实验报告 R、L、C串联谐振电路的研究

合集下载

r,l,c串联谐振电路的研究实验报告

r,l,c串联谐振电路的研究实验报告

r,l,c串联谐振电路的研究实验报告一、实验目的本次实验旨在研究r,l,c串联谐振电路的特性,通过实际操作和数据分析,深入理解串联谐振电路的工作原理和实际应用。

二、实验原理串联谐振电路是由电阻(r)、电感(l)和电容(c)串联而成的电路。

当电路的阻抗等于感抗和容抗之和时,电路达到谐振状态。

此时,电路的电流最大,电压最小,能量在r,l,c之间高效转换。

三、实验步骤1.搭建r,l,c串联谐振电路,确保连接正确无误。

2.使用信号发生器产生交流信号,并调整频率至谐振频率。

3.使用示波器和万用表测量电路的电压、电流和阻抗等参数。

4.记录数据,并分析结果。

四、实验结果实验数据显示,当频率达到谐振频率时,电路的阻抗最小,电流最大。

同时,电压在谐振时达到最小值。

此外,我们还观察到了电路的品质因数(Q值)的变化,Q值在谐振时达到最大值。

五、问题与解决方案在实验过程中,我们发现当改变信号源的频率时,电路的阻抗和电流会发生明显变化。

为了更准确地测量阻抗和电流,我们采用了数字化测量设备,提高了测量精度。

此外,我们还通过改变电路元件的参数(如电阻、电感和电容),研究了它们对串联谐振电路特性的影响。

六、总结与收获通过本次实验,我们深入了解了r,l,c串联谐振电路的特性和工作原理。

我们不仅观察到了电路在谐振时的电流最大、电压最小的现象,还研究了不同元件参数对电路特性的影响。

此外,我们还学会了如何使用示波器和万用表等测量设备来分析电路特性。

这次实验让我们更加直观地理解了理论知识,并锻炼了我们的动手能力和问题解决能力。

七、不足与建议在实验过程中,我们也发现了一些不足之处。

首先,我们在搭建电路时可能存在一些连接不牢固的问题,导致实验结果出现偏差。

其次,我们在测量阻抗和电流时可能受到外界干扰的影响,导致测量结果不够准确。

为了改进实验效果,我们可以采取以下措施:1.确保电路连接牢固,以减少实验误差。

2.使用屏蔽罩等措施减少外界干扰对测量结果的影响。

RLC串联电路的谐振特性研究实验报告

RLC串联电路的谐振特性研究实验报告

RLC串联电路的谐振特性研究实验报告摘要本研究讨论了RLC串联电路的谐振特性。

串联电路的最大谐振频率和最小谐振频率通过实验测量,通过电路计算来验证。

特性曲线的形状是理论测量的结果一致的,说明实验结果可靠。

结果表明,当阻抗器的电阻值增加时,最大和最小谐振频率比较稳定。

关键词:RLC串联电路;谐振特性;实验测量;计算验证;特性曲线1 引言RLC串联电路是电力系统中常见的高阻抗电源和测量电路,它由电阻R、电感L及电容C三个元件组成,是用于测量谐振特性最常见的电路之一。

由于谐振特性及其相关特性与RLC串联电路的参数密切相关,所以要准确测量谐振特性,就必须对这三个基本元件的各种特性进行准确的测试和验证。

本文将对RLC串联电路的谐振特性进行测量和验证,以分析其特性表现,以作为进一步的基础研究。

2 电路实验RLC串联电路的实验图如图1所示,由电阻R、电感L和电容C三个元件组成。

示波器用来测量RLC串联电路中交流电压的波形变化,正弦波发生器用来产生一定的输出电压,可改变频率来测量最大、最小谐振频率的值,而变阻器用来改变RLC串联电路的电阻R的电阻值,可分析子图形1中电感L、电容C外部给定的谐振频率。

实验采用正弦波发生器输出不同频率信号,对RLC串联电路中U-V示波器测量输出电压波形,当变阻器的电阻值一定时,随着输出电压频率变化而变化。

当输出电压频率与RLC电路谐振频率相符时,其输出电压有更显著的波动,电源从高频到低频,以及由低频到高频,都能够找到一个共振的频率值,这个值分别是最大谐振频率和最小谐振频率。

3 结果分析本次实验结果显示,随着阻抗器电阻值的改变,最大谐振频率和最小谐振频率也有所变化,而在不同的电阻值上,谐振频率的变化幅度都很小。

比较理论计算和实验测量的结果,证明了实验测量的准确性。

可以发现,实验测量和理论计算的特性曲线基本构成一致,并且越靠近频率值越接近,证明了谐振特性的实验测量结果的可靠性。

rlc串联谐振电路的研究实验报告

rlc串联谐振电路的研究实验报告

rlc串联谐振电路的研究实验报告实验目的:通过对rlc串联谐振电路的研究实验,探究在不同频率下电压、电流和相位的变化规律,加深对谐振电路的理解。

实验原理:rlc串联谐振电路是由电阻R、电感L和电容C串联而成的电路。

在谐振频率下,电感和电容的阻抗大小相等,电路中的电流和电压将达到最大值。

谐振频率的计算公式为f=1/(2π√(LC))。

在谐振频率下,电路中的电压和电流相位相同,电压和电流呈正弦关系。

实验仪器:1. 信号发生器。

2. 电压表。

3. 电流表。

4. 电阻箱。

5. 电感。

6. 电容。

实验步骤:1. 按照实验电路图连接好电路。

2. 调节信号发生器的频率,测量电路中的电压和电流。

3. 记录数据并绘制电压、电流随频率变化的曲线图。

4. 分析实验数据,得出结论。

实验结果:通过实验测量和数据处理,我们得到了以下实验结果:1. 当信号发生器的频率逐渐接近谐振频率时,电路中的电压呈现出明显的增大趋势,最后达到最大值。

2. 在谐振频率下,电路中的电流也达到最大值,且电压和电流的相位相同。

3. 在谐振频率上下,电路中的电压和电流均呈现出振荡变化,但相位差逐渐增大。

实验分析:根据实验结果,我们可以得出以下结论:1. 在rlc串联谐振电路中,当频率接近谐振频率时,电路中的电压和电流都会达到最大值。

2. 在谐振频率下,电路中的电压和电流相位相同,呈正弦关系。

3. 谐振电路的谐振频率与电感和电容的数值有关,频率与电感成反比,与电容成正比。

实验总结:通过本次实验,我们深入了解了rlc串联谐振电路的工作原理和特性。

在实验中,我们通过测量电路中的电压和电流随频率变化的规律,验证了谐振电路的谐振特性。

同时,我们也掌握了在实验中使用信号发生器、电压表、电流表等仪器的操作方法,提高了实验操作能力。

总之,本次实验为我们进一步学习电路谐振提供了宝贵的实践经验,也为我们今后的学习和科研工作打下了坚实的基础。

愿我们在今后的学习和实践中能够不断提高自己的实验能力,更好地应用所学知识。

R、L、C串联谐振电路研究

R、L、C串联谐振电路研究
0
R + rL
如果ω<ω0 ,电路呈容性; ω >ω0 ,电路呈感 性。 谐振电路中,电感电压和电容电压与角频率的 关系为:
U L I L
LU i
1 2 R + L C
2
UC I
1
C

Ui
C
1 2 R + L C
2
2
2
其中,I0为谐振时的电流值,η=ω/ω0。 通用谐振曲线可通过实验方法获得,在保持函数发生器输出 电压恒定的状态下,改变函数发生器的输出频率,通过测量电阻 R上的电压,当电路谐振时,电阻R上的电压U0为最大值,此时 的频率即为电路的谐振频率。
电工电子实验教学中心
R、L、C串联谐振电路研究
I / I0 1
电工电子实验教学中心
R、L、C串联谐振电路研究
UL(ω)和UC(ω) 曲线如图所示
uC、uL
uC uL
0
0
图 RLC串联电路的UL(ω)和UC(ω) 曲线

电工电子实验教学中心
R、L、C串联谐振电路研究
品质因数Q
从理论上来说, 谐振时 L C ,电感上的电压UL与 电容上的电压UC数值相等,相位差为180º ;谐振时电感上 的电压(或电容上的电压)与电源电压之比称电路的品质 因数Q,即
• •
3、电路品质因数Q值的两种测量方法 一是根据公式
Q UL UO UC UO
R、L、C串联谐振电路研究
测定,UC与UL分别为谐振时电容器C和电感线圈L上的电压;另一方法 是通过测量谐振曲线的通频带宽度
f f 2 f1
再根据
Q fo f 2 f1

R、L、C串联谐振电路的研究

R、L、C串联谐振电路的研究

2、根据通频带的要求,计算Q值,并估算电路中应选 择的电阻大小。试测Bf,确定R的参数 Q= ω0 / (ω2- ω1) = f0 / (f2 - f1) ω0L = 1/ω0C = Q*R 如何测Bf? 在L、C串联的电路中串入一个电阻,在输入电压不变的 情况下,用交流毫伏表测电阻两端的电压,电压最大时 的频率为谐振频率。改变频率时,测电压下降到最大时 的0.707倍时的两个频率f1、f2。 Bf = f2 –f1 对比调试,确定R值。
根据谐振时电路呈阻性及谐振时电路品质因数的计算方法加入一已知电阻r测ulc0ur0uifof2f1则电路总电阻ruiruro电路总电感lf0rf2f10电路总电容c102l电感内含电阻rlulc0rur0电路连接操作过程1选择不同lc组合串入电阻信号发生器输出不同频率的正弦信号电压不变测电阻两端输出电压查看电压最大时的频率谐振与设计频率对比选择最接近的一组lc
可见,当品质因数Q远远大于1时,电容及电感上 的电压就会远远超过输入电压。
实验任务
根据谐振原理设计一个RLC串联电路 要求:使用实验台已有元件 1、中心频率为f0=5KHz ,通频带Bf=1KHz 。 2、根据实际测量结果调整参数。 3、测100Hz—25KHz的曲线,观察LC不同分
配对曲线的影响。
Q UL XLI XL 0L U RI R R
Q为品质因数,它反映的是RLC串联电路 的幅频特性的陡度。
改变角频率或频率时,振幅比随之变化,当振 幅比下降到0.707倍时的两个频率ω1、ω2(或 f1、f2)分别叫做下半功频率点和上半功频 率点。两者的差值称为网络的通频带BW(或 Bf ):
电感内含电阻 RL = ULC0*r /Ur0
电路连接
操作过程

R—L—C 元件的阻抗特性和谐振电路实验报告

R—L—C 元件的阻抗特性和谐振电路实验报告

R—L—C 元件的阻抗特性和谐振电路实验报告实验报告课程名称:电工电子技术试验实验六:R—L—C 元件的阻抗特性和谐振电路班级:02(周四)学生姓名:学号:20__1060261 专业:电子信息工程指导教师:学期:20__-2021学年春季学期__大学信息学院实验六R—L—C元件的阻抗特性和谐振电路一.实验目的 1.通过实验进一步理解R,L,C的阻抗特性,并且练习使用信号发生器和示波器 2.了解谐振现象,加深对谐振电路特性的认识 3.研究电路参数对串联谐振电路特性的影响 4.理解谐振电路的选频特性及应用 5.掌握测试通用谐振曲线的方法二.实验原理与说明 1.正弦交流电路中,电感的感抗_L=ωL=2πfL,空心电感线圈的电感在一定频率范围内可认为是线性电感,当其电阻值r较小,有rf0: ui1.982V五.注意事项 1.谐振曲线的测定要在电电压保持不变的条件下进行,因此,信号发生器改变频率时应对其输出电压及时调整,保持为2V。

2.为了使谐振曲线的顶点绘制精确,可以在谐振频率附近多选几组测量数据。

六.分析^p 与讨论 1.根据表6-2,表6-3 的实验数据计算L和C的值,结果与标称值是否一致,为什么?答:①_L=2πfL,根据实验数据可计算的_L分别为:频率(KHz) 0.2 0.5 1.02.0 5.0 8.0 10.0 12.0 2.512 2.512 6.28 12.56 25.12 62.8 100.48 125.6 150.72②_C=1/2πfC,根据实验数据可计算的CL分别为:频率(KHz) 0.2 0.51.02.0 5.0 8.0 10.0 12.0 _C 79.62 31.84 15.92 7.963.184 1.99 1.592 1.327 故与标称值不相等,因为测量仪器及读数均存在误差,但是在误差允许的范围内,计算值与标称值近似相等。

2.根据表6-5,表6-6 的实验数据,以I/I0为纵坐标,f/f0为横坐标,绘制两条不同Q 值的串联谐振曲线,并加以分析^p 。

实验二R·L·c串联谐振电路的研究

实验二R·L·c串联谐振电路的研究

实验二、 R ·L ·C串联谐振电路的研究一、实验目的1、学习R ·L ·C 串联电路的通用谐振曲线的测定法。

2、利用实验方法测定谐振频率,利用谐振曲线求通频带。

二、原理和说明1、R ·L ·C 线性串联电路中,感抗X L =ωL容抗 CX C ω=1总电抗 CL X X X C L ω-ω=-=1总电阻为R则阻抗之模22221⎪⎭⎫ ⎝⎛-+=+=C L R XR Z ωω当 ==ω=ωLC10谐振频率时则 CL ω=ω1;Z =R ;X =0 此时电路阻抗呈现为纯电阻,阻抗Z出现极小值。

电路中电流I=Imax出现极大值,此即为串联谐振现象。

2、电路通过电流I 是频率的函数,即 I =UY(ω),U 为外加电压,导纳Y (ω)随频率而变,通常通过实验可将数据曲线归一化为N (ω)=I/Imax其中RUI =max 为电路之谐振电流,I/Imax为归一化电流数值,其绘制曲线如图9一1通常定义0.707Imax 点为通频带点。

当I/Imax=0.707时,可求得通频带宽度△f。

实验电路见图9一2左面“音讯源”为音频电压源(正弦波),它可改变输出电压及输出频率,表示交流毫伏表,用以测定R 上之电压,它可反映电路中电流之大小。

实验中C =2400pf,L=30mH 是不变的,R 是可以改变的。

R大小即决定了电路中损耗大小,损耗大则归一化谐振曲线之△f 增宽,在本实验中R 分别取330Ω和1K Ω两个数值。

三、实验设备和器材1.电路基础实验箱(DGJ-03挂件) 一台 2.交流毫伏表 二台 3.数控智能函数信号发生器一台 4. 频率计 一台 5.万用表 一只 6.导线数根四、预习问题1、为什么音频源之输出要保持恒定在1伏?2、画归一化曲线有何好处?3、为什么电子管毫伏计要事先选定一合适量程?4、图中为什么要画出三个接地点?5、理论上预算实验中不同条件下的f五、实验内容和步骤任务一:1、将信号源打开,选择正弦波输出。

实验报告 R、L、C串联谐振电路的研究

实验报告 R、L、C串联谐振电路的研究

实验报告 R、L、C串联谐振电路的研究实验报告祝金华PB15050984 实验题目:R、L、C串联谐振电路的研究实验目的: 1. 学习用实验方法绘制R、L、C串联电路的幅频特性曲线。

2. 加深理解电路发生谐振的条件、特点,掌握电路品质因数的物理意义及其测定方法。

实验原理 1. 在图1所示的R、L、C串联电路中,当正弦交流信号源Ui的频率 f改变时,电路中的感抗、容抗随之而变,电路中的电流也随f而变。

取电阻R上的电压UO作为响应,当输入电压Ui的幅值维持不变时,在不同频率的信号激励下,测出UO之值,然后以f为横坐标,以UO 为纵坐标,绘出光滑的曲线,此即为幅频特性曲线,亦称谐振曲线,如图2所示。

ff1Ff0Ff2iU0U0maxLCRoU0max2 图 1 图22. 在f=fo=12LC处,即幅频特性曲线尖峰所在的频率点称为谐振频率。

此时XL=Xc,电路呈纯阻性,电路阻抗的模为最小。

在输入电压Ui为定值时,电路中的电流达到最大值,且与输入电压Ui同相位。

从理论上讲,此时 Ui=UR=UO,UL=Uc=QUi,式中的Q 称为电路的品质因数。

3. 电路品质因数Q值的两种测量方法一是根据公式Q =UC测定,Uc为谐振时电容器C上的电压。

另一方法是通过测量谐振曲线的通频带宽度△f=f2-f1,再根据QUo =fO求出Q值。

式中fo为谐振频率,f2和f1是失谐时,亦即输出电压的幅度下降到f2f1最大值的1/2 (=)倍时的上、下频率点。

Q值越大,曲线越尖锐,通频带越窄,电路的选择性越好。

在恒压源供电时,电路的品质因数、选择性与通频带只决定于电路本身的参数,而与信号源无关。

预习思考题1. 根据实验线路板给出的元件参数值,估算电路的谐振频率。

L=30mH fo=2. 改变电路的哪些参数可以使电路发生谐振,电路中R 的数值是否影响谐振频率值?改变频率f,电感L,电容C可以使电路发生谐振,电路中R的数值不会影响谐振频率值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验报告
祝金华 PB15050984 实验题目:R 、L 、C 串联谐振电路的研究
实验目的: 1. 学习用实验方法绘制R 、L 、C 串联电路的幅频特性曲线。

2. 加深理解电路发生谐振的条件、特点,掌握电路品质因数(电路Q 值)的物理意义及其测定方法。

实验原理 1. 在图1所示的R 、L 、C 串联电路中,当正弦交流信号源U i 的频率 f 改变时,电路中的感抗、容抗随之而变,电路中的电流也随f 而变。

取电阻R 上的电压U O 作为响应,当输入电压U i 的幅值维持不变时, 在不同频率的信号激励下,测出U O 之值,然后以f 为横坐标,以U O 为纵坐标,绘出光滑的曲线,此即为幅频特性曲线,亦称谐振曲线,如图2所示。

图2 2. 在f =fo =
LC
21处,即幅频特性曲线尖峰所在的频率点称为谐振频率。

此时X L
=Xc ,电路呈纯阻性,电路阻抗的模为最小。

在输入电压U i 为定值时,电路中的电流达到最大值,且与输入电压U i 同相位。

从理论上讲,此时 U i =U R =U O ,U L =U c =QU i ,式中的Q 称为电路的品质因数。

3. 电路品质因数Q 值的两种测量方法 一是根据公式Q =
o
C
U U 测定,U c 为谐振时电容器C 上的电压(电感上的电压无法测量,故不考虑Q=
o
L
U U 测定) 。

另一方法是通过测量谐振曲线的通频带宽度△f =f2-f1,再根据Q U m ax 02
U max
0U 0
102
L
C
R
o
i
图 1

1
2f f f O
-求出Q 值。

式中f o 为谐振频率,f 2和f 1是失谐时, 亦即输出电压的幅度下降到最
大值的2/1 (=0.707)倍时的上、下频率点。

Q 值越大,曲线越尖锐,通频带越窄,电路的选择性越好。

在恒压源供电时,电路的品质因数、选择性与通频带只决定于电路本身的参数,而与信号源无关。

预习思考题
1. 根据实验线路板给出的元件参数值,估算电路的谐振频率。

L=30mH
fo =LC
π21=1/(2×π6
31001.01030--⨯⨯⨯)=9188.81Hz
2. 改变电路的哪些参数可以使电路发生谐振,电路中R 的数值是否影响谐振频率值?
改变频率f,电感L ,电容C 可以使电路发生谐振,电路中R 的数值不会影响谐振频率值。

3. 如何判别电路是否发生谐振?测试谐振点的方案有哪些?
判断:电容与电感的电压相等时,电路此时发生谐振;U i 与U 0相位相同时此时发生谐振;U i 与U 0大小相等时电路发生谐振。

测量:理论计算,f=1/(2π√LC ); 仪表测量此时电流频率。

4. 电路发生串联谐振时,为什么输入电压不能太大, 如果信号源给出3V 的电压,电路谐振时,用交流毫伏表测U L 和U C ,应该选择用多大的量限?
输入电压过大,L 、C 器件两端的电压远高于信号源电压;应该选用最大量程 。

4. 要提高R 、L 、C 串联电路的品质因数,电路参数应如何改变? 减小R,增大L ,同时等比例缩小C 。

5. 本实验在谐振时,对应的U L 与U C 是否相等?如有差异,原因何在?
U L ,U C 大小相等,方向相反,因为在谐振点L,C 的阻抗相等,二者阻抗方向相反。

实验设备
低频函数信号发生器,交流毫伏表,双踪示波器,频率计,谐振电路实验电路板 实验内容
1. 利用HE-15实验箱上的“R 、L 、C 串联谐振电路”,按图3组成监视、测量电路。

选C 1=0.01μF 。

用交流毫伏表测电压, 用示波器监视信号源输出。

令信号源输出电压U i =3V ,并
图 3
2. 找出电路的谐振频率f0,其方法是,将毫伏表接在R(200Ω)两端,令信号源的频率由
小逐渐变大(注意要维持信号源的输出幅度不变),当Uo的读数为最大时,读得频率计上的频率值即为电路的谐振频率f0,并测量U C与U L之值(注意及时更换毫伏表的量限)。

3. 在谐振点两侧,按频率递增或递减300Hz或500KHz,依次各取8 个测量点,逐点测出
②U i=3v, C=0.01μF, R=200Ω, f o=8.9kHz , f2-f1=9.856-8.089=1.767kHz , Q=8.9/1.767=5.036
数据处理
1. 根据测量数据,绘出不同Q值时三条幅频特性曲线,即:
U O=U(f)
U c=U(f)
2. 计算出通频带与Q

根据输出电压与输入信号频率的记录,可得f 0=8.9kHz

f 2-f 1=9.856-8.089=1.767kHz , Q=8.9/1.767=5.036
②Q=U C /U 0=5.042/0.577=8.739
实验总结和误差分析
对两种不同的测Q 值的方法进行比较,分析误差原因。

第一种方法测量出的Q 值偏大,由公式Q=
1
2f f f O
-计算时,由于实验仪器精度并不是
非常小,存在一定的仪器误差和读数误差,f 0课确定范围较大,且由图像读数f 1,f 2也不是非常精确,不确定度较大。

第二种方法测量Q 值时,由于频率在一定范围内电阻电压保持最大值,无法精确确定f 0,导致U 0、U C 可选范围增大,Q 值可取值增多。

谐振时,比较输出电压U O 与输入电压U i 是否相等?试分析原因。

不相等,电感并不是理想电感,存在电阻,导线存在电阻,消耗电压。

通过本次实验,总结、归纳串联谐振电路的特性。

①在f =fo =
LC
π21处,即幅频特性曲线尖峰所在的频率点为谐振频率时,X L
=Xc ,电路呈纯阻性,电路阻抗的模为最小,等于电阻阻值。

②在输入电压U i 为定值时,电路中的电流达到最大值,且与输入电压U i 同相位。

③电阻电压也达到最大值。

④电感和电容的电压也达到最大,且是反相位。

心得体会及其它
1. 第一次做电工实验,对实验器材、实验步骤存在疑问,应该主动预先预习,了解相关知识。

2. 电压的测量问题中,应该考虑向电路接入毫伏表对电路的影响,注意各个表笔接地端是否产生短路?
3.
对于实验安全,应该遵守实验室规则,听从老师的安排,不随意行动。

4.信号发射器关于频率的调节,应该先粗调,后细调。

相关文档
最新文档