四面体外接球的球心、半径求法
正四面体外接球和内切球的半径的九种求法

正四面体外接球和内切球的半径的九种求法【作者简介】张秀洲(1987.06),江苏滨海人,毕业于湖南师范大学,中学数学一级教师,省先进工作者,州、县优秀班主任,州先进个人,县优秀教师,县优秀教育工作者,县教师培训师团队成员,县“国培计划”(A307)指导教师,吉首大学“国培计划”(B101)指导老师。
2016年被花垣县人民政府授予“高考优秀教师”荣誉称号,2013年、2019年被花垣县人民政府记“三等功”。
如果一个多面体的各个顶点都在同一个球面上,那么称这个多面体是球的内接多面体,这个球称为多面体的外接球。
如果一个球与多面体的各面都相切,且此球在多面体的内部,则称这个球为此多面体的内切球。
有关多面体外接球与内切球的问题,是立体几何的一个重点,也是高考考查的一个热点。
研究多面体的外接球问题,既要运用多面体的知识,又要运用球的知识,并且还要特别注意多面体的有关几何元素与球的半径之间的关系,而多面体外接球半径的求法在解题中往往会起到至关重要的作用。
本文重点研究正四面体外接球和内切球的半径的求法:正四面体是特殊的正三棱锥,所有的棱长都相等,四个面是全等的等边三角形,有外接球、内切球,且球心重合.分析:如图1,因为正四面体ABCD的外接球的球心O到点B,C,D的距离相等,所以O在平面BCD内的射影O1到点B,C,D的距离也相等.又因为在正四面体ABCD中△BCD是正三角形,所以O1是△BCD的中心,进而在正四面体ABCD中,有AO1⊥平面BCD,所以球心O在高线AO1上;同理:球心O也在其它面的高线上.图1又正四面体ABCD中各面上的高都相等,所以,由OA=OB=OC=OD,得:点O到正四面体各面的距离相等,所以点O也是正四面体ABCD的内切球的球心.这样,正四面体的内切球的球心与外接球的球心重合.已知正四面体ABCD棱长为a,设外接球半径为R,内切球半径为r,球心为O ,则正四面体的高h即34R h =即14r h =.外接球半径是内切球半径的3倍.下面从不同角度、用不同方法进行探求:方法一:(勾股定理)如图2,因为在正四面体ABCD 中,△BCD 是正三角形,O 1是其中心,所以O 1D. 因为OO 1⊥平面BCD ,O 1D ⊂平面BCD , 所以OO 1⊥O 1D .所以,在Rt △OO 1D 中,由勾股定理,得22211OD OO O D =+,即222R R ⎫⎫=-+⎪⎪⎪⎪⎝⎭⎝⎭.解得R =,所以r R =-.. 知识联系:正三角形的内切圆的圆心与外接圆的圆心重合,半径之比为1:2;正四面体的内切球的球心与外接球的球心重合,半径之比1:3.方法二:(三角正切倍角公式)如图3,因为在正四面体ABCD 中,△BCD 是正三角形,O 1是其中心,所以OO 1⊥平面BCD ,O 1D,高1h AO =. 1,,2.OA OD ADO DAO DOO θθ=∴∠=∠=∠= 在1Rt ADO ∆中,11tan DO AO θ===2222tan 2tan 21tan 1θθθ∴===--⎝⎭在1Rt ODO ∆中,113tan 2DO OO r θ====r ∴=,R h r =-==. 图2图3. 方法三:(平行线法)如图4,连接DO 并延长交平面ABC 于点G ,则G 为△ABC 的中心.连结DO 1并延长交BC 于中点E ,则A ,G ,E 三点共线,113EO EGED EA==; 再连接1GO ,则1GO ∥AD ,从而有1113O O O G EG AO AD EA ===,所以134AO AO =,1114OO AO ==.. 方法四:(分割体积法)如图5,记正四面体ABCD 的体积为V ,每个面的面积为S ,高为h ,内切球球心为O ,连结OA ,OB ,OC ,OD ,则O ABC O BCD O ACD O ABD V V V V V ----=+++,所以11433Sh Sr =⋅,从而13,.44r h R h ====. 【方法拓展延伸】1.多面体的体积为V ,表面积为S ,利用体积分割法,可得其内切球的半径为3Vr S=; 2.高为h ,各面面积均为S 的棱锥内的任意一点到各面的距离之和为定值h .方法五:(补形法)以正四面体的各棱为正方体的面对角线,将其补形为正方体.由于过不共面的四点有且只有一个球,所以正四面体的外接球也是正方体的外接球.设正方体的棱长为x,则2R =且a ,所以R =,从而13r R =.. 【方法拓展延伸】1.若三棱锥的三条侧棱两两垂直,则其外接球也是以这三条侧棱为同一顶点出发的三条棱的长方体的外接球,若设其三条侧棱长分别为,,,a b c 则易得外接球的半径为R =. 2.若点P 到两两垂直的三个面的距离分别为,,,a b c 点O 为它们的公共点,则图4图5图6PO =22212a b c ++. 3.若点P 到两两垂直且共点于O 的三条直线m ,n ,l 的距离分别为x ,y ,z ,则PO =2222()2x y z ++.方法六:(相交弦定理)设外接球球心为O ,半径为R ,过A 点作球的直径,交底面BCD ∆于1O ,则1O 为BCD ∆的外心,求得1163,,33AO a DO a == 由相交弦定理得2663(2).333a R a a ⎛⎫⋅-= ⎪ ⎪⎝⎭解得64R a =. 666633412r a R a a a ∴=-=-= 故所求的外接球的半径和内切球的半径分别为64a 和612a . 方法七:(坐标法)如图6, 建立如图所示的空间直角坐标系, 则6333(0,0,),(0,,0),(,,0),(,,0)332626a a A a B a C a D a -- 设球心O 的坐标为(,,)x y z ,则由OA OB OC OD R ====,得2222OA OB OC OD ===,即22222222222263()()333()()263()()26x y z a x y a z ax y a z ax y a z ++-=+++=-+-+=++-+解得60,.12x y z a ===所以66,.124r z a R a ∴=== 故所求的外接球的半径和内切球的半径分别为64a 和612a . 方法八:(相似法)(侧棱、高相似)如图7, 作111 , AO BCD O O BCD 平面于点则点是的中心,⊥∆高163h AO a ==,设O 为球心,则1.O AO ∈设M 是AB 的中点,连结OM ,OB ,BO 1,AO BO OM AB =∴⊥190AMO AO B ∴∠=∠=,又1MAO O AB ∠=∠,AMO ∴∆∽1AO B ∆, 1AM AO AO AB ∴=,即2,63aRa a = 6666,.43412R a r h R a a a ∴==-=-=方法九:(相似法)(斜高、高相似)如图8, 作111 , AO BCD O O BCD 平面于点则点是的中心,⊥∆高163h AO a ==,设O 为球心,则1.O AO ∈设E 为BC 中点,连结AE ,EO 1,作ON AE ⊥于N 点,则N 是ABC ∆中心,N 是AE 的三等分点, ON ABC ON r 平面,是内切圆半径,⊥且Rt ANO ∆∽1Rt AEO ∆1AN AO AO AE ∴=, 即336332aR a a =,6666,.43412R a r h R a a a ∴==-=-= 以上从不同角度针对正四面体的外接球半径、内切球半径作了讨论,从而从不同方面对思维作了训练,不仅对正四面体的外接球半径、内切球半径有了透彻的认识,同时对解题能力的提高是有帮助的.。
四面体外接球半径公式

四面体外接球半径公式
四面体外接球半径公式是一种计算四面体外接球半径的公式,它可以用来判断四面体外接球的大小。
四面体外接球半径公式的数学表达式为: R = 3V/S,其中R为四面体外接球的半径,V为四面体的体积,S为四面体的表面积。
四面体外接球半径公式的求解过程如下:
1)首先计算四面体的体积V和表面积S,可以使用体积公式V = (abh)/6,其中a,b,h分别为四面体的三个边,而表面积S可以使用表面积公式S = ab + bc + ca,其中a,b,c为四面体的三个边。
2)计算完体积V和表面积S之后,可以使用四面体外接球半径公式R = 3V/S,将体积V和表面积S代入公式,便可计算出四面体外接球的半径R。
以上就是四面体外接球半径公式的求解过程。
四面体外接球半径公式可以帮助我们计算出四面体外接球的大小,是一种非常方便、有效的计算方法。
四面体外接球的大小是用来描述不同形状物体的一种统计量,它可以用来进行物体尺寸的比较,也可以用来分析几何图形的几何特性。
因此,四面体外接球半径公式是一种实用性很强的数学工具,可以
帮助我们计算出四面体外接球的大小,为我们的几何学研究提供了有效的帮助。
内接球和外接球半径计算公式

内接球和外接球半径计算公式
内接球和外接球是几何学中的概念,它们分别是指一个多面体内部最大的(最小的)球和一个多面体外部最小的(最大的)球。
下面是内接球和外接球的半径计算公式。
(以下解释中,我们以正四面体为例)
内接球半径计算公式:
正四面体的内接球是四面体内部最大的球,它的半径可以通过正四面体的棱长计算得出。
设正四面体的棱长为a,则正四面体的内接球半径R为:
R = a / (2√3)
其中√3表示根号下3,也就是3的平方根。
该公式适用于所有正多面体内接球的半径计算。
外接球半径计算公式:
正四面体的外接球是四面体外部最小的球,它的半径可以通过正四面体的边长计算得出。
设正四面体的边长为a,则正四面体的外接球半径r为:
r = a / (2√6)
其中√6表示根号下6,也就是6的平方根。
该公式同样适用于所有正多面体外接球的半径计算。
需要注意的是,以上公式仅适用于正多面体,对于其他不规则多面体,内接球和外接球的半径计算需要用到其他方法。
正四面体外接球内切球半径

解析正四面体外接球内切球半径正四面体是一种非常特殊的多面体,其四个面都是等边三角形,相互之间都是等角的。
正四面体有个很有意思的性质,就是它的外接球和内切球的半径是相等的。
这个性质可以通过以下步骤进行证明:首先,我们需要知道正四面体外接球和内切球的半径分别为r和R。
我们可以画出如下的图形:正四面体的四个顶点分别为A、B、C、D。
正四面体外接球的圆心为O,内切球的圆心为I。
现在我们来证明r=R。
步骤1:连接OI,这条线段的长度为r+R。
步骤2:连接AB、AC、AD、BC、BD、CD,将正四面体分成四个小正三角形。
步骤3:我们知道正四面体每个小正三角形的面积都相等,设为S。
步骤4:我们可以通过三角形的面积公式求出AO、BO、CO、DO的长度。
AO=BO=CO=DO=√(3S)/3步骤5:再通过余弦定理求出角AOI的大小。
cos(AOI)=(OI²+AO²-AI²)/(2×OI×AO)=(r+R)/(2r)步骤6:由于AOI是一个等腰三角形,所以角OAI也等于角OIA。
因此,我们可以用余弦定理求出AI的长度。
cos(OAI)=(OI²+AI²-OA²)/(2×OI×AI)=cos(AOI)AI=√(OI²+OA²-2×OI×OA×cos(AOI))步骤7:我们可以用同样的方法求出BI、CI、DI的长度。
BI=√(OI²+OB²-2×OI×OB×cos(BOI))CI=√(OI²+OC²-2×OI×OC×cos(COI))DI=√(OI²+OD²-2×OI×OD×cos(DOI))步骤8:根据勾股定理,我们可以求出AB、AC、AD、BC、BD、CD 的长度。
正四面体外接球半径公式

一.正四面体外接球半径公式是什么?
答:R=(√6)a/4。
a为正四面体的棱长。
设正四面体的棱长为a,求其外接球的半径.设正四面体V-ABC,D为BC的中点,E 为面ABC的中心,外接球半径为R,则AD=(√3)a/2,AE=2/3*AD=(√3)a/3.在Rt△VAE中,有VE^2=VA^2-AE^2=a^2-a^2/3=(2a^2)/3,VE=(√6)a/3。
在Rt△AEO中,有AO^2=AE^2+OE^2=R^2+(VE-R) ^2,即R^2=a^2/3+[(√6)a/3-R] ^2,可解得:R=(√6)a/4.另外,我们也可以先求出OE,因为OE恰好是四面体的内切球的半径r。
利用等积法可求得r.设四面体的底面积为S,则1/3*S*(R+r)=4*1/3*S*r,可得r=R/3.于是在Rt△AEO中,有R^2 = AE^2+r^2=a^2/3+R^2/9,从而得R=(√6)a/4。
扩展资料:
正四面体的性质:
1、正四面体的四个旁切球半径均相等,等于内切球半径的2倍,或等于四面体高线的一半。
2、正四面体的内切球与各侧而的切点是侧I面三角形的外心,或内心,或垂心,或重心,除外心外,其逆命题均成立。
3、正四面体的外接球球心到四面体四顶点的距离之和,小于空间中其他任一点到四顶点的距离之和。
4、正四面体内任意一点到各侧面的垂线长的和等于这四面体的高。
5、对于四个相异的平行平面,总存住一个正四面体,其顶点分别在这四个平面上。
正四面体外接球公式

正四面体外接球公式为了推导正四面体外接球的半径公式,首先我们需要先了解一些正四面体的性质。
一、正四面体的性质:1.正四面体的面积公式:一个正四面体的面积可以通过以下公式计算:A=√3*a²,其中a是正四面体的一个边长。
2.正四面体的高公式:一个正四面体的高可以通过以下公式计算:h=(√6/3)*a,其中a是正四面体的一个边长。
3.正四面体的体积公式:一个正四面体的体积可以通过以下公式计算:V=(√2/12)*a³,其中a是正四面体的一个边长。
4.正四面体的垂直高公式:一个正四面体的垂直高可以通过以下公式计算:H=(√6/4)*a,其中a是正四面体的一个边长。
二、正四面体外接球的性质:1.正四面体外接球的半径R,可以通过以下公式计算:R=(√6/4)*a,其中a是正四面体的一个边长。
这是一个重要的结论,可以称之为正四面体外接球半径公式。
推导过程:我们首先使用勾股定理来证明正四面体外接球半径公式。
我们知道正四面体的高是等边三角形高线段的1/3,所以正四面体的高为(√6/3)*a。
又根据正四面体外接球的性质,球的半径,也就是外接球的半径R,正好是正四面体垂直高的2/3倍。
所以我们有:R=(2/3)*(h)。
我们可以把h代入R的公式中,得到:R=(2/3)*((√6/3)*a)=(√6/9)*a。
然而,这个结果与我们之前提到的正四面体外接球半径公式不相符。
所以我们需要检查我们之前提到的正四面体外接球半径公式有没有错误。
我们可以使用三角函数来验证正确性。
正四面体的一个面上的顶角是60度,所以它的两个邻边与外接球的半径之间的夹角也是60度。
根据正余弦定理:cos(60) = a / (2R)。
根据余弦函数的性质:cos(60) = 1/2所以我们可以得到:1/2=a/(2R)即:R=(1/2)*a这可以证明我们的正四面体外接球半径公式是正确的。
综上所述,正四面体外接球半径公式为:R=(1/2)*a或R=(√6/4)*a。
正四面体的外接球和内接球的半径求法

正四面体的内切球及外接圆的半径及其求法
对于棱长为a 的正四面体,有:
1、侧面高为a 3/2()
2、高为a 6/3()
3、内切球半径a 6/12()
4、外接球半径a 6/4() 内切球根据球心到各个面的距离相等把正四面体分解成三个正三棱锥,首先计算出整体的体积V 然后根据三个三棱锥的体积相等得v=V/3,又有三棱锥的体积计算公式有:1Sh 3则有求出的h 即为内切球的半径.
外接球的半径算法我们可以很容易的知道外接球的球心至正四面体的每一个顶点的距离是相等的,所以继计算出内切球半径后再将分解出来的小的四面体的棱长计算出来即可
内切球与外接球半径的联系:内切球半径+外接球半径=正四面体的高即6/12()+a 6/4()=6/3()。
正四面体外接球和内切球的半径的求法

龙源期刊网
正四面体外接球和内切球的半径的求法
作者:李凤华
来源:《中学数学杂志(高中版)》2008年第01期
题已知正四面体ABCD的棱长为a,求其外接球的半径R和内切球的半径r.
分析如图1,因为正四面体ABCD的外接球的球心O到点B,C,D的距离相等,所以O 在平面BCD内的射影O1到点B,C,D的距离也相等. 又因为在正四面体ABCD中△BCD是正三角形,所以O1是△BCD的中心,进而在正四面体ABCD中,有AO1⊥平面BCD,所以球心O在高线AO1上;同理:球心O也在其它面的高线上. 又正四面体ABCD中各面上的高都相等,所以,由OA=OB=OC=OD,得:点O到正四面体各面的距离相等,所以点O也是正四面体ABCD的内切球的球心. 这样,正四面体的内切球的球心与外接球的球心重合. 记正四面体ABCD的高为h,则 . 因此,只要求出r和R中的一个,便可求出另一个.
注:“本文中所涉及到的图表、注解、公式等内容请以PDF格式阅读原文。
”。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
四面体外接球的球心、半径求法
在立体几何中,几何体外接球是一个常考的知识点,对于学生来说这是一个难点,一方面图形不会画,另一方面在画出图形的情况下无从下手,不知道球心在什么位置,半径是多少而无法解题。
本文章在给出图形的情况下解决球心位置、半径大小的问题。
一、出现“墙角”结构利用补形知识,联系长方体。
【原理】:长方体中从一个顶点出发的三条棱长分别为c b a ,,,则体对角线长为
2
2
2
c b a l ++=,几何体的外接球直径R 2为体对角线长l 即2
2
22c b a R ++=
【例题】:在四面体ABCD 中,共顶点的三条棱两两垂直,其长度分别为3,61,,若该四面体的四个顶点在一个球面上,求这个球的表面积。
解:
因为:长方体外接球的直径为长方体的体对角线长 所以:四面体外接球的直径为AE 的长 即:22224AD AC AB R ++=
1663142
2
22=++=R 所以2=R 球的表面积为ππ1642==R S
二、出现两个垂直关系,利用直角三角形结论。
【原理】:直角三角形斜边中线等于斜边一半。
球心为直角三角形斜边中点。
A C
D
B
E
【例题】:已知三棱锥的四个顶点都在球O 的球面上,BC AB ⊥且7=PA ,
5=PB ,51=PC ,10=AC ,求球O 的体积。
解:BC AB ⊥且7=PA ,5=PB ,51=PC ,10=AC , 因为22
210517=+ 所以知222PC PA AC += 所以 PC PA ⊥ 所以可得图形为: 在ABC Rt ∆中斜边为AC 在PAC Rt ∆中斜边为AC 取斜边的中点O ,
在ABC Rt ∆中OC OB OA == 在PAC Rt ∆中OC OB OP ==
所以在几何体中OA OC OB OP ===,即O 为该四面体的外接球的球心
52
1
==
AC R 所以该外接球的体积为3
500343π
π==R V
【总结】斜边一般为四面体中除了直角顶点以外的两个点连线。
三、出现多个垂直关系时建立空间直角坐标系,利用向量知识求解
【例题】:已知在三棱锥BCD A -中,ABC AD 面⊥,︒=∠120BAC ,
2===AC AD AB ,求该棱锥的外接球半径。
解:由已知建立空间直角坐标系
)000(,,
A )002(,,
B )200(,,D 由平面知识得 )031(,,-C
O
A
B
C
P
A
B
C
D
z
x
y
设球心坐标为),,(z y x O 则DO CO BO AO ===,由空间两点间距离公式知
222222)2(z y x z y x ++-=++ 222222)2(-++=++z y x z y x
222222)3()1(z y x z y x +-+-=++ 解得 13
31==
=z y x
所以半径为3
21
1331222=
++=)(R
【结论】:空间两点间距离公式:2
21221221)()()(z z y y x x PQ -+-+-=
四、四面体是正四面体
外接球与内切球的圆心为正四面体高上的一个点,
根据勾股定理知,假设正四面体的边长为a 时,它的外接球半径为
a 4
6。