最新七年级数学不等式应用题专项练习

合集下载

七年级不等式试题及答案

七年级不等式试题及答案

七年级不等式试题及答案一、选择题1. 若a > b,c > 0,则下列不等式中正确的是()A. ac > bcB. ac < bcC. a/c > b/cD. a/c < b/c答案:A2. 若a < b < 0,c > 0,则下列不等式中正确的是()A. ac > bcB. ac < bcC. a/c > b/cD. a/c < b/c答案:B二、填空题1. 若x > 5,则x - 3 _______ 2。

答案:>2. 若y < -2,则-2y _______ 4。

答案:>三、解答题1. 若a > b,且a > 0,b > 0,求证:a² > b²。

证明:因为a > b,且a > 0,b > 0,所以a - b > 0,两边同时乘以a + b(a + b > 0),得到a² - b² > 0,所以a² > b²。

2. 若x > y,且x < 0,y < 0,求证:-x > -y。

证明:因为x > y,且x < 0,y < 0,所以-x < -y,两边同时乘以-1(-1 < 0),得到-x > -y。

四、应用题1. 某工厂生产的产品,若每件产品成本为c元,售价为p元,且c < p。

已知生产了n件产品,求工厂的总利润。

解:总利润 = 总售价 - 总成本= np - nc= n(p - c)因为c < p,所以p - c > 0,所以工厂的总利润为n(p - c)元。

2. 某学校有m个学生,每个学生至少需要x本练习本,现在学校有y 本练习本,且x > y/m。

问学校是否需要购买额外的练习本?解:因为每个学生至少需要x本练习本,共有m个学生,所以总共需要mx本练习本,又因为x > y/m,所以mx > y,所以学校需要购买额外的练习本。

初一不等式试题及答案

初一不等式试题及答案

初一不等式试题及答案1. 若不等式 \(2x - 5 < 3\),求 \(x\) 的取值范围。

答案:首先将不等式 \(2x - 5 < 3\) 进行移项,得到 \(2x < 8\)。

然后将两边同时除以2,得到 \(x < 4\)。

因此,\(x\) 的取值范围是\(x < 4\)。

2. 已知 \(a > 0\),\(b < 0\),判断不等式 \(a - b > 0\) 是否成立。

答案:由于 \(a > 0\) 且 \(b < 0\),即 \(a\) 是正数,\(b\) 是负数。

根据不等式的性质,正数减去负数结果为正数,所以 \(a - b > 0\) 成立。

3. 解不等式组:\[\begin{cases}x + 2 > 0 \\3x - 4 \leq 5\end{cases}\]答案:首先解第一个不等式 \(x + 2 > 0\),得到 \(x > -2\)。

接着解第二个不等式 \(3x - 4 \leq 5\),得到 \(x \leq 3\)。

因此,不等式组的解集为 \(-2 < x \leq 3\)。

4. 若不等式 \(3x - 7 > 0\),求 \(x\) 的最小整数值。

答案:首先解不等式 \(3x - 7 > 0\),得到 \(3x > 7\)。

然后将两边同时除以3,得到 \(x > \frac{7}{3}\)。

因为 \(x\) 必须是整数,所以 \(x\) 的最小整数值是 3。

5. 已知不等式 \(5x - 2 \geq 8\),求 \(x\) 的取值范围。

答案:将不等式 \(5x - 2 \geq 8\) 进行移项,得到 \(5x \geq10\)。

然后将两边同时除以5,得到 \(x \geq 2\)。

因此,\(x\) 的取值范围是 \(x \geq 2\)。

6. 判断不等式 \(-3x + 4 > 0\) 是否有解。

不等式练习题

不等式练习题

不等式练习题一、基本不等式1. 已知a > b,求证:a + c > b + c。

2. 已知x > 3,求证:x^2 > 9。

3. 已知0 < x < 1,求证:x^3 < x。

4. 已知a, b均为正数,求证:a^2 + b^2 > 2ab。

5. 已知|x| > |y|,求证:x^2 > y^2。

二、一元一次不等式1. 解不等式:3x 7 > 2x + 4。

2. 解不等式:5 2(x 3) ≤ 3x 1。

3. 解不等式:2(x 1) 3(x + 2) > 7。

4. 解不等式:4 3(x 2) ≥ 2x + 5。

5. 解不等式:5(x 3) + 2(2x + 1) < 7x 9。

三、一元二次不等式1. 解不等式:x^2 5x + 6 > 0。

2. 解不等式:2x^2 3x 2 < 0。

3. 解不等式:x^2 4x + 4 ≤ 0。

4. 解不等式:3x^2 + 4x 4 > 0。

5. 解不等式:x^2 + 5x 6 < 0。

四、分式不等式1. 解不等式:x / (x 1) > 2。

2. 解不等式:1 / (x + 3) 1 / (x 2) ≤ 0。

3. 解不等式:(x 1) / (x + 1) < 0。

4. 解不等式:(2x + 3) / (x 4) ≥ 1。

5. 解不等式:(3x 2) / (x^2 5x + 6) > 0。

五、含绝对值的不等式1. 解不等式:|x 2| > 3。

2. 解不等式:|2x + 1| ≤ 5。

3. 解不等式:|3x 4| < 2。

4. 解不等式:|x + 3| |x 2| > 1。

5. 解不等式:|x 5| + |x + 1| < 6。

六、综合应用题1. 已知不等式组:$\begin{cases} 2x 3y > 6 \\ x + 4y ≤ 8 \end{cases}$,求x的取值范围。

最新人教版七年级数学下册第九章 :不等式组应用题专项训练

最新人教版七年级数学下册第九章 :不等式组应用题专项训练

一、选填题1、雯雯同学到文具店买中性笔和笔记本,中性笔每支0.8元,笔记本每本1.2元,雯雯带了10元钱,则可供她选择的购买方案数为(两种文具都买,且余下的钱少于0.8元)()A. 6B. 7C. 8D. 92、雯雯去文具店买文具,练习本每个卖2元,水性笔每支卖3元,两种文具至少各买1个,买文具的总钱数不能超过15元,则不同的购买方案的个数为()A. 11B. 12C. 13D. 143、某商品的售价是150元,商家售出一件这种商品可获利润是进价的10%~20%,则进价的范围是()(精确到1元).4、甲、乙两队进行篮球对抗赛,规定每队胜一场得3分,平一场得1分,负一场得0分.一共进行了10场比赛,甲队保持不败,且得分不低于24分,则甲队至少胜了()场.二、解答题5、把一些书分给几名同学,如果每人分3本,那么余8本;如果前面的每名同学分5本,那么最后一人就分不到3本.这些书有多少本?共有多少人?6、把一些糖果分给小朋友,如果分给每个小朋友4颗糖,那么剩下28颗糖;如果分给每个小朋友5颗糖,那么最后一位小朋友分得的糖果不到4颗,但至少1颗.至少有多少个小朋友?7、商场销售甲、乙两种商品,它们的进价和售价如下表:(1)若该商场购进甲、乙两种商品共100件,恰好用去2700元,求购进甲、乙两种商品各多少件?(2)该商场为使销售甲、乙两种商品共100件的总利润(利润=售价−进价)不少于750元,且不超过760元,请你帮助该商场设计相应的进货方案.8、某商店购买60件A商品和30件B商品共用了1080元,购买50件A商品和20件B商品共用了880元.(1)A、B两种商品的单价分别是多少元?(2)已知该商店购买B商品的件数比购买A商品的件数的2倍少4件,如果需要购买A、B两种商品的总件数不少于32件,且商店购买A、B两处商品的总费用不超过296元,那么该商店有哪几种购买方案?9、某公司为奖励在趣味运动会上取得好成绩的员工,计划购买甲、乙两种奖品共20件.其中甲种奖品每件40元,乙种奖品每件30元. (1)如果购买甲、乙两种奖品共花费了650元,求甲、乙两种奖品各购买了多少件?(2)如果购买乙种奖品的数量不超过甲种奖品数量的2倍,总花费不超过680元,求该公司有哪几种不同的购买方案?10、某省计划对A,B两类学校的校舍进行改造,根据预算,改造一所A类学校和三所B类学校的校舍共需资金480万元;改造三所A 类学校和一所B类学校的校舍共需资金400万元.(1)改造一所A类学校的校舍和一所B类学校的校舍所需资金分别是多少万元?(2)该省计划共改造8所A,B两类学校的校舍.改造资金由国家财政和地方财政共同承担,若国家财政投入的资金不超过770万元,地方财政投入的奖金不少于210万元,其中地方财政投入到A,B两类学校的改造资金分别为每所20万元和30万元.请你通过计算说明有几种改造方案?11、江南农场收割小麦,已知1台大型收割机和3台小型收割机1小时可以收割小麦1.4公顷,2台大型收割机和5台小型收割机1小时可以收割小麦2.5公顷.(1)每台大型收割机和每台小型收割机1小时收割小麦各多少公顷?(2)大型收割机每小时费用为300元,小型收割机每小时费用为200元,两种型号的收割机一共有10台,要求2小时完成8公顷小麦的收割任务,且总费用不超过5400元,有几种方案?12、“全民阅读”深入人心,好读书,读好书,让人终身受益.为满足同学们的读书需求,学校图书馆准备到新华书店采购文学名著和动漫书两类图书.经了解,20本文学名著和40本动漫书共需1520元,20本文学名著比20本动漫书贵440元(注:所采购的文学名著价格都一样,所采购的动漫书价格都一样).(1)求每本文学名著和动漫书各多少元;(2)若学校要求采购动漫书比文学名著多20本,动漫书和文学名著总数不低于72本,总费用不超过2000元,请写出所有符合条件的购书方案.13、现有A,B两种商品,买2件A商品和1件B商品用了90元,买3件A商品和2件B商品用了160元.(1)求A,B两种商品每件各是多少元?(2)如果雯雯准备购买A,B两种商品共10件,总费用不超过350元,且不低于300元,问有几种购买方案?哪种方案费用最低?14、雯雯的妈妈开了一家糕点店,现有10.2千克面粉和10.2千克鸡蛋,计划加工普通糕点和精制糕点两种产品共50盒.已知加工一盒普通糕点需0.3千克面粉和0.1千克鸡蛋,加工一盒精制糕点需0.1千克面粉和0.3千克鸡蛋.(1)有哪几种不同的加工方案?(2)若销售一盒普通糕点和一盒精制糕点的利润分别为3元和4元,则按哪种方案加工,雯雯的妈妈可获得的利润最大?最大利润是多少?15、在某河流污水网管改造建设中,需要确保在汛期来临前将建设过程中产生的渣土清运完毕,每天至少需要清运渣土12720 m3.施工方准备每天租用大、小两种运输车共80辆,已知每辆大车每天运送渣土200 m3,每辆小车每天运送渣土120 m3,大、小车每天每辆租车费用分别为1200元、900元,且要求每天租车的总费用不超过85300元.(1)施工方共有多少种租车方案?(2)哪种租车方案费用最低,最低费用是多少?16、公交公司将淘汰某一条线路上“冒黑烟”较严重的公交车,计划购买A型和B型两种环保节能公交车共10辆,若购买A型公交车1辆,B型公交车2辆,共需400万元;若购买A型公交车2辆,B 型公交车1辆,共需350万元.(1)求购买A型和B型公交车每辆各需多少万元?(2)预计在该线路上A型和B型公交车每辆年均载客量分别为60万人次和100万人次.若该公司购买A型和B型公交车的总费用不超过1220万元,且确保这10辆公交车在该线路上的年均载客量总和不少于650万人次,则该公司有哪几种购车方案?哪种购车方案总费用最少?最少总费用是多少?17、某中学开学初到商场购买A,B两种品牌的足球,购买A种品牌的足球50个,B种品牌的足球25个,共花费4500元.已知购买一个B种品牌的足球比购买一个A种品牌的足球多花30元.(1)求购买一个A种品牌、一个B种品牌的足球各需要多少元?(2)为了进一步丰富同学们的体育活动,学校决定再次购进A,B两种品牌的足球共50个,正好赶上商场对商品价格进行调整,A种品牌的足球售价比第一次购买时提高4元,B种品牌的足球按第一次购买时售价的九折出售,如果学校要求此次购买A,B两种品牌的足球的总费用不超过第一次花费的70%,且这次购买的B种品牌的足球不少于23个,则这次学校有哪几种购买方案?(3)请你求出学校在第二次购买活动中最多需要多少资金.18、求分式不等式5x+12x−3<0的解集.一、选填题1、B2、D3、125元~136元4、7二、解答题5、这些书有26本,共有6人.6、至少有30个小朋友.7、(1)甲40件,乙60件;(2)该商场有三种进货方案:方案一:购进甲种商品14件,购进乙种商品86件;方案二:购进甲种商品15件,购进乙种商品85件;方案三:购进甲种商品16件,购进乙种商品84件.8、(1)A商品的单价是16元,B商品的单价是4元;(2)该商店有两种购买方案:方案一:购买12件A商品,购买20件B商品;方案二:购买13件A商品,购买22件B商品.9、(1)甲奖品5件、乙奖品15件;(2)有两种不同的购买方案:方案一:购买甲种奖品7件,乙种奖品13件;方案二:购买甲种奖品8件,乙种奖品12件.10、(1)改造一所A类校舍需90万元,改造一所B类校舍需130万元;(2)有三种不同的改造方案:方案一:改造1所A类学校,7所B类学校;方案二:改造2所A类学校,6所B类学校;方案三:改造3所A类学校,5所B类学校;11、(1)每台大型收割机每小时收割小麦0.5公顷,每台小型收割机每小时收割小麦0.3公顷;(2)有三种方案:方案一:5台大小型收割机,5台小型收割机;方案二:6台大小型收割机,4台小型收割机;方案三:7台大小型收割机,3台小型收割机.12、(1)每本文学名著40元,每本动漫书18元;(2)该学校有三种进货方案:方案一:采购文学名著26本,采购动漫书46本;方案二:采购文学名著27本,采购动漫书47本;方案三:采购文学名著28本,采购动漫书48本.13、(1)A,B两种商品每件各20元、50元;(2)有两种购买方案:方案一:购买A种商品5件,B种商品5件;方案二:购买A种商品6件,B种商品4件.方案二费用最低.14、(1)有三种不同的加工方案:方案一:加工普通糕点24盒,精制糕点26盒;方案二:加工普通糕点25盒,精制糕点25盒;方案三:加工普通糕点26盒,精制糕点24盒.(2)方案一的利润最大,最大利润为176元.15、(1)施工方共有6种租车方案:方案一:大车39辆,小车41辆;方案二:大车40辆,小车40辆;方案三:大车41辆,小车39辆;方案四:大车42辆,小车38辆;方案五:大车43辆,小车37辆;方案六:大车44辆,小车36辆;(2)方案一的费用最低,最低费用为83700元.16、(1)购买A型和B型公交车每辆各需100万元、150万元;(2)该公司有3种购车方案:方案一:购买A型公交车6辆,B型公交车7辆;方案二:购买A型公交车7辆,B型公交车3辆;方案三:购买A型公交车8辆,B型公交车2辆.方案三总费用最少,最少总费用为1100万元.17、(1)A种品牌的足球单价为50元,B种品牌的足球单价为80元.(2)学校有3种购买方案:方案一:购买A种品牌的足球25个,购买B种品牌的足球25个;方案二:购买A种品牌的足球26个,购买B种品牌的足球24个;方案三:购买A种品牌的足球27个,购买B种品牌的足球23个. (3)学校在第二次购买活动中最多需要3150元.18、分式不等式5x+12x−3<0的解集为−15<x<32.。

七年级不等式题型训练

七年级不等式题型训练

七年级不等式题型训练题目 1若不等式x < a只有 4 个正整数解,则a的取值范围是多少?解析:因为x < a只有 4 个正整数解,所以这 4 个正整数解为 1、2、3、4,所以4 < a≤ 5。

题目 2若不等式组x + 1 > 0 x - a < 0无解,则a的取值范围是多少?解析:解不等式x + 1 > 0,得x > -1;解不等式x - a < 0,得x < a。

因为不等式组无解,所以a≤ -1。

题目 3若不等式2x + 5 > 4x - 1的解集是x < 3,求a的值。

解析:解不等式2x + 5 > 4x - 1,2x - 4x > -1 - 5,-2x > -6,x < 3。

所以无需考虑a,此题中a的值未给出相关条件。

题目 4若关于x的不等式3x - a≤ 0的正整数解是 1、2、3,求a的取值范围。

解析:解不等式3x - a≤ 0,3x≤ a,x≤ (a)/(3)。

因为正整数解是 1、2、3,所以3≤ (a)/(3) < 4,9≤ a < 12。

题目 5若不等式组x - a > 0 x - b < 0的解集为a < x < b,求a、b的大小关系。

解析:解不等式x - a > 0,得x > a;解不等式x - b < 0,得x < b。

因为解集为a < x < b,所以a < b。

题目 6若不等式-2x > a - 4的解集是x < 2 - (a)/(2),求a的值。

解析:-2x > a - 4,x < -(a - 4)/(2),即x < 2 - (a)/(2),所以-(a)/(2) = -(a)/(2),a为任意实数。

题目 7若不等式组x + 8 < 4x - 1 x > m的解集是x > 3,求m的取值范围。

七年级数学不等式应用题专项练习(含答案解析)

七年级数学不等式应用题专项练习(含答案解析)

七年级数学不等式应用题专项练习(含答案解析)1. 两名教师带学生去旅游,联系了两家标价相同的旅游公司。

甲公司优惠条件是1名教师全额收费,其余7.5折收费;乙公司的优惠条件是全部师生8折收费。

问当学生人数超过多少人时,甲旅游公司比乙旅游公司更优惠?2. 一位老师所教班级的学生人数,一半学数学,四分之一学音乐,七分之一学外语,还剩不足6位学生在玩足球。

求这个班有多少位学生?3. 某工程队要招聘甲、乙两种工人150人,甲、乙两种工种的月工资分别为600元和1000元。

现要求乙种工种的人数不少于甲种工种人数的2倍。

问甲、乙两种工种各招聘多少人时,可使得每月所付工资最少?4. 某商店以每辆300元的进价购入200辆自行车,并以每辆400元的价格销售。

两个月后自行车的销售款已超过这批自行车的进货款。

问这时至少已售出多少辆自行车?5. 某校为奖励在数学竞赛中获奖的学生,买了若干本课外读物准备送给他们。

如果每人送3本,则还余8本;如果前面每人送5本,则最后一人得到的课外读物不足3本。

设该校买了m本课外读物,有x名学生获奖。

请解答下列问题:(1)用含x的代数式表示m;(2)求出该校的获奖人数及所买课外读物的本数。

6. 某果品公司要请汽车运输公司或火车货运站将60t水果从A地运到B地。

已知汽车和火车从A地到B地的运输路程都是Skm,两家运输单位除都要收取运输途中每吨每小时5元的冷藏费用外,其他收取的费用和有关运输资料由表列出。

问:(1)分别写出这两家运输单位运送这批水果所要收取的总费用y1元和y2元(用含S的式子表示);(2)为减少费用,当s=100km时,你认为果品公司应该选择哪一家运输单位更为合算?7. 用甲、乙两种原料配制成某种果汁,已知这两种原料的维生素C的含量及购买这两种原料的价格如表。

现制作这种果汁200kg,要求至少含有52,000单位的维生素C。

试写出所需甲种原料的质量x(kg)应满足的不等式。

(2)在方案一中果农应付运输费:5*2000+5*1300=元,在方案二中果农应付运输费:6*2000+4*1300=元。

初一不等式的试题及答案

初一不等式的试题及答案

初一不等式的试题及答案一、选择题1. 下列不等式中,不正确的是()A. 3x - 5 > 2x + 1B. 2x + 3 > 2x + 1C. 5x < 3x + 2D. 4x - 6 > 2x + 3答案:C2. 如果a > b,那么下列不等式中正确的是()A. a - 2 > b - 2B. 2a < 2bC. -a < -bD. a/2 < b/2答案:A3. 若x > 0,y < 0,则下列不等式中正确的是()A. x + y > 0B. xy > 0C. x - y > 0D. x/y > 0答案:C4. 若a > 0,b < 0,则下列不等式中正确的是()A. a + b > 0B. ab > 0C. a - b > 0D. a/b < 0答案:C5. 若m < 0,n > 0,则下列不等式中正确的是()A. m + n > 0B. mn > 0C. m - n < 0D. m/n < 0答案:D二、填空题6. 若不等式2x - 3 < 5的解集为x < 4,则不等式2x - 3 > 5的解集为x _______ 4。

答案:>7. 若不等式3x + 2 > 11的解集为x > 3,则不等式3x + 2 < 11的解集为x _______ 3。

答案:<8. 若不等式5x - 7 ≥ 13的解集为x ≥ 4,则不等式5x - 7 < 13的解集为x _______ 4。

答案:<9. 若不等式-2x + 4 ≤ 0的解集为x ≥ 2,则不等式-2x + 4 > 0的解集为x _______ 2。

答案:<10. 若不等式4x - 6 > 2x + 8的解集为x > 7,则不等式4x - 6 < 2x + 8的解集为x _______ 7。

七年级不等式组应用题(一)

七年级不等式组应用题(一)

七年级不等式组应用题(一)七年级不等式组应用题题目一:购买手机壳小明想要购买手机壳,他在某网店上看到了两款手机壳的价格。

壳A的价格是x元,壳B的价格是y元。

已知小明手里的钱不超过80元,且他至少要购买一款手机壳。

请问他可选购的手机壳有哪些价格组合?题目二:运动场馆租用某运动场馆的运营商希望通过租用来增加收益。

经过调研,他们发现,七年级的学生每小时支付15元租金,而八年级的学生每小时支付20元租金。

运营商希望每小时租金收入不少于120元。

如果这两个年级的学生数量分别是a和b,且a和b的和不少于10,则运营商能够满足要求吗?题目三:汽车出租某汽车出租公司的价格策略如下:运行不超过10公里收费10元,超过10公里但不超过20公里每公里加收1元,超过20公里但不超过30公里每公里加收2元,以此类推。

小明租车行驶了x公里,其中超出10公里的部分小明需要支付多少钱?题目四:学生成绩某班级有70名学生,他们的期末考试成绩都在60分以上。

已知及格学生人数加上不及格学生人数的和为70人,及格学生的人数是不及格学生人数的3倍。

请问及格学生的人数是多少?题目五:购买书籍小红想要购买一些书籍,已经了解到所要购买的书籍一共有n本,每本书的价格为p元。

她手里最多只有100元,且必须购买至少一本书。

请问小红最多能购买几本书?题目六:制作纸盒根据规定,一个纸盒的制作需要占用2张A3纸和4张A4纸。

甲工厂每天最多可以使用A3纸240张,A4纸600张。

已知甲工厂每天最多能制作纸盒x个,且每个纸盒的售价为y元。

请问甲工厂每天最多能获得多少收益?以上是七年级不等式组的一些应用题,它们可以帮助学生深入理解和应用不等式概念。

希望这些题目能够帮助大家更好地掌握不等式组的解题方法。

题目七:聚会费用分摊小明和他的朋友们打算举办一次聚会,共有x人参加。

聚会的费用要平摊到每个人身上,已知如果参加人数不超过10人,每人需要支付10元;如果参加人数超过10人但不超过20人,则超出的每人需要支付5元;如果参加人数超过20人,则超出的每人需要支付3元。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一元一次不等式应用题专项练习1.某校为了奖励在数学竞赛中获奖的学生,买了若干本课外读物准备送给他们,如果每人送3本,则还余8本;如果前面每人送5本,则最后一人得到的课外读物不足3本,设该校买了m本课外读物,有x名学生获奖,请解答下列问题:(1)用含x的代数式表示m;(2)求出该校的获奖人数及所买课外读物的本数.2某果品公司要请汽车运输公司或火车货运站将60t水果从A地运到B地.已知汽车和火车从A地到B地的运输路程都是Skm,两家运输单位除都要收取运输途中每吨每小时5元的冷藏费用外,其他收取的费用和有关运输资料由表列出:运输工具行驶速度(km/h)运输单价(元/t.km)装卸费用汽车50 2 3000火车80 1.7 4620(1)分别写出这两家运输单位运送这批水果所要收取的总费用y1元和y2元(用含S的式子表示);(2)为减少费用,当s=100km时,你认为果品公司应该选择哪一家运输单位更为合算?3.用甲、乙两种原料配制成某种果汁,已知这两种原料的维生素C的含量及购买这两种原料的价格如表:甲种原料乙种原料维生素C含量(单位/千克) 800 200原料价格(元/kg)18 14(1)现制作这种果汁200kg,要求至少含有52 000单位的维生素C,试写出所需甲种原料的质量x(kg)应满足的不等式;(2)如果还要求购买甲、乙两种原料的费用不超过1 800元,那么请你写出所需甲种原料的质量x(kg)应满足的另一个不等式.4,为了抓住世博会商机,某商店决定购进A,B两种世博会纪念品,若购进A种纪念品10件,B种纪念品5件,需要1000元;若购进A种纪念品4件,B种纪念品3件,需要550元,(1)求购进A,B两种纪念品每件需多少元?(2)若该商店决定拿出1万元全部用来购进这两种纪念品,考虑到市场需求,要求购进A种纪念品的数量不少于B 种纪念品数量的6倍,且不超过B种纪念品数量的8倍,那么该商店共有几种进货方案?(3)若销售每件A种纪念品可获利润20元,每件B种纪念品可获利润30元,在第(2)问的各种进货方案中,哪一种方案获利最大?最大利润是多少元?5.某汽车制造厂开发了一款新式电动汽车,计划一年生产安装240辆.由于抽调不出足够的熟练工来完成新式电动汽车的安装,工厂决定招聘一些新工人;他们经过培训后上岗,也能独立进行电动汽车的安装.生产开始后,调研部门发现:1名熟练工和2名新工人每月可安装8辆电动汽车;2名熟练工和3名新工人每月可安装14辆电动汽车.(1)每名熟练工和新工人每月分别可以安装多少辆电动汽车?(2)如果工厂招聘n(0<n<10)名新工人,使得招聘的新工人和抽调的熟练工刚好能完成一年的安装任务,那么工厂有哪几种新工人的招聘方案?(3)在(2)的条件下,工厂给安装电动汽车的每名熟练工每月发2000元的工资,给每名新工人每月发1200元的工资,那么工厂应招聘多少名新工人,使新工人的数量多于熟练工,同时工厂每月支出的工资总额W(元)尽可能地少?6.某地区果农收获草莓30吨,枇杷13吨,现计划租用甲、乙两种货车共10辆将这批水果全部运往省城,已知甲种货车可装草莓4吨和枇杷1吨,乙种货车可装草莓、枇杷各2吨.(1)该果农安排甲、乙两种货车时有几种方案请您帮助设计出来;(2)若甲种货车每辆要付运输费2 000元,乙种货车每辆要付运输费1 300元,则该果农应选择哪种运输方案才能使运费最少,最少运费是多少元?7.开学初,小芳和小亮去学校商店购买学习用品,小芳用18元钱买了1支钢笔和3本笔记本;小亮用31元买了同样的钢笔2支和笔记本5本.(1)求每支钢笔和每本笔记本的价格;(2)校运会后,班主任拿出200元学校奖励基金交给班长,购买上述价格的钢笔和笔记本共48件作为奖品,奖给校运会中表现突出的同学,要求笔记本数不少于钢笔数,共有多少种购买方案?请你一一写出.8.为执行中央“节能减排,美化环境,建设美丽新农村”的国策,我市某村计划建造A 、B 两种型号的沼气池共20个,以解决该村所有农户的燃料问题.两种型号沼气池的占地面积、使用农户数及造价见下表:型号 占地面积 (单位:m 2/个 )使用农户数 (单位:户/个) 造价(单位:万元/个) A 15 18 2B 20 30 3已知可供建造沼气池的占地面积不超过365m 2,该村农户共有492户.(1)满足条件的方案共有几种?写出解答过程;(2)通过计算判断,哪种建造方案最省钱?参考答案.1. 解:(1)m=3x+8;(2)根据题意得:,解得:5<x <6,因为x 为正整数,所以x=6,把x=6代入m=3x+8得,m=26,答:该校获奖人数为6人,所买课外读物为26本.2. 解:(1)y 1=(2×60)s+5××60+3000=126s+3000; y 2=(1.7×60)s+5××60+4620=105.75s+4620;(2)当s=100km 时,y 1=3000+126×100=15600(元),y 2=105.75×100+4620=15195(元).故为减少费用,果品公司应选择火车货运站运送这批水果更为合算.3. 解:(1)若所需甲种原料的质量为xkg ,则需乙种原料(200﹣x )kg .根据题意,得800x+200(200﹣x )≥52000;(2)由题意得,18x+14(200﹣x )≤1800.4解:(1)设A,B两种纪念品每件需x元,y元.,解得:.答:A,B两种纪念品每件需25元,150元;(2)设购买A种纪念品a件,B种纪念品b件.,解得≤b≤.则b=29;30;31;32;33;则a对应为226,220;214;208,202.答:商店共有5种进货方案:进A种纪念品226件,B种纪念品29件;或A种纪念品220件,B种纪念品30件;或A种纪念品214件,B种纪念品31件;或A种纪念品208件,B种纪念品32件;或A种纪念品202件,B种纪念品33件;(3)解法一:方案1利润为:226×20+29×30=5390(元);方案2利润为:220×20+30×30=5300(元);方案3利润为:214×20+30×31=5210(元);方案4利润为:208×20+30×32=5120(元);方案5利润为:202×20+30×33=5030(元);故A种纪念品226件,B种纪念品29件利润较大为5390元.解法二:解:设利润为W元,则W=20a+30b,∵25a+150b=1000,∴a=400﹣6b,∴代入上式得:W=8000﹣90b,∵﹣90<0,∴W随着b的增大而减小,∴当b=29时,W最大,即此时a=226时,W最大,∴W最大=8000﹣90×29=5390(元),答:方案获利最大为:A种纪念品226件,B种纪念品29件,最大利润为5390元.5. 解:(1)设每名熟练工和新工人每月分别可以安装x、y辆电动汽车.根据题意,得,解得.答:每名熟练工和新工人每月分别可以安装4、2辆电动汽车.(2)设工厂有a名熟练工.根据题意,得12(4a+2n)=240,2a+n=10,n=10﹣2a,又a,n都是正整数,0<n<10,所以n=8,6,4,2.即工厂有4种新工人的招聘方案.①n=8,a=1,即新工人8人,熟练工1人;②n=6,a=2,即新工人6人,熟练工2人;③n=4,a=3,即新工人4人,熟练工3人;④n=2,a=4,即新工人2人,熟练工4人.(3)结合(2)知:要使新工人的数量多于熟练工,则n=8,a=1;或n=6,a=2;或n=4,a=3.根据题意,得W=2000a+1200n=2000a+1200(10﹣2a)=12000﹣400a.要使工厂每月支出的工资总额W(元)尽可能地少,则a应最大.显然当n=4,a=3时,工厂每月支出的工资总额W(元)尽可能地少.6. 解:(1)设应安排x辆甲种货车,那么应安排(10﹣x)辆乙种货车运送这批水果,由题意得:,解得5≤x≤7,又因为x是整数,所以x=5或6或7,方案:方案一:安排甲种货车5辆,乙种货车5辆;方案二:安排甲种货车6辆,乙种货车4辆;方案三:安排甲种货车7辆,乙种货车3辆.(2)在方案一中果农应付运输费:5×2 000+5×1300=16 500(元)在方案二中果农应付运输费:6×2 000+4×1 300=17 200(元)在方案三中果农应付运输费:7×2 000+3×1 300=17 900(元)答:选择方案一,甲、乙两种货车各安排5辆运输这批水果时,总运费最少,最少运费是16 500元.7. 解:(1)设每支钢笔x元,每本笔记本y元.依题意得:,解得:,答:每支钢笔3元,每本笔记本5元.(2)设买a支钢笔,则买笔记本(48﹣a)本,依题意得:,解得:20≤a≤24,∴一共有5种方案.方案一:购买钢笔20支,则购买笔记本28本;方案二:购买钢笔21支,则购买笔记本27本;方案三:购买钢笔22支,则购买笔记本26本;方案四:购买钢笔23支,则购买笔记本25本;方案五:购买钢笔24支,则购买笔记本24本.8. 解:(1)设建造A型沼气池x个,则建造B型沼气池(20﹣x)个,依题意得:,解得:7≤x≤9.∵x为整数∴x=7,8,9,所以满足条件的方案有三种.(2)解法①:设建造A型沼气池x个时,总费用为y万元,则:y=2x+3(20﹣x)=﹣x+60,∴y随x增大而减小,当x=9时,y的值最小,此时y=51(万元).∴此时方案为:建造A型沼气池9个,建造B型沼气池11个.解法②:由(1)知共有三种方案,其费用分别为:方案一:建造A型沼气池7个,建造B型沼气池13个,总费用为:7×2+13×3=53(万元).方案二:建造A型沼气池8个,建造B型沼气池12个,总费用为:8×2+12×3=52(万元).方案三:建造A型沼气池9个,建造B型沼气池11个,总费用为:9×2+11×3=51(万元).∴方案三最省钱.参考规范下载1、《建筑施工模板安全技术规范》JGJ162-20082、《建筑施工扣件式钢管脚手架安全技术规范》JGJ130-20113、《建筑结构荷载规范》GB50009-20124、《钢结构设计规范》GB50017-20035、《混凝土结构设计规范》GB 50010-20106、《混凝土结构工程施工规范》GB50666-20117、《建筑施工临时支撑结构技术规范》JGJ300-20138、建筑施工计算手册(第二版)基本知识模板支撑体系简图一。

相关文档
最新文档