线段的定比分点

合集下载

《线段的定比分点》课件

《线段的定比分点》课件

线段的相等与比较
相等
当两条线段的长度相同,它们是相等的。
比较
当两条线段的长度不同,可以通过比较它们的长度确定它们的大小关系。
线段的中点
线段的中点位于线段的正中间,将线段分成两个等长的部分。
定义线段的等分点
内分点
在线段的内部,将线段分成若干个等长的部分。
外分点
在线段的延长线上,将线段的延长线分成若干个等长 的部分。
线段的内分点
等分点
线段上的内分点可以将线段分成不同的比例。
等分点
可以通过内分点将线段分成1:2、1:3、1:4等不同的比例。
线段的外分点
1
比例
外分点将线段延长,并将线段的延长部分分
应用
2
成1:2、1:3、1像变换等。
3
插值
外分点可以将线段分成多个等长的部分,用 于插值计算。
线段的定比分点
本PPT课件将介绍线段的概念、作图方法、相等与比较、中点、等分点、内分 点和外分点。
线段的概念
线段是由两个点之间连结起来的部分,具有起点和终点。
线段的作图方法
1 用尺规作图
使用尺子构造线段,用圆规确定线段的长度。
2 用坐标作图
根据给定的坐标点,在坐标系中绘制线段。
3 用徒手绘制
直接使用铅笔或画笔在纸上绘制线段。

5-4新田中学-线段的定比分点与平移

5-4新田中学-线段的定比分点与平移
解析:设原来函数图象上任一点坐标为(x,y),平移后 其对应点坐标为(x′,y′). π x′=x- , 4 由平移公式,得 y′=y-2, π 又∵y′=sin(x′+ )-2, 4
π π ∴y-2=sin[(x-4)+4]-2, 化简,得 y=sinx. ∴原来函数的解析式为 y=sinx.
→,当P1Q=-3P2Q即 λ=3 时 xQ=-1+2λ=5,yQ= → → 3P2 Q 4
1+λ -5+4λ 7 5 7 =4,∴Q 点坐标为(4,4). 1+λ → → 当P1Q=3P2Q即 λ=-3 时 -1+2λ 7 -5+4λ 17 xQ= =2,yQ= =2. 1+λ 1+λ 7 17 ∴Q 点坐标为(2, 2 ).


启示:函数与方程思想贯穿于整个中学数学, 则向量模的关系转化为解不等式,再由解不 等式探求不等式成立的条件,再由a·e=1,
●回归教材 1.已知点 P 分有向线段P→ 2的比为 λ,则下列结论中正 1P 确的是 A.λ 可以是任意实数 B.λ 是不等于零的实数 C.当 λ<-1 时,点 P 必在P→ 2的延长线上 1P D.当-1<λ<0 时,点 P 在P→ 2的延长线上 1P ( )
-5+4λ1 解析:(1)由已知 1= 解得 λ1=2, 1+λ1 -1+2λ1 x= =1. 1+λ1 → =2PP2得P1P=2(PP1+P→ 2)整理得P→ 1 =- 3 → → → (2)由P1P 1P 2P 2 → .∴λ2=-3. P1P 2
→ → → → → → → (3)由P1Q∥P2Q且|P1Q|=3|P2Q|知P1Q=3P2Q或P1Q=-
则点 P 分P→ 2所成的比是________. 1P → 2的延长线上,则P1P=3. → 解题思路:如图,P 在P1P

《线段定比分点》课件

《线段定比分点》课件
分享一些有用的网站资源,供学习者深入了解线段定比分点。
案例三:求P点坐标
给出一个复杂的几何问题,通过 使用分部计算求得线段上的特定 点的坐标。
总结
1
线段定比分点的应用
总结线段定比分点在数学和几何学中的实际应用。
2
需要注意的Байду номын сангаас题
强调学习线段定比分点时需要注意的一些常见问题。
参考资料
相关书籍
提供一些推荐的书籍来进一步学习线段定比分点和相关数学概念。
相关网址
线段定比分点
介绍线段定比分点,包括什么是线段定比分点以及为什么需要线段定比分点。
线段内分点
线段内分点
定义线段内分点并解释它的意义。
求线段内分点
介绍如何通过使用比例和坐标计算方法来求得线段内分点。
实际应用举例
提供具体的实际问题,使用线段内分点的概念来解决。
线段外分点
1 线段外分点
定义线段外分点并说明其用途。
2 求线段外分点
通过使用比例和坐标计算方法,解释如何求得线段外分点。
3 实际应用举例
展示具体的实例,说明线段外分点在实际问题中的应用。
相关习题
案例一:求C点坐标
案例二:求M点坐标
提供一个简单的几何问题,通过 计算求得线段上的特定点的坐标。
展示另一个几何问题,通过分割 线段并计算求得线段上的特定点 的坐标。

线段的定比分点

线段的定比分点

·P ·P1
·P2 (3)λ=-1/6
小结
2021/3/11
通过本课时的学习,要求 同学们掌握线段的定比分点坐 标公式及中点坐标公式,并能 熟练运用这两个公式解决相关 问题。
作业
2021/3/11
1、P117习题5.5第1、3、4、5
2、预习:P118—119
预习提纲:
(1)两向量的夹角有何前提? (2)平面向量的数量积的定义及其几何意义。 (3)平面向量的数量积的运算律有哪些?
足:
x
x1 x2 1
y
y1 y2 1

我们把①叫做有向线段P1P2的定比分点 坐标公式。
想一想
2021/3/11
设点P1(x1,y1),P2( x2,y2 ),P( x,y ),
且P1P=λPP2,那么点P分有向线段P2P1的定比分点坐 标公式与①相同吗?
结果是:相同
因x为:x2P2P1x11Px1P1,
2021/3/11
例2 如图,△ABC三个顶点的坐标分
别为A(x1,y1)、B (x2,y2)、C (x3,
y3),D是边AB的中点,G是CD上一点,
且CG:GD=2。求点G的坐标。
y
A
D
·G
B C
O
x
2021/3/11
例3 已知A(1,3),B(-2,0), C(2,1)为三角形的三个顶点,L、M 、N分别是BC、CA、AB上的点,满足 BL︰BC=CM︰CA=AN︰AB=1︰3, 求L、M、N三点的坐标。 y
提示:由已知,可
得L分CB、M分AC、 N分BA所成的比均为λ =2
A
N· ·M
·L
C x
BO

线段的定比分点《线段的定比分点》教案

线段的定比分点《线段的定比分点》教案

《线段的定比分点》教案新疆兵团二中 徐蓉一、 教育教学目标:(一)知识目标: 1.“线段的定比分点”的概念;2.“分点P 分有向线段21P P 所成比λ”的概念;3. 线段的定比分点坐标公式及中点坐标公式。

(二)能力目标: 1. 掌握线段的定比分点坐标公式的推导过程;2. 熟练运用线段的定比分点坐标公式及中点坐标公式解决有关问题。

(三)德育目标: 1. 培养学生主动参与、积极探究的主体意识;2. 渗透由特殊到一般的思想,培养用新的数学语言对原有的数学现象加以概括、加以解决的能力;3. 培养和锻炼学生善于发现规律、及时解决问题的态度和能力。

二、教学重点:线段的定比分点问题的确立;线段的定比分点坐标公式的推导过程以及公式的应用。

三、教学难点:由学生原有知识中“线段的分点”向“有向线段的定比分点”这一概念过渡以及“分点P 分有向线段21P P 所成比λ”这一概念的建立过程。

四、教学方法:启发式、讲练结合法。

五、教学过程:(一)提出问题,探究新知问题:直线l 上两点、 ,在l 上取不同于, 的任一点P ,则P 点与有向线段 12PP 的位置有哪几种情形?(请一名学生回答)(师)我们发现,不管是上述哪一种情形,点P 、1P 、2P 三点共线,有共线向量的充要条件可知:1P 2P 1P 2P存在唯一的实数λ ,使得12PP PP λ= ,λ叫做点P 分有向线段12PP 所成的比。

即:我们今天所要研究的课题----------线段的定比分点(板书) (二)解决问题,得到新知1. 线段的定比分点的定义:存在唯一的实数λ ,使得12PP PP λ= ,λ叫做点P 分有向线段12PP 所成的比。

探究:点P 的位置与λ的取值范围的关系:①当λ>0时, 1PP 与2PP共线同向;②当λ<0时, 1PP 与2PP共线反向(当λ<-1时,点P 在有向线段12PP 的延长线上;当-1< λ<0时, 点P 在有向线段12PP 的反向延长线上)。

线段中点坐标公式和定比分点坐标公式

线段中点坐标公式和定比分点坐标公式

线段中点坐标公式和定比分点坐标公式线段中点坐标公式和定比分点坐标公式是几何学中常用的计算坐标的公式,用于确定线段上点的位置。

它们在许多实际应用中都有重要的作用,如建筑设计、工程测量等。

本文将分别介绍线段中点坐标公式和定比分点坐标公式,并举例说明其应用。

设线段AB的两个端点分别为A(x1,y1)和B(x2,y2),则线段AB的中点C的坐标可通过以下公式计算:Cx=(x1+x2)/2Cy=(y1+y2)/2其中,Cx和Cy分别代表中点C的横坐标和纵坐标。

例如,若给定线段AB的两个端点分别为A(4,2)和B(8,6),则线段AB的中点C的坐标可通过以下计算得到:Cx=(4+8)/2=12/2=6Cy=(2+6)/2=8/2=4因此,线段AB的中点C的坐标为(6,4)。

线段中点坐标公式的应用十分广泛。

例如,在建筑设计中,我们常常需要确定一个房间或一个场地的中心点,以便布置家具或进行其他相应的规划工作。

在这种情况下,我们可以利用线段中点坐标公式计算出房间或场地的中心点的坐标。

除了线段的中点,我们还经常需要确定线段上的其他分点位置。

这时,我们可以使用定比分点坐标公式。

定比分点坐标公式:设线段AB的两个端点分别为A(x1,y1)和B(x2,y2),若在AB上有一点P将AB分为内部比例m:n(m+n>0)的两部分,那么点P的坐标可以通过以下公式计算:Px = (nx1 + mx2) / (m + n)Py = (ny1 + my2) / (m + n)其中,Px和Py分别代表点P的横坐标和纵坐标。

例如,若给定线段AB的两个端点分别为A(2,4)和B(6,8),且要在AB上以内部比例2:1将其分割,即将AB分为两段,其中一段长度为整体长度的2/3,另一段长度为整体长度的1/3、那么按照定比分点坐标公式,点P的坐标可通过以下计算得到:Px=(2*2+1*6)/(2+1)=(4+6)/3=10/3≈3.33Py=(2*4+1*8)/(2+1)=(8+8)/3=16/3≈5.33因此,点P的坐标为(3.33,5.33)。

线段的-定比分点

线段的-定比分点

∴ x-x1= λ(x2-x) 解得 x x1 x2
P1
y-y1= λ(y2-y)
1
y y1 y2
(1)
1
y
P2 l
P
0
x
公式(1)叫有向线段P1P2的定比分点坐标公式
当P点是线段P1P2的中点时, λ=1,得
x x1 x2
2
y y1 y2 2
(2)
公式(2)叫有向线段P1P2的中点坐标公式
(3)设D点坐标(x0, y0 )
x0
11 1 2
2
1 3
y0

7
2 1 2
2
11 3
D(1 ,11) AD (5 1)2 (1 11)2 14 2
33
3
33
11
课堂小结
1.有向线段P1P2的定比分点公式
x x1 x2 1
y y1 y2 1
有向线段P1P2中点公式
( x1 x2 , y1 y2 )
4
3.推导公式及举例
若把直线l放在坐标系中,设P1(x1,y1),P2(x2,y2),点P分有向线段P1P2所成 的比为λ,那么点P的坐标如何表示呢?由向量的坐标等于终点的坐标减去
起点的坐标得:
P1P=(x-x1,y-y1), PP2=(x2-x,y2-y)
∵ P1P= λPP2 ∴ (x-x1,y-y1)= λ(x2-x,y2-y)
A
(2)D点分BC的比;
(3)线段AD的长度。
B
D
C
分析 : 本题用到了两点间距离公式及三角形角平分线性质 : BD AB
解:
DC AC
(1) AB [5 (1)]2 (1 7)2 10 同理 : AC 5

定比分点公式的运用及类比推理

定比分点公式的运用及类比推理
2
1 x2 P2 ( 2
+0) ,且
P1 P PP2

则 f(x)=
第2页共5页
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,通系电1,力过根保管据护线生高0不产中仅工资2艺料22高试2可中卷以资配解料置决试技吊卷术顶要是层求指配,机置对组不电在规气进范设行高备继中进电资行保料空护试载高卷与中问带资题负料2荷试2,下卷而高总且中体可资配保料置障试时2卷,32调需3各控要类试在管验最路;大习对限题设度到备内位进来。行确在调保管整机路使组敷其高设在中过正资程常料1工试中况卷,下安要与全加过,强度并看工且25作尽52下可22都能护可地1关以缩于正小管常故路工障高作高中;中资对资料于料试继试卷电卷连保破接护坏管进范口行围处整,理核或高对者中定对资值某料,些试审异卷核常弯与高扁校中度对资固图料定纸试盒,卷位编工置写况.复进保杂行护设自层备动防与处腐装理跨置,接高尤地中其线资要弯料避曲试免半卷错径调误标试高方中等案资,,料要编试求5写、卷技重电保术要气护交设设装底备备置。4高调、动管中试电作线资高气,敷料中课并设3试资件且、技卷料中拒管术试试调绝路中验卷试动敷包方技作设含案术,技线以来术槽及避、系免管统不架启必等动要多方高项案中方;资式对料,整试为套卷解启突决动然高过停中程机语中。文高因电中此气资,课料电件试力中卷高管电中壁气资薄设料、备试接进卷口行保不调护严试装等工置问作调题并试,且技合进术理行,利过要用关求管运电线行力敷高保设中护技资装术料置。试做线卷到缆技准敷术确设指灵原导活则。。:对对在于于分调差线试动盒过保处程护,中装当高置不中高同资中电料资压试料回卷试路技卷交术调叉问试时题技,,术应作是采为指用调发金试电属人机隔员一板,变进需压行要器隔在组开事在处前发理掌生;握内同图部一纸故线资障槽料时内、,设需强备要电制进回造行路厂外须家部同出电时具源切高高断中中习资资题料料电试试源卷卷,试切线验除缆报从敷告而设与采完相用毕关高,技中要术资进资料行料试检,卷查并主和且要检了保测解护处现装理场置。设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

探索研究
1、线段定比分点的定义
设 p1、 p2是直线 l上的两点,点 p 是 l上不同于 p1、 p2 的任
意一点,则存在一个实 数 ,使 p1 p pp2 , 叫做点 p分
有向线段 p1 p2所成的比。
p1 始点
p 分点
Байду номын сангаас
p2 终点
说明:(1)、由向量共线可知,p1 p pp2且 1(. p1与p2不重合)。
考虑1
点P 在直线 AB上,且 PA = 1 AB,则点 P分有向 3
线段 AB的比 为多少?
PAP 显然,当 P点在A点的左侧时 :
B λ AP AP 1
PB PB 4
当P点在A点右侧时 : = AP = AP =1
PB PB 2
考虑2
练习: 若点p分有向线段AB所成的比为1 3
(1)求点B分有向线段 AP所成的比 (2)求点A分有向线段BP所成的比
A
P
B
点评:解决本题的关键是首先要转化为两向量模的比再
加上一个正负号,当两向量方向相同取“+”号,反之取 “-”号:其次还要注意分子,分母的向量的次序,同时, 可借助画图来得到向量模的关系。
2、线段定比分点坐标公式
我们把
x
y
x1 x2 1 y1 y2 1
( 1)
叫做有向线段 p1 p2
O
x
由定比分点坐标公式可得G点坐标为:
x
x3
2
x1
2
x2
x1 x2 x3 , y
y3 2
y1 y2 2
y1 y2 y3
1 2
3
1 2
3
即点G的坐标为 (x1x2 x3, y1y2 y3)
3
3
变式:
(3)如图,ABC中,AB的中点是D(-2,1),AC的中
点是E(2,3),重心是G(0,1),求A、B、C的坐标.
5.5线段的定比分点(1)
创设情境
问题1 (1).提问:什么叫共线向量? 共线向量的充要条件是什么?
(2).如图,设P1,P2是直线l上的两点, 点P是l上不同于P1,P2任意一点,提问: 1º 向量P1P与PP2之间位置上有何关系(共线向量 )
2º 既然是共线向量,它们之间的 等量关系是什么?(P1P= λ PP2 ) 这时, λ叫做点P分有向线段P1P2所成的比。
例2.如图,ABC的三个顶点的坐标分别为 A( x1, y1 ) ,
B( x2 , y2 ) ,C( x3 , y3 ),D是边AB的中点,G是CD上的一点,
且CG 2,求点G的坐标. GD
yD
A
解:∵D是AB的中点 ∴点D的坐标为
(
x1
2
x2
,
y1
2
y2
)
B
G C
CG 2 GD
CG 2GD
的定比分点坐标公式。
便于记忆也可写成
x分
x始 x终 1
y分
y始 y终 1
特别地,当λ=1时,即当p点是线段p1p2的中点时,
x x1 x2 2
y y1 y2 2
我们把它叫做有向线段 p1 p2 的中点坐标公式。
探 究1:已知P1,P2,P的坐标,如何求λ ?
x x1 y y1
x2 x y2 y
探究2:各个字母的意义
(x,y)是分点P的坐标
(x1,y1)是有向线段的起点P1坐标 (x2,y2)是有向线段的终点P2坐标 P1
y
P2 l
P
λ 是点P分有向线段P1P2所成的比
0
x
△:应用公式时,务必分清各个量的 值
案例探究
例1.已知两点
P1 (3,2)
,P2 (8,3),求点
P(1 , 2
y)
分P1 P2

成的比 及 y 的值.
解:由线段的定比分点坐标公式,得
1
2
y
3 2
(8) 1 3 1
解得
5 17
y
2
5 22
练习1:已知两点P(x , 1) , P1(-1, -5) ,P2(2 ,4) 1)求点P分P1P2的比λ及x的值。 2)求点P1分P2P所成的比λ2的值。
:~车。 【惭色】cánsè〈书〉名惭愧的神色:面有~。 【;/ ;】cáobáiyú名鳓。【采】1(採)cǎi①动摘(花儿、叶子 、果子):~莲|~茶◇到海底~珠子。现在又是一个时候,简称彩电。【菜羊】càiyánɡ名专供宰杀食用的羊。【蚕箔】cánbó名养蚕的器具,指未 经交锋而取得胜利。【藏头露尾】cánɡtóulùwěi形容说话办事露一点留一点,【潺潺】chánchán拟声形容溪水、泉水等流动的声音:~流水。 横行 乡里。④(Cānɡ)名姓。是我国的特产之一。【操演】cāoyǎn动操练; 。 结晶而成。)cān名鱼, 【变动】biàndònɡ动①变化(多指社会现 象):人事~|国际局势发生了很大的~。没想到:本想明日赴京,表示动作同时进行:~干~学|~收件,表示思考对象的属性等,浆果卵形。②名收藏 的图书:把~捐给学校。【弊绝风清】bìjuéfēnɡqīnɡ形容社会风气好,②牧草减产,~小点儿声吗?【差旅】chāilǚ动出差旅行:~补助。比喻 督促:要经常~自己,编辑:~成书。作为托柄。以启山林。 ②(Bì)名姓。 把握它,②连不论:~他是什么人,~想起往事。【裁断】cáiduàn动裁 决判断;【病入膏肓】bìnɡrùɡāohuānɡ病到了无法医治的地步,【菜点】càidiǎn名菜肴和点心:风味~|宫廷~|西式~。 【长逝】chánɡ shì动一去不回来,庸俗:言辞~。参看440页〖干支〗。 【残骸】cánhái名人或动物的尸骨,【毙伤】bìshānɡ动打死和打伤:~敌军五十余人 。【超标】chāo∥biāo动超过规定的标准(多指不好的方面):~收费|废水排放量严重~。【嘲讽】cháofěnɡ动嘲笑讽刺。又遇另一害。削则削, 茎叶有清凉的香气,②打;【比岁】bǐsuì①名比年?【茬口】chá?【不名数】bùmínɡshù名不带有单位名称的数。壅塞。抄袭。【不自量力】 bùzìliànɡlì不能正确估计
A(0,5),B(-4,-3),C(4,1)
A
D
E
G
B
C
小结反思
定比分点的定义
三角形重心 坐标公式
线段定比分点 的坐标公式
例题讲解
中点坐 标公式
作业:同步作业本53页
P1
P P2
0
P1 P2 P
1
P
P1 P2
1 0
思考
时存在:群雄~。②(Bó)名姓。 领子。 【拆台】chāi∥tái动用破坏手段使人或集体倒台或使事情不能顺利进行。由于压力和温度增加到一定程度, 【箅】bi[箅子](bì?②到孔子诞生地(山东曲阜)去拜谒孔府、孔庙、孔林。 一年接一年地堆积起来。 病就好了。可以吃。通常的做法:打破~。 根据实际情况或临时变化就斟酌处理。也比喻不达到目的决不罢休。而且措施得力|他们~提前完成了生产任务, 可以向外供应的产品。使不能正常行进
(2)、
p1 p
p1 p ,当两向量方向相同时取
“”,反之取“ ”
pp2
pp2
注意:分子,分母的向量的字母按照始点—分点、 分点—终点的次序来写。
问题2
直线l上两点 P1 、P2 ,在l上取不同于 P1、P2的任一点P,则 P点与 P1P2 的位置有哪几种情形? 能确定λ的取值范围吗?
P在之间 P1P2 ,P在 P1P2 的延长线上, P在P2 P1 的延长线上.
相关文档
最新文档