非线性方程的数值解法

合集下载

5-非线性方程组的数值解法及最优化方法

5-非线性方程组的数值解法及最优化方法
然后通过各种下降法或优化算法求出模函数的极小值点,此 极小值点即为非线性方程组的一组解。
非线性方程组的数值解法
不动点迭代法:根据非线性方程求根的迭代法,将方程组改 写为如下等价方程组
xi i x1, x2,, xn , i 1,2,, n
构造迭代公式
xik 1 i x1k , x2k ,, xnk , i 1,2,, n
非线性方程组的数值解法
若对任意A Cmn 都有一个实数 A 与之对应,且满足:
(1)非负性:当 A O 时, A 0 ;当A O 时,A 0;
(2)齐次性:对任何 C ,A A ;
(3)三角不等式:对任意 A, B C nn ,都有A B A B ;
(4)相容性:对任意A, B C nn ,都有 AB A B ,


18
(0.2325670051,0.0564515197)
19
(0.2325670051,0.0564515197)
max
1 i 2
xik
xik
1
0.2250 0.0546679688 0.0138638640 0.0032704648 0.0008430541 0.0001985303 0.0000519694 0.0000122370 0.0000032485 0.0000007649
10-9
非线性方程组的数值解法
练习题:用牛顿迭代法求解方程组
取 X 0 1.6,1.2T
xx1122
x22 x22
4 1
结果:1.5811,1.2247
非线性方程组的数值解法
应用经过海底一次反射到达水听器阵的特征声线传播时间, 来反演海底参数。假设水中和沉积层声速都是恒定的,海底 沉积层上界面水平,下界面倾斜。特征声线由水中声源出发 折射进入沉积层,经过沉积层的下界面反射后,再折射进入 水中,由水中水听器阵接收。特征声线的传播时间为声线在 水中和沉积层中的传播时间之和。 三维坐标关系如图所示:

3-第三章 非线性方程的数值解法

3-第三章 非线性方程的数值解法

到小数点后第三位小数,需要二分多少次? 解:设 f ( x) x6 x 1,由于 f (1) f (2) 0, f ( x) 0(1 x 2), 所以在区间 [1,2]内方程 f ( x) 0 有唯一实根。
ba 1 令 k 1 10 3 ,求得所需对分次数至少是10次。 2 2
x* xk ba k 1 2
时,停止计算。
§1 根的搜索与二分法
3 2 x 4 x 10 0 在 [1,2] 内的根的近似 例:用二分法求方程 1 2 值,要求绝对误差不超过 10 。 2 3 2 解: f ( x) x 4x 10 f ( x) 3x2 8x 0, x [1,2] 即 f ( x) 严格单调增加,又 f (1) f (2) 0 ,所以方程在[1,2]上有 唯一实根。 ba 1 2 令 2k 1 2 10 ,得到 k 6.64 ,取 k 7 ,即至少二分7次 。计算过程如下:
由 f ( x) 0 转化为 x ( x) 时,迭代函数 ( x) 不是唯一的, ( x) 不同,会产生不同的序列{xk } ,从而收敛情况也不 一样。
§2 迭代法及其迭代收敛的加速方法
几何意义: * x x ( x ) 求方程 的根 ,在几何上就是求直线 y x与曲线 y ( x) 交点 P* 的横坐标,如图所示。从图中可以看出, * ( x ) ( x ) x 当迭代函数 的导数 在根 处满足不同条件时,迭
特点:运算简单,方法可靠,对函数只要求在区间上连续 ;但收敛速度慢,不能用来求复数根及偶数重根。常用于为 其它求根方法提供较好的近似初始值。
§2 迭代法及其迭代收敛的加速方法
迭代法(逐次逼近)

非线性方程的数值解法省公开课一等奖全国示范课微课金奖课件

非线性方程的数值解法省公开课一等奖全国示范课微课金奖课件
下面将介绍几个求解普通非线性方程惯用数值计算方法。
第5页
5.2 二分法(the bisection method)
设f (x)在区间[a,b]上连续, 且f (a)f (b)<0, 那么依据连续函数 零点定理, 方程f (x)=0在(a,b)内最少有一个实根。为简便起见, 不 妨设f (x)=0在(a,b)内只有一个实根p。 1.二分法基本思想
end
end
n=n+1;
if (fa.*fp >0 )
a=p;fa=fp;
第9页
说明: 程序中函数f (x)应预先自定义,并取函数名存盘。以方程 f (x) x3 2x 5 0为例, 自定义一个名cubicf. m函数, 源程序以下: function y=cubicf(x) y=x.^3-2*x-5
else b=p;
n=1;fa=popu(a);flag=0;
end
while (n<=N)
if(flag==1)
p=(a+b)./2;fp=popu(p);
'P=',p
if (fp==0|(b-a)./2< tol)
else
flag=1;break
'Method failed after N
end
这么二分区间[a2,b2]是方程新有根区间, 它被包含在旧有根
区间[a1,b1]即[a,b]之内, 而且其长度仅是[a1,b1]二分之一。
对缩小了区间[a2,b2]再计算其中点 判断f ( p2 )与f (a2 )还是f (b2 )异号。
1 p2 2 (a2 b2 )
Step3: 如果f ( p2 )与f (a2 )异号,则记a3 a2 ,b3 p(2 即取区间[a2,b2]

数值分析第七章非线性方程的数值解法

数值分析第七章非线性方程的数值解法

数值分析第七章非线性方程的数值解法在数值分析中,非线性方程和非线性方程组的求解是非常重要的问题。

线性方程是指变量之间的关系是线性的,而非线性方程则指变量之间的关
系是非线性的。

非线性方程的数值解法是通过迭代的方式逼近方程的解。

非线性方程的求解可以分为两类:一元非线性方程和多元非线性方程组。

接下来,我们将对这两类方程的数值解法进行介绍。

对于一元非线性方程的数值解法,最常用的方法是二分法、牛顿法和
割线法。

二分法是一种直观易懂的方法,其基本思想是通过迭代将方程的解所
在的区间逐渐缩小,最终找到方程的解。

二分法的缺点是收敛速度较慢。

牛顿法是一种迭代法,其基本思想是通过选择适当的初始值,构造出
一个切线方程,然后将切线方程与x轴的交点作为新的近似解,并不断迭代,直到满足精度要求。

牛顿法的优点是收敛速度较快,但其缺点是初始
值的选择对结果影响很大,容易陷入局部极值。

割线法是对牛顿法的改进,其基本思想是通过选择两个初始值,构造
出一条割线,然后将割线与x轴的交点作为新的近似解,并不断迭代,直
到满足精度要求。

割线法的收敛速度介于二分法和牛顿法之间。

对于多元非线性方程组的数值解法,最常用的方法是牛顿法和拟牛顿法。

牛顿法的思想同样是通过构造切线方程来进行迭代,但在多元方程组中,切线方程变为雅可比矩阵。

牛顿法的优点是收敛速度快,但同样受初
始值的选择影响较大。

拟牛顿法是对牛顿法的改进,其基本思想是通过逼近Hessian矩阵来进行迭代,从而避免了计算雅可比矩阵的繁琐过程。

拟牛顿法的收敛性和稳定性较好,但算法复杂度相对较高。

数值分析非线性方程的数值解法

数值分析非线性方程的数值解法

数值分析非线性方程的数值解法数值分析是一种应用数学方法来分析和解决数学问题的领域。

非线性方程是数值分析中一类重要的问题,其解法包括了迭代法、牛顿法、割线法等。

本文将详细介绍这些数值解法及其原理和应用。

一、迭代法迭代法是解非线性方程的一种常用数值方法。

该方法的基本思想是通过不断迭代逼近方程的根,直到达到所需精度或满足停止准则为止。

迭代法的求根过程如下:1.选择适当的初始值x0。

2. 利用迭代公式xn+1 = g(xn),计算下一个近似根。

3.重复步骤2,直到满足停止准则为止。

常用的迭代法有简单迭代法、弦截法和牛顿法。

简单迭代法的迭代公式为xn+1 = f(xn),其中f(x)为原方程的一个改写形式。

该方法的收敛性要求函数f(x)在解附近有收敛性且导数在一个区间内收敛。

弦截法的迭代公式为xn+1 = xn - f(xn) * (xn-xn-1) / (f(xn)-f(xn-1))。

该方法通过连接两个点上的函数值的割线来逼近方程的根。

牛顿法的迭代公式为xn+1 = xn - f(xn) / f'(xn),其中f'(x)为f(x)的导数。

该方法通过用切线来逼近方程的根。

二、牛顿法牛顿法是解非线性方程的一种常用迭代法。

该方法通过使用方程的导数来逼近方程的根。

迭代过程如下:1.选择适当的初始值x0。

2. 利用迭代公式xn+1 = xn - f(xn) / f'(xn),计算下一个近似根。

3.重复步骤2,直到满足停止准则为止。

牛顿法的收敛速度较快,但要求方程的导数存在且不为0。

三、割线法割线法是解非线性方程的另一种常用迭代法。

该方法通过连接两个点上的函数值的割线来逼近方程的根。

迭代过程如下:1.选择适当的初始值x0和x12. 计算下一个近似根xn+1 = xn - f(xn) * (xn-xn-1) / (f(xn)-f(xn-1))。

3.重复步骤2,直到满足停止准则为止。

割线法的收敛速度介于简单迭代法和牛顿法之间。

第7章非线性方程组的数值解法

第7章非线性方程组的数值解法
( 1, 1 )
f 1 y f 2 2 y
2 y ( 1,1 ) 2
( 1,1 )
( y 3) ( 1, 1 )
( 1, 1 )
( x 1) ( 1 , 1 ) 2
( 1,1 )
f 1 f 2 2 2[ 2 * ( 3) ( 2 ) * ( 2 )] 4 f1 f2 g10 x ( 1,1) x ( 1,1) x f 1 f 2 g 2 2[ 2 * ( 3) 2 * ( 2 )] 20 20 y y f 1 y f 2 ( 1, 1 ) ( 1, 1 )

f ( x0 h, y0 k ) f ( x0 , y0 ) ( h k ) f ( x0 , y0 ) x y 1 2 ( h k ) f ( x 0 , y0 ) 2! x y 1 n ( h k ) f ( x 0 , y0 ) n! x y 1 n 1 ( h k ) f ( x0 h, y0 k ) ( n 1)! x y
2
2

0
得 f 1 f 1 ( g10 x g 20 y ) f 1 ( g10 ( g f 1 g f 1 ) 2 ( g 10 20 10 x y f 2 g 20 x f 2 g 20 x f 2 ) f2 y f 2 2 ) ( x y
1
f 1 ( x 0 , y0 ) f ( x , y ) 2 0 0
从n到n+1的迭代格式为:
f 1 ( x n , y n ) xn 1 x n x y y f 2 ( xn , yn ) n 1 n x

第7章 非线性方程的数值解法

第7章 非线性方程的数值解法

设 0为给定精 度要求,试确定分半次 数k 使
x* xk
ba 2k
由 于2k , 两 边 取 对 数 , 即 得
ba
k ln(b a) ln
ln 2
数值分析
18/47
§例1: 5.用2 二二分分法 求 法x3 4x2 10 0在[1,2]内 的 根 ,
要 求 绝 对 误 差 不 超 过1 102。 2
第七章 非线性方程的数值解法
数值分析
本章内容
§7.1 方程求根与二分法 §7.2 不动点迭代及其收敛性 §7.4 牛顿法 §7.5 弦截法
数值分析
2/47
本章要求
1. 掌握二分法基本原理,掌握二分法的算法 流程;
2. 掌握理解单点迭代的基本思想,掌握迭代 的收敛条件;
3. 掌握Newton迭代的建立及几何意义,了解 Newton迭代的收敛性;
27/47
§ 7.2 不动点迭代法及其收敛性
不动点迭代的几个重要问题: 1、迭代格式的构造; 2、初值的选取; 3、敛散性的判断;☆ 4、收敛速度的判断。
数值分析
28/47
§ 7.2 不动点迭代法及其收敛性
三.压缩映射原理(整体收敛性)
考虑方程x g( x), g( x) C[a, b], 若
则f (x)=0在[a, b]内必有一根。
二. 过程
将区间对分,判别f (x)的符号,逐步缩小有根区 间。
数值分析
14/47
§7.1.2 二分法
三. 方法
取xmid=0.5*(a+b)
若f(xmid) < (预先给定的精度),则xmid即为根。
否则,若f (a)*f (xmid)<0,则取a1=a,b1=xmid 若f (a)*f (xmid)>0,则取a1=xmid,b1=b 此时有根区间缩小为[a1, b1],区间长度为 b1-a1=0.5*(b-a)

非线性方程组数值解法

非线性方程组数值解法

非线性方程组数值解法

非线性方程组数值解法是通过数值方法解决非线性方程组问题的一种解法。

非线性方程组不像普通的线性方程组,它们往往没有普遍的解析解,一般只有数值解。

因此,非线性方程组的数值解法非常重要。

非线性方程组数值解法的基本思想是,将非线性方程组分解为多个子问题,并采用一种迭代算法求解这些子问题。

最常见的数值方法有牛顿法、拟牛顿法和共轭梯度法等。

牛顿法是利用曲线上的点的二次近似,将非线性方程分解为两个子问题,转换为求解一个简单的一元方程的问题来求解非线性方程组的数值解。

拟牛顿法利用有限差分方法来求解非线性方程组的数值解,共轭梯度法利用解的搜索方向,进行有效的搜索,通过解的最优性条件收敛到解。

非线性方程组数值解法是目前应用最广泛的数值解法,它能很好地求解非线性方程组。

不仅能有效求解复杂的非线性方程组,还能求出较精确的数值解。

此外,非线性方程组数值解法运算速度快,可以对模型进行实时定位和跟踪,非常适合模拟复杂的动态系统。

总之,非线性方程组数值解法是一种求解复杂非线性方程组的有效解法,它的准确性高,运算速度快,广泛应用于现实世界中的多种工程与科学计算问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
本文详细介绍了非线性方程的数值解法,主要包括二分法、一般迭代法、牛顿迭代法和弦截法等。其中,二分法作为一种重要的区间收缩法,被重点阐述。二分法通过不断将含根区间对分,逐步逼近方程的根。该方法首先确定初始含根区间,然后取区间中点进行函数值判断,根据函数值的符号变化来缩小含根区间。通过反复迭代,最终可以得到满足精度要求的近似根。二分法具有简单可靠、易于编程实现的优点,但对函数的光滑性要求较高。此外,本文还介绍了二分法的收敛性和误差控制方法,包括事先误差估计和事后误差估计,为实际应用提供了理论指导。除了二分法,本文还简要提及了一般迭代法、牛顿有广泛的应用。
相关文档
最新文档