函数图象与x轴交于点(3,0),与y轴交于点(0,2),其图象如图所示,∴函数图象不经过第三象限,故答案为:第三.三、解答题(共20分)21.计算下列各题(1)+﹣4(2)|﹣2|﹣()0+(3)(+)(﹣)﹣(4)(﹣2)2.【考点】实数的运算;零指数幂.【分析】(1)原式化简后,合并即可得到结果;(2)原式利用绝对值的代数意义,零指数幂法则,以及分母有理化计算即可得到结果;(3)原式利用平方差公式,以及算术平方根定义计算即可得到结果;(4)原式利用完全平方公式化简即可得到结果.【解答】解:(1)原式=3+﹣2=2;(2)原式=2﹣1+=3﹣1;(3)原式=3﹣2﹣5=﹣4;(4)原式=3﹣4+20=23﹣4.四、解答题(共40分)22.如图,一高层住宅发生火灾,消防车立即赶到距大厦9米处(车尾到大厦墙面),升起云梯到火灾窗口,已知云梯长15米,云梯底部距地面2米,问:发生火灾的住户窗口距离地面多高?【考点】勾股定理的应用.【分析】根据AB和AC的长度,构造直角三角形,根据勾股定理就可求出直角边BC的长.【解答】解:∵AC⊥BC,∴∠ACB=90°;根据勾股定理,得BC===12,∴BD=12+2=14(米);答:发生火灾的住户窗口距离地面14米.23.△ABC在直角坐标系内的位置如图所示.(1)分别写出A、B、C的坐标;(2)请在这个坐标系内画出△A1B1C1,使△A1B1C1与△ABC关于y轴对称,并写出B1的坐标;(3)请在这个坐标系内画出△A2B2C2,使△A2B2C2与△ABC关于原点对称,并写出A2的坐标.【考点】作图-旋转变换;作图-轴对称变换.【分析】(1)观察平面直角坐标系,根据点与坐标系的关系,即可求得A、B、C的坐标;(2)根据关于y轴对称的图形的特点,首先求得各对称点的坐标,继而画出△A1B1C1;(3)根据关于原点对称的图形的特点,首先求得各对称点的坐标,继而画出△A2B2C2.【解答】解:(1)A(0,3);B(﹣4,4);C(﹣2,1);(2)如图:B1的坐标为:(4,4);(3)如图:A2(0,﹣3).24.当m为何值时,函数y=﹣(m﹣2)+(m﹣4)是一次函数.【考点】一次函数的定义.【分析】根据一次函数的定义,自变量的次数为1列方程求出m的值,再根据比例系数k≠0求解得到m≠2,从而得解.【解答】解:由题意得,m2﹣3=1且m﹣2≠0,解得m=±2且m≠2,所以,m=﹣2.25.汽车油箱中的余油量Q(升)是它行驶的时间t(小时)的一次函数.某天该汽车外出时,油箱中余油量与行驶时间的变化关系如图:(1)根据图象,求油箱中的余油Q与行驶时间t的函数关系式,并写出自变量t的取值范围;(2)从开始算起,如果汽车每小时行驶50千米,当油箱中余油20升时,该汽车行驶了多少千米?【考点】一次函数的应用.【分析】(1)根据函数图象可以设出函数的解析式,从而可以求出油箱中的余油Q与行驶时间t的函数关系式,并写出自变量t的取值范围;(2)将Q=20代入(1)中的函数解析式,从而可以求得t的值,进而求得该汽车行驶的路程.【解答】解:(1)设油箱中的余油Q与行驶时间t的函数关系式是:Q=kt+b,解得,,∴Q=﹣5t+60,当Q=0时,t=12,即油箱中的余油Q与行驶时间t的函数关系式是:Q=﹣5t+60(0≤t≤12);(2)当Q=20时,20=﹣5t+60,解得,t=8,50×8=400(千米),即油箱中余油20升时,该汽车行驶了400千米.26.A、B两辆汽车同时从相距330千米的甲、乙两地相向而行,s(千米)表示汽车与甲地的距离,t(分)表示汽车行驶的时间,如图,l1,l2分别表示两辆汽车的s与t的关系.(1)l1表示哪辆汽车到甲地的距离与行驶时间的关系?(2)汽车B的速度是多少?(3)求l1、l2分别表示的两辆汽车的s与t的关系式.(4)行驶多长时间后,A、B两车相遇?【考点】一次函数的应用.【分析】(1)根据题意可以得到l1表示哪辆汽车到甲地的距离与行驶时间的关系;(2)根据函数图象可以得到汽车B的速度;(3)根据图象可以设出l1、l2的解析式,由函数图象上的点可以求得它们的解析式;(4)将(3)中的两个解析式联立方程组即可解答本题.【解答】解:(1)由题意和函数图象可知,l1表示汽车B到甲地的距离与行驶时间的关系;(2)由图象可得,汽车B的速度为:÷=90千米/时;(3)设l1对应的函数解析式为s=kt+b,得,即l1对应的函数解析式为s=﹣1.5t+330,设l2对应的函数解析式为s=mt,60m=60,得m=1,即l2对应的函数解析式为s=t;(4)由题意可得,,解得,,即行驶132分钟后,A、B两车相遇.五、附加题27.小明的生日快要到了,小军决定送给他一件小礼物,他告诉小明,他已将礼物藏在学校体育场内.具体地点忘了,只知道坐标是(6,6),还知道体育场内的两个标志点的坐标分别是A(﹣2,﹣3)和B(2,﹣3),小明怎样才能找到小军送他的礼物?【考点】坐标确定位置.【分析】先根据点A、B的坐标画出直角坐标系,然后根据直角坐标系由点B到点C的方法决定寻找的方向和路径.【解答】解:根据题意画出直角坐标系,C点坐标为(6,6),所以从B点出发,沿AB方向走4个单位,然后左转后走9个单位即可找到小军送他的礼物.28.阅读下列解题过程:已知a,b,c为△ABC的三边长,且满足a2c2﹣b2c2=a4﹣b4,试判断△ABC的形状.解:∵a2c2﹣b2c2=a4﹣b4,①∴c2(a2﹣b2)=(a2+b2)(a2﹣b2),②∴c2=a2+b2,③∴△ABC为直角三角形.④回答下列问题:(1)在上述解题过程中,从哪一步开始出现错误?该步的序号为: ③ ;(2)错误的原因为: 除式可能为零 ;(3)请你将正确的解答过程写下来.【考点】因式分解的应用.【分析】(1)(2)等式两边都除以a2﹣b2,而a2﹣b2的值可能为零,由等式的基本性质,等式两边都乘以或除以同一个不为0的整式,等式仍然成立.(3)根据等式的基本性质和勾股定理,分情况加以讨论.【解答】解:(1)③;(2)除式可能为零;(3)∵a2c2﹣b2c2=a4﹣b4,∴c2(a2﹣b2)=(a2+b2)(a2﹣b2),∴a2﹣b2=0或c2=a2+b2,当a2﹣b2=0时,a=b;当c2=a2+b2时,∠C=90°,∴△ABC是等腰三角形或直角三角形.故答案是③,除式可能为零.29.直线OC、BC的函数关系式分别是y1=x和y2=2x+6,动点P(x,0)在OB上运动(0<x<3)过点P作直线m与x轴垂直.(1)求点C的坐标,并回答当x取何值时y1>y2?(2)设△COB中位于直线m左侧部分的面积为s,求出s与x之间函数关系式.【考点】一次函数与一元一次不等式.【分析】(1)根据题意列出二元一次方程组,求出点C的坐标,结合图形求出y1>y2时x 的取值范围;(2)求出点B的坐标,根据三角形的面积公式解答.【解答】解:(1)由题意得,x=2x+6,解得:x=﹣6,即可得点C的坐标为(﹣6,﹣6);∵y1>y2,即x>2x+6,解得:x<﹣6;(2)y2=2x+6中当y=0时,x=﹣3,则点B的坐标为(﹣3,0),△COB中位于直线m左侧部分的面积为:s=×3×(2x+6)=3x+9.2016年12月8日。
白银市八中初中数学八年级上期中经典练习题(含答案解析)

一、选择题1.题目文件丢失!2.题目文件丢失!3.题目文件丢失!4.题目文件丢失!5.题目文件丢失!6.题目文件丢失!7.题目文件丢失!8.题目文件丢失!9.题目文件丢失!10.题目文件丢失!11.题目文件丢失!12.题目文件丢失!13.题目文件丢失!14.题目文件丢失!15.题目文件丢失!二、填空题16.题目文件丢失!17.题目文件丢失!18.题目文件丢失!19.题目文件丢失!20.题目文件丢失!21.题目文件丢失!22.题目文件丢失!23.题目文件丢失!24.题目文件丢失!25.题目文件丢失!三、解答题26.题目文件丢失!27.题目文件丢失!28.题目文件丢失!29.题目文件丢失!30.题目文件丢失!【参考答案】2016-2017年度第*次考试试卷参考答案**科目模拟测试一、选择题1.D2.A3.D4.D5.C6.D7.B8.B9.B10.A11.B12.D13.C14.A15.A二、填空题16.a>-1【解析】分析:先去分母得2x+a=x-1可解得x=-a-1由于关于x的方程=1的解是正数则x>0并且x-1≠0即-a-1>0且-a-1≠1解得a<-1且a≠-2详解:去分母得2x+a=x-117.66【解析】【分析】首先根据正五边形的性质得到度然后根据角平分线的定义得到度再利用三角形内角和定理得到的度数【详解】解:∵五边形为正五边形∴度∵是的角平分线∴度∵∴故答案为:66【点睛】本题考查了多18.【解析】【分析】确定最简公分母的方法是:(1)取各分母系数的最小公倍数;(2)凡单独出现的字母连同它的指数作为最简公分母的一个因式;(3)同底数幂取次数最高的得到的因式的积就是最简公分母【详解】解:19.或或【解析】分①4a2是平方项②4a2是乘积二倍项然后根据完全平方公式的结构解答解:①4a2是平方项时4a2±4a+1=(2a±1)2可加上的单项式可以是4a或-4a②当4a2是乘积二倍项时4a4+20.6【解析】【分析】【详解】解:∵∠A+∠APO=∠POD+∠COD∠A=∠POD=60°∴∠APO=∠COD在△APO和△COD中∠A=∠CAPO=∠CODP=OD∴△APO≌△COD(AAS)∴A21.12【解析】试题解析:根据题意得(n-2)•180-360=1260解得:n=11那么这个多边形是十一边形考点:多边形内角与外角22.12°【解析】试题分析:利用三角形的外角与内角的关系及平行线的性质可直接解答解:∵AB∥CD∴∠BFC=∠ABE=66°在△EFD中利用三角形外角等于不相邻的两个内角的和得到∠E=∠BFC﹣∠D=123.x>7【解析】试题解析:由题意得:>0∵-6<0∴7-x<0∴x>724.5【解析】【分析】根据非负数的性质列式求出mn的值然后代入代数式进行计算即可得解【详解】解:根据题意得:m-2=0n-2018=0∴m=2n=2018∴m-1+n0=12+1=32;故答案为:32【25.【解析】【分析】将5改成然后利用平方差进行分解即可【详解】==故答案为【点睛】本题考查了在实数范围内分解因式把5写成是利用平方差公式进行分解的关键三、解答题26.27.28.29.30.2016-2017年度第*次考试试卷参考解析【参考解析】**科目模拟测试一、选择题1.D解析:解析丢失2.A解析:解析丢失3.D解析:解析丢失4.D解析:解析丢失5.C解析:解析丢失6.D解析:解析丢失7.B解析:解析丢失8.B解析:解析丢失9.B解析:解析丢失10.A解析:解析丢失11.B解析:解析丢失12.D解析:解析丢失13.C解析:解析丢失14.A解析:解析丢失15.A解析:解析丢失二、填空题16.a>-1【解析】分析:先去分母得2x+a=x-1可解得x=-a-1由于关于x的方程=1的解是正数则x>0并且x-1≠0即-a-1>0且-a-1≠1解得a<-1且a≠-2详解:去分母得2x+a=x-1解析:解析丢失17.66【解析】【分析】首先根据正五边形的性质得到度然后根据角平分线的定义得到度再利用三角形内角和定理得到的度数【详解】解:∵五边形为正五边形∴度∵是的角平分线∴度∵∴故答案为:66【点睛】本题考查了多解析:解析丢失18.【解析】【分析】确定最简公分母的方法是:(1)取各分母系数的最小公倍数;(2)凡单独出现的字母连同它的指数作为最简公分母的一个因式;(3)同底数幂取次数最高的得到的因式的积就是最简公分母【详解】解:解析:解析丢失19.或或【解析】分①4a2是平方项②4a2是乘积二倍项然后根据完全平方公式的结构解答解:①4a2是平方项时4a2±4a+1=(2a±1)2可加上的单项式可以是4a或-4a②当4a2是乘积二倍项时4a4+解析:解析丢失20.6【解析】【分析】【详解】解:∵∠A+∠APO=∠POD+∠COD∠A=∠POD=60°∴∠APO=∠COD在△APO和△COD中∠A=∠CAPO=∠CODP=OD∴△APO≌△COD(AAS)∴A解析:解析丢失21.12【解析】试题解析:根据题意得(n-2)•180-360=1260解得:n=11那么这个多边形是十一边形考点:多边形内角与外角解析:解析丢失22.12°【解析】试题分析:利用三角形的外角与内角的关系及平行线的性质可直接解答解:∵AB∥CD∴∠BFC=∠ABE=66°在△EFD中利用三角形外角等于不相邻的两个内角的和得到∠E=∠BFC﹣∠D=1解析:解析丢失23.x>7【解析】试题解析:由题意得:>0∵-6<0∴7-x<0∴x>7解析:解析丢失24.5【解析】【分析】根据非负数的性质列式求出mn的值然后代入代数式进行计算即可得解【详解】解:根据题意得:m-2=0n-2018=0∴m=2n=2018∴m-1+n0=12+1=32;故答案为:32【解析:解析丢失25.【解析】【分析】将5改成然后利用平方差进行分解即可【详解】==故答案为【点睛】本题考查了在实数范围内分解因式把5写成是利用平方差公式进行分解的关键解析:解析丢失三、解答题26.解析丢失27.解析丢失28.解析丢失29.解析丢失30.解析丢失。
2015—2016学年八年级上学期数学期中试卷(5套)

2015—2016学年八年级上学期数学期中试
卷(5套)
2015年八年级上册数学期中考试题整理
八年级上册数学期中考试试卷:附答案
最新:初中二年级上册数学期中考试模拟试卷
2015—2016学年初二上学期数学期中试卷
八年级数学期中卷2015
一个学期一次的期中考试马上就要开始了,同学们正在进行紧张的复习。
这就是我们为大家准备的八年级上学期数学期中试卷,希望能够及时的帮助到大家。
为大家策划了八年级上册期中复习专题,为大家提供了八年级期中考试复习知识点、八年级期中考试复习要点、八年级期中考试模拟题、八年级期中考试试卷、八年级语文期中复习要点、八年级数学期中模拟题、八年级英语期中模拟题等相关内容,供大家复习参考。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2015-2016学年甘肃省白银市会宁五中八年级(上)期中数学试卷一、选择题(每小题4分,共48分)1.(4分)如图所示,图中不是轴对称图形的是()A.B.C.D.2.(4分)下列图形中有稳定性的是()A.正方形B.长方形C.直角三角形D.平行四边形3.(4分)以下列各组线段为边,能组成三角形的是()A.2cm,3cm,5cm B.3cm,3cm,6cm C.5cm,8cm,2cm D.4cm,5cm,6cm4.(4分)已知等腰三角形的两边长分别为3和6,则它的周长等于()A.12 B.12或15 C.15 D.15或185.(4分)如图,某同学把一块三角形的玻璃打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是()A.带①去B.带②去C.带③去D.带①和②去6.(4分)如图,为估计池塘岸边A、B两点的距离,小方在池塘的一侧选取一点O,测得OA=15米,OB=10米,A、B间的距离不可能是()A.5米 B.10米C.15米D.20米7.(4分)如图,将三角尺的直角顶点放在直尺的一边上,∠1=30°,∠2=50°,则∠3的度数为()A.50°B.40°C.30°D.20°8.(4分)如图,△ABC中,AB=AC,∠A=36°,AB的垂直平分线DE交AC于D,交AB于E,则∠BDC的度数为()A.72°B.36°C.60°D.82°9.(4分)已知等腰三角形一腰上的高线与另一腰的夹角为50°,那么这个等腰三角形的顶角等于()A.15°或75°B.140°C.40°D.140°或40°10.(4分)点P(﹣1,2)关于y轴对称点的坐标是()A.(1,2) B.(﹣1,﹣2)C.(1,﹣2)D.(2,﹣1)11.(4分)下列判定直角三角形全等的方法,错误的是()A.两条直角边对应相等B.斜边和一锐角对应相等C.斜边和一直角边对应相等D.两锐角相等12.(4分)如图在△ABD和△ACE都是等边三角形,则△ADC≌△ABE的根据是()A.SSS B.SAS C.ASA D.AAS二、填空题(每小题4分,共32分)13.(4分)如图,为了使一扇旧木门不变形,木工师傅在木门的背后加钉了一根木条,这样做的道理是.14.(4分)如图,∠ABC=∠DEF,AB=DE,要证明△ABC≌△DEF,需要添加一个条件为:(只添加一个条件即可).15.(4分)等腰三角形中,已知两边的长分别是9和5,则周长为.16.(4分)已知:如图,AC⊥BC于C,DE⊥AC于E,AD⊥AB于A,BC=AE.若AB=5,则AD=.17.(4分)如图:△ABC中,DE是AC的垂直平分线,AE=3cm,△ABD的周长为13cm,则△ABC的周长为.18.(4分)如图,在△ABC中,∠C=90°,AD平分∠BAC,BC=12cm,BD=8cm,则点D到AB的距离为cm.19.(4分)如图,在△ABC中,∠ACB=90°,∠B=30°,CD⊥AB于点D,若AD=2,则AC=,AB=.20.(4分)如图所示,点P为∠AOB内一点,分别作出P点关于OA、OB的对称点P1,P2,连接P1P2交OA于M,交OB于N,P1P2=15,则△PMN的周长为.三、作图题(每题6分,共12分)21.(6分)如图,A、B是两个蓄水池,都在河流a的同侧,为了方便灌溉作物,要在河边建一个抽水站,将河水送到A、B两地,问该站建在河边什么地方,可使所修的渠道最短,试在图中确定该点.(保留作图痕迹)22.(6分)如图:某地有两所大学和两条相交叉的公路(点M,N表示大学,AO,BO表示公路).现计划修建一座仓库,希望仓库到两所大学的距离相等,到两条公路的距离也相等.你能确定仓库应该建在什么位置吗?在所给的图形中画出你的设计方案(要求保留作图痕迹)四、解答题(共58分)23.(10分)如图,在平面直角坐标系中,A(﹣1,5),B(﹣1,0),C(﹣4,3).(1)求出△ABC的面积;(2)在图中作出△ABC关于y轴的对称图形△A1B1C1;(3)写出点A1,B1,C1的坐标.24.(8分)如图,点E、F在BC上,BE=FC,AB=DC,∠B=∠C.求证:∠A=∠D.25.(10分)如图,A、D、F、B在同一直线上,AD=BF,AE=BC,且AE∥BC.求证:(1)EF=CD;(2)EF∥CD.26.(10分)如图,△ABC中,DE是AC的垂直平分线,AE=3cm,△ABD的周长为13cm,求△ABC的周长.27.(10分)如图,已知:AD是BC上的中线,且DF=DE.求证:BE∥CF.28.(10分)如图,已知△ABC,∠CAE是△ABC的外角,在下列三项中:①AB=AC;②AD平分∠CAE;③AD∥BC.选择两项为题设,另一项为结论,组成一个真命题,并证明.2015-2016学年甘肃省白银市会宁五中八年级(上)期中数学试卷参考答案与试题解析一、选择题(每小题4分,共48分)1.(4分)如图所示,图中不是轴对称图形的是()A.B.C.D.【解答】解:A、有四条对称轴,是轴对称图形,故本选项错误;B、有三条对称轴,是轴对称图形,故本选项错误;C、不是轴对称图形,因为找不到任何这样的一条直线,使它沿这条直线折叠后,直线两旁的部分能够重合,即不满足轴对称图形的定义,故本选项正确;D、有二条对称轴,是轴对称图形,故本选项错误.故选:C.2.(4分)下列图形中有稳定性的是()A.正方形B.长方形C.直角三角形D.平行四边形【解答】解:根据三角形具有稳定性,可得四个选项中只有直角三角形具有稳定性.故选:C.3.(4分)以下列各组线段为边,能组成三角形的是()A.2cm,3cm,5cm B.3cm,3cm,6cm C.5cm,8cm,2cm D.4cm,5cm,6cm【解答】解:根据三角形的三边关系,知A、2+3=5,不能组成三角形;B、3+3=6,不能够组成三角形;C、2+5=7<8,不能组成三角形;D、4+5>6,能组成三角形.故选:D.4.(4分)已知等腰三角形的两边长分别为3和6,则它的周长等于()A.12 B.12或15 C.15 D.15或18【解答】解:∵等腰三角形的两边长分别是3和6,∴①当腰为6时,三角形的周长为:6+6+3=15;②当腰为3时,3+3=6,三角形不成立;∴此等腰三角形的周长是15.故选:C.5.(4分)如图,某同学把一块三角形的玻璃打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是()A.带①去B.带②去C.带③去D.带①和②去【解答】解:A、带①去,仅保留了原三角形的一个角和部分边,不能得到与原来一样的三角形,故A选项错误;B、带②去,仅保留了原三角形的一部分边,也是不能得到与原来一样的三角形,故B选项错误;C、带③去,不但保留了原三角形的两个角还保留了其中一个边,符合ASA判定,故C选项正确;D、带①和②去,仅保留了原三角形的一个角和部分边,同样不能得到与原来一样的三角形,故D选项错误.故选:C.6.(4分)如图,为估计池塘岸边A、B两点的距离,小方在池塘的一侧选取一点O,测得OA=15米,OB=10米,A、B间的距离不可能是()A.5米 B.10米C.15米D.20米【解答】解:连接AB,根据三角形的三边关系定理得:15﹣10<AB<15+10,即:5<AB<25,∴A、B间的距离在5和25之间,∴A、B间的距离不可能是5米;故选:A.7.(4分)如图,将三角尺的直角顶点放在直尺的一边上,∠1=30°,∠2=50°,则∠3的度数为()A.50°B.40°C.30°D.20°【解答】解:如图,∵∠2=50°,并且是直尺,∴∠4=∠2=50°(两直线平行,同位角相等),∵∠1=30°,∴∠3=∠4﹣∠1=50°﹣30°=20°.故选:D.8.(4分)如图,△ABC中,AB=AC,∠A=36°,AB的垂直平分线DE交AC于D,交AB于E,则∠BDC的度数为()A.72°B.36°C.60°D.82°【解答】解:∵AB=AC,∠A=36°,∴∠ABC=∠C===72°,∵DE垂直平分AB,∴∠A=∠ABD=36°,∴∠BDC=∠A+∠ABD=36°+36°=72°.故选:A.9.(4分)已知等腰三角形一腰上的高线与另一腰的夹角为50°,那么这个等腰三角形的顶角等于()A.15°或75°B.140°C.40°D.140°或40°【解答】解:当为锐角三角形时可以画图,高与右边腰成50°夹角,由三角形内角和为180°可得,顶角为40°;当为钝角三角形时可画图,此时垂足落到三角形外面,因为三角形内角和为180°,由图可以看出等腰三角形的顶角的补角为40°,三角形的顶角为140°.故选:D.10.(4分)点P(﹣1,2)关于y轴对称点的坐标是()A.(1,2) B.(﹣1,﹣2)C.(1,﹣2)D.(2,﹣1)【解答】解:点P(﹣1,2)关于y轴对称点的坐标为(1,2).故选:A.11.(4分)下列判定直角三角形全等的方法,错误的是()A.两条直角边对应相等B.斜边和一锐角对应相等C.斜边和一直角边对应相等D.两锐角相等【解答】解:如果在两个直角三角形中,两条直角边对应相等,那么根据SAS即可判断两三角形全等,故选项A正确.如果如果在两个直角三角形中,斜边和一锐角对应相等,那么根据AAS也可判断两三角形全等,故选项B正确.如果如果在两个直角三角形中,斜边和一直角边对应相等,那么根据HL也可判断两三角形全等,故选项C正确.故选:D.12.(4分)如图在△ABD和△ACE都是等边三角形,则△ADC≌△ABE的根据是()A.SSS B.SAS C.ASA D.AAS【解答】解:∵△ABD和△ACE都是等边三角形,∴AD=AB,AC=AE,又∵∠DAB+∠BAC=∠EAC+∠BAC,∴∠DAC=∠BAE,∴△ADC≌△ABE(SAS).故选:B.二、填空题(每小题4分,共32分)13.(4分)如图,为了使一扇旧木门不变形,木工师傅在木门的背后加钉了一根木条,这样做的道理是利用三角形的稳定性.【解答】解:这样做的道理是利用三角形的稳定性.14.(4分)如图,∠ABC=∠DEF,AB=DE,要证明△ABC≌△DEF,需要添加一个条件为:BC=EF(只添加一个条件即可).【解答】解:所添条件为:BC=EF.∵BC=EF,∠ABC=∠DEF,AB=DE∴△ABC≌△DEF(SAS).15.(4分)等腰三角形中,已知两边的长分别是9和5,则周长为19或23.【解答】解:当边长为9的边为底时,三角形的三边长为:9、5、5,满足三角形的三边关系,此时其周长为19;当边长为9的边为腰时,三角形的三边长为:9、9、5,满足三角形的三边关系,此时其周长为23.故答案为:19或23.16.(4分)已知:如图,AC⊥BC于C,DE⊥AC于E,AD⊥AB于A,BC=AE.若AB=5,则AD=5.【解答】解:∵AC⊥BC于C,DE⊥AC于E,∴∠C=∠AED=90°,∠CAB+∠B=90°,∵AD⊥AB于A,∴∠CAB+∠EAD=90°,∴∠B=∠EAD(同角的余角相等)∵BC=AE,∴△ABC≌△DAE(AAS),∴AD=AB=5.故填517.(4分)如图:△ABC中,DE是AC的垂直平分线,AE=3cm,△ABD的周长为13cm,则△ABC的周长为19cm.【解答】解:∵DE是AC的垂直平分线,∴AD=CD,AC=2AE=6cm,又∵△ABD的周长=AB+BD+AD=13cm,∴AB+BD+CD=13cm,即AB+BC=13cm,∴△ABC的周长=AB+BC+AC=13+6=19cm.故答案为19cm.18.(4分)如图,在△ABC中,∠C=90°,AD平分∠BAC,BC=12cm,BD=8cm,则点D到AB的距离为4cm.【解答】解:先过点D作DE⊥AB于点E,∵BC=12cm,BD=8cm,∴DC=12﹣8=4cm,∵∠C=90°,∴DC⊥AC,∵AD平分∠BAC,∴DE=DC=4cm.故答案为:4.19.(4分)如图,在△ABC中,∠ACB=90°,∠B=30°,CD⊥AB于点D,若AD=2,则AC=4,AB=8.【解答】解:∵∠ACB=90°,∠B=30°,CD⊥AB于点D,∴∠BCD+∠B=90°,∠ACD+∠BCD=90°,∴∠BCD=∠B=30°,在Rt△ACD,又∵AD=2,∴AC=4,在Rt△ABC中,AB=2AC=2×4=8.20.(4分)如图所示,点P为∠AOB内一点,分别作出P点关于OA、OB的对称点P1,P2,连接P1P2交OA于M,交OB于N,P1P2=15,则△PMN的周长为15.【解答】解:∵P点关于OA的对称是点P1,P点关于OB的对称点P2,∴PM=P1M,PN=P2N.∴△PMN的周长为PM+PN+MN=MN+P1M+P2N=P1P2=15.故答案为:15三、作图题(每题6分,共12分)21.(6分)如图,A、B是两个蓄水池,都在河流a的同侧,为了方便灌溉作物,要在河边建一个抽水站,将河水送到A、B两地,问该站建在河边什么地方,可使所修的渠道最短,试在图中确定该点.(保留作图痕迹)【解答】解:作点A关于直线a对称的点C,连接BC交a于点P,则点P就是抽水站的位置.22.(6分)如图:某地有两所大学和两条相交叉的公路(点M,N表示大学,AO,BO表示公路).现计划修建一座仓库,希望仓库到两所大学的距离相等,到两条公路的距离也相等.你能确定仓库应该建在什么位置吗?在所给的图形中画出你的设计方案(要求保留作图痕迹)【解答】解:仓库D在∠AOB的平分线OE和MN的垂直平分线的交点上和∠AOB 的邻补角平分线OE和MN的垂直平分线的交点上,理由是:∵D在∠AOB的角平分线上,∴D到两条公路的距离相等,∵D在MN的垂直平分线上,∴DM=DN,∴D为所求.同理可得出:D′也符合要求.四、解答题(共58分)23.(10分)如图,在平面直角坐标系中,A(﹣1,5),B(﹣1,0),C(﹣4,3).(1)求出△ABC的面积;(2)在图中作出△ABC关于y轴的对称图形△A1B1C1;(3)写出点A1,B1,C1的坐标.【解答】解:(1)如图所示:△ABC的面积:×3×5=7.5;(2)如图所示:(3)A1(1,5),B1(1,0),C1(4,3).24.(8分)如图,点E、F在BC上,BE=FC,AB=DC,∠B=∠C.求证:∠A=∠D.【解答】证明:∵BE=FC,∴BE+EF=CF+EF,即BF=CE;又∵AB=DC,∠B=∠C,∴△ABF≌△DCE(SAS),∴∠A=∠D.25.(10分)如图,A、D、F、B在同一直线上,AD=BF,AE=BC,且AE∥BC.求证:(1)EF=CD;(2)EF∥CD.【解答】证明:(1)∵AE∥BC,∴∠A=∠B.又∵AD=BF,∴AF=AD+DF=BF+FD=BD.又∵AE=BC,在△AEF与△BCD中,∵∴△AEF≌△BCD,∴EF=CD.(2)∵△AEF≌△BCD,∴∠EFA=∠CDB.∴EF∥CD.26.(10分)如图,△ABC中,DE是AC的垂直平分线,AE=3cm,△ABD的周长为13cm,求△ABC的周长.【解答】解:∵DE是AC的垂直平分线,AE=3cm,∴AD=CD,AC=2AE=2×3=6cm,∴△ABD的周长=AB+BD+AD=AB+BD+CD=AB+BC=13cm,∴△ABC的周长=AB+BC+AC=13+6=19cm.27.(10分)如图,已知:AD是BC上的中线,且DF=DE.求证:BE∥CF.【解答】证明:∵AD是BC上的中线,∴BD=DC.又∵DF=DE(已知),∠BDE=∠CDF(对顶角相等),∴△BED≌△CFD(SAS).∴∠E=∠CFD(全等三角形的对应角相等).∴CF∥BE(内错角相等,两直线平行).28.(10分)如图,已知△ABC,∠CAE是△ABC的外角,在下列三项中:①AB=AC;②AD平分∠CAE;③AD∥BC.选择两项为题设,另一项为结论,组成一个真命题,并证明.【解答】解:命题:如果①②,那么③.证明如下:∵AB=AC,∴∠ABC=∠ACB.∵AD平分∠CAE,∴∠DAE=∠CAD.又∠DAE+∠CAD=∠ABC+∠ACB,∴2∠CAD=2∠C,即∠CAD=∠C,∴AD∥BC.。