变电所主变压器台数和容量及主接线方案的选择

合集下载

变配电所主接线方案的选择

变配电所主接线方案的选择

变配电所主接线方案的选择电力系统在人民生活中占重要的地位,随着我们现代化工业建设的迅速发展,工厂供电设计的任务越来越重,而我们要做好设计,我们变配电所主接线方案的设计也是很重要的,下面我就来浅谈下主接线方案的设计原则和一般要求。

其设计要求一般我们要考虑四个原则:安全性、可靠性、灵活性、经济性,下面我们分各点来说明。

安全性:我们必须要保证人身和设备的安全,所以我们设计的时候需要在高压断路器的电源侧和可能反馈电能的另一侧必须安装高压隔离开关,在低压断路器的电源侧及可能反馈负荷的另一侧,必须安装低压刀开关,35KV及以上的线路末端我们应安装与隔离开关联锁的接地到闸,为了防止雷击造成短路或线路损坏,我们要在高压母线上及架空线路末端装设避雷器。

可靠性:首先对一级负荷我们应有两路电源供电,当一级变压器损坏或电路检修的时候不会造成全部停电,减少损失。

对二级负荷也应由两个回路或者一回专用架空线路供电。

对接于公共干线上的变配电所电源进线首端,我们应安装带有短路保护的开关设备。

对一般生产区的车间变电所,我们通常采用放射式高压配电来确保供电的可靠性。

对辅助生厂区及生活区的变电所,可以采用树干式配电。

变电所低压侧(电压380v)的总开关,采用低压断路器比较好,当有继电保护或者自动切换电源要求时,低压侧总开关和低压母线分段开关都应采用低压断路器。

灵活性:变电所的高低压母线,通常采用单母线或单母线分段接线。

需要带负荷切换主变压器的变电所,高压侧应装设高压断路器或高压负荷开关。

经济性:主接线方案力求简单,采用的一次设备特别是高压断路器少,并且应选用技术先进,经济实用的节能产品。

应考虑无功功率的补偿,使得最大负荷时功率因数达到规定的要求。

由于工厂变配电所一般都选用安全可靠并且经济美观的成套配电装置,因此变配电所主接线方案应与所选成套配电装置的主接线方案配合一致,柜型一般选用固定式,只有在供电可靠性要求较高时才用手车式和抽屉式。

变电站电气主接线设计及主变压器的选择

变电站电气主接线设计及主变压器的选择

变电站电气主接线设计及主变压器的选择摘要:本文根据给定的系统与线路及所有负荷的参数,拟建一个地方性负荷变电站或终端站。

本文从变电站运行的可靠性、安全性、经济性等方面考虑,确定了电气主接线方式。

然后又根据任务书要求进出线回路数及系统情况,选择合理的主接线及配电装置形式,通过短路电流计算和系统的容量,计算出三侧不同运行方式下的短路电流,再根据最大持续工作电流、短路计算的计算结果及配电装置形式,科学的选择主要设备,包括变压器、断路器、隔离开关及电压、电流互感器(母线),并做必要的校验,从而完成了该站电气主接线部分的设计。

关键词:变电站设计;主接线;短路电流;主要设备选择引言电气主接线是由高压电器通过连接线,按其功能要求组成接受和分配电能的电路,成为传输强电流、高电压的网络,故又称为一次接线或电气主系统。

本文以变电所的电气主接线为例来简要说明电气主接线设计的原则和要求。

变电所电气主接线是变电所电气部分的主体结构,是电力系统网络结构的主要组成部分。

它的设计是变电所设计的首要任务,与全厂电气设备的选择,配电装置的布置,机电保护和自动装置的确定密切相关,直接影响着电力系统的安全、稳定、灵活和经济运行,因此,电气主接线的设计是一个全面、综合性的问题,必须在满足国家有关技术经济政策的前提下,结合电力系统和变电所的具体情况,进行反复比较和优化,最后确定出最佳方案,力求使其技术先进、经济合理、安全可靠。

1电气主接线的选择变电站的电气主接线必须满足以下基本要求:1.1保证供电的可靠性和电能质量主接线必须保证必要的可靠性,因事故被迫中断供电机会越少,影响范围越小,停电时间越短,则主接线可靠度就越高。

电压、频率和供电连续可靠是表征电能的质量基本指标,主接线在各种运行方式下都应满足这方面的要求。

1.2具有一定的灵活性和方便性主接线应能适用各种运行方式,并能灵活地进行方式转换,不仅在正常运行时能安全可靠供电,而且在系统故障或设备检修及故障时,也能保证非故障非检修故障回路继续供电,并能灵活简便,迅速地倒换运行方式,使停电时间最短,影响范围最小。

变电所主变压器台数与容量选择

变电所主变压器台数与容量选择

变电所主变压器台数与容量选择摘要:变电站的设计必须贯彻党的有关原则和政策。

不断总结设计实践经验。

在保证安全运行和经济合理的条件下,努力简化布线,紧凑布局,逐步提高自动化水平,并积极谨慎慎蘑地采用新技术。

关键词:变电所;主变压器;台数与容量;一般情况下,车间变电所会布置一台变压器,但是对于一些容量比较大、负荷较为集中的变电所,可以布置两台以上的变压器。

一、确定主变压器1.供电电压的条件要求。

使用线路阻抗为0.38Ω/km、长度为300m的10KV降压变电所电缆来进行受电。

(1)按照200MVA容量计算工程总降压变电所10KV母线上的短路容量。

(2)工厂总降压变电所10KV限流保护设备的整定时间为2s(3)变电所负功率因素最最小值不应小于0.9。

2.变压器的选择。

由于本工厂属于二级负荷,通过对计算出的功率因素,然后参考主变压器选取的原则,在保证供电安全的基础上,为了最大限度的节省运营成本,决定使用两台变压器布置在车间,并保证一次补偿容量为650.1kV·A,考虑到15%余量后的总容量为S30=(1+15%)×650.1=747.6KV.A,计算出变压器的容量大小为SN.T=(0.6~0.7)S30=(448~523)KV.A,最终确定变压器的额定容量为500KV,按照不同的冷却方式可以将变压器分为:干式、油浸式、蒸发冷却式三类,其中蒸发冷却式变压器对自然环境有害,因此不予考虑。

结合相关规定要求以及本工程施工任务书的要求,本变电所是室内安装的,综合考虑后,使用干式变压器。

二、主变压器容量的选择1.变电站主变压器容量应根据地区供电条件、负荷性质、运行方式和用电容量等条件进行综合考虑。

总的来说,对主变压器容量大小的选择,取决于区域负荷的现状和增长速度、上一级电网提供负载的能力、与之相连接的配电装置技术和性能指标,取决于负荷本身的性质和对供电可靠性要求的高低等因素。

2.主变压器额定容量应能满足供电区域内用电负荷的需要,即满足全部用电设备总负荷的需要,以便投入运行后能常年经济运行,避免变压器长期处于过负荷状态运行。

变电所主变压器台数和容量及主接线方案的选择

变电所主变压器台数和容量及主接线方案的选择

变电所主变压器台数和容量及主接线方案的选择
首先,主变压器台数和容量的选择是根据变电所的负荷需求来确定的。

主变压器是变电所的核心设备,负责将输送至变电所的高电压电能转换为
低电压电能供给用户使用。

台数和容量的选择要考虑变电所的负荷需求、
可靠性要求以及节能与经济性。

一般来说,根据变电所的负荷预测和负荷
增长率,可以确定主变压器的台数。

在主变压器容量的选择上,要综合考
虑负荷的稳定性、峰值负荷和备用容量等因素,确保供电可靠性和运行经
济性。

在主接线方案的选择上,需要考虑变电所的布局、负荷分布和供电方
式等因素。

主接线方案是指变电所输电线路与主变压器之间的连接方式,
主要分为直接进线和环网进线两种方案。

直接进线是将输电线路直接与主
变压器相连接,具有结构简单、输电容量大、操作方便等优点,但也存在
单点故障、供电可靠性较低的问题。

环网进线则是将多条输电线路形成环
网与主变压器相连接,具有冗余性好、供电可靠性高的特点。

选择主接线
方案要根据变电所的具体情况综合考虑。

对于主变压器容量较大的变电所,可以采用多台主变压器并联的方式
实现容量的可调节性和备用性。

主变压器并联可以实现负荷平衡、传输容
量提高和可靠性增加等优势,但在设计和运行上也需要考虑并联主变压器
的协调性和保护措施。

总之,变电所主变压器台数和容量及主接线方案的选择是电力系统设
计中的重要环节,需要综合考虑负荷需求、负荷预测、供电可靠性、经济性、运行可调节性等多方面因素,确保变电所的高效运行和电力供应质量。

变电所主变压器台数和容量及主接线方案的选择

变电所主变压器台数和容量及主接线方案的选择

变电所主变压器台数和容量及主接线方案的选择
变电所是电力系统中的一种设施,其主要功能是将高电压电力转换为低电压电力,方便输送和分配。

其中,主变压器是变电所的核心设备之一,其作用是实现变电站的电压变换和保障电力系统的稳定运行。

本文将探讨变电所主变压器台数和容量以及主接线方案的选择。

变电所主变压器的台数和容量是根据电力系统的负荷情况和运行要求确定的。

一般来说,变电所的主变压器容量应该满足系统负荷的需要,同时需要留有一定的备用容量,以应对突发负荷变化和主变压器的维修保养等情况。

1. 台数选择
变电所主变压器的台数选择应该遵循经济、可靠、安全和稳定的原则。

一般来说,同一变电所的主变压器数量不宜过多,因为多台主变压器将增加变电所的投资成本、维修难度和运行的复杂程度,同时也会增加变电所的占地面积。

2. 容量选择
二、主接线方案的选择
1. 单主变压器接线方案
单主变压器接线方案是指变电所只有一台主变压器的情况下,变电站的所有负荷都通过该主变压器进行电压变换。

这种接线方案结构简单,投资成本低,但可靠性较差。

因为如果主变压器出现故障,整个变电所将会停电。

总之,变电所主变压器台数和容量以及主接线方案的选择应该根据电力系统的负荷情况和运行要求来确定,遵循经济、可靠、安全和稳定的原则,以保障电力系统的稳定运行。

变电站电气主接线设计及主变压器的选择

变电站电气主接线设计及主变压器的选择

变电站电气主接线设计及主变压器的选择摘要:人民生活水平的不断进步,对变电站供电能力的要求越来越高,再加上国家为拉动内需,提倡加快建设改造城网和农网,由此变电站迅速发展起来。

变电站的可靠性是其供电能力的直接表现,而在影响其供电可靠性的诸多因素中,主接线和变压器尤为重要。

关键词:变电站;主接线;变压器随着我国经济的快速发展,人们的生活水平也有着很大的提高,电能是人们生活中非常重要且不可缺少的能源。

因此,人们把更多的注意力放在了变电站所提供的电能上。

同时,我国也为了能够满足国内对于电能的需求。

因此,国家加大了城网以及农网的建设,这使得变电站也得到了一定的发展,为满足社会生产生活发展要求,必须要做好交电站设计管理,提高其供电可靠性与稳定性,减少各类问题的发生,其中,尤其是要重视电气主接线方式的选择,根据供电能力技术指标,分析各项影响因素,进行前瞻性分析,有重点的进行控制,从根本上来提高变电站运行综合效果。

一、变电站电气主接线的选择变电站电气主接线作为电气设计的首要部分,是整个电力系统的一个重要环节,与各种高压电器设备相连接,主要负责接受或分配电能,反映各种高压设备之间的连接方式、相互作用和回路的关系,是变电站的重要电气部分。

主接线的性能对变电站运行的灵活性、可靠性有着直接影响,并决定着电力输变过程中控制方式和自动装置的选择以及继电保护和配电装置的布置,因此,在选择变电站主接线时,除了本身的供电可靠性、经济性和质量问题,还要注意变电站的扩建和运行方式等因素。

1. 选择电气主接线时考虑的问题(1)变电站有地区变电站、企业变电站、枢纽变电站、分支变电站和终端变电站几种,不同的特性和作用使其对电气主接线的要求也不相同。

(2)短期和长期的发展规模,主接线的选择需同 5-10 年的电力发展规划一致。

(3)考虑主变台数产生的影响,变电站的主变台数直接影响着电气主接线,不同的传输容量有对主接线灵活可靠性的不同要求。

(4)考虑负荷的分级和出线回数的影响。

电力系统分析朱一纶课后答案

电力系统分析朱一纶课后答案

电力系统分析朱一纶课后答案【篇一:高等电力系统分析课后习题】>课后习题第一部分:电力网络方程? 对于一个简单的电力网络,计算机实现节点导纳矩阵节点导纳矩阵的修改方法。

? 编制ldu分解以及因子表求解线性方程组消元,回代。

? 试对网络进行等值计算。

多级电网参数的标么值归算,主要元件的等值电路。

第二部分:潮流计算简单闭式网络潮流的手算方法步骤第三部分:短路计算对称分量法简单不对称故障边界条件计算,复合序网的形成。

第四部分:同步机方程派克变换同步电机三相短路的物理过程分析第五部分:电力系统稳定概述? 什么是电力系统的稳定问题?什么是功角稳定和电压稳定?广义的电力系统稳定性实际上指的就是电力系统的供电可靠性,如果系统能够满足对负荷的不间断的、高质量的供电要求,系统就是稳定的,否则系统就是不稳定的。

通常所说的电力系统稳定性实际上专指系统的功角稳定。

电力系统的功角稳定指的是系统中各发电机之间的相对功角失去稳定性的现象。

电力系统的电压稳定性是电力系统维持负荷电压于某一规定的运行极限(如不低于额定电压的70%)之内的能力,它与系统的电源配置,网络结构,运行方式及负荷特性等因素有关,带自动负荷调节分接头的变压器也对系统的电压稳定性有十分显著的影响。

? 电力系统送端和受端稳定的特点是什么?送端指电源,其稳定性主要是系统的各台发电机维持同步运行的能力,即功角稳定。

受端稳定一般指负荷节点的电压稳定性和频率稳定性。

电动机负荷则是一个以微分方程描述的动态元件,其无功功率与电压的平方成正比,电压下降时,其吸收的无功功率会显著下降。

当电压低于系统的临界电压时可能出现电压崩溃。

? 常用的电力系统稳定计算的程序都有哪些?各有什么特点?常用仿真程序:1. psasp中国电科院(pscad属于系统级仿真软件)2. bpa美国3. powerworld simulator美国4. urostag法国和比利时5. netomac德国西门子公司6. pscad/emtdc (pscad属于装置级仿真软件)7. pss/e美国8. matlab9. rtds实时仿真器? 大停电的影响是什么?? 什么是电力系统的三道防线?1. 第一道防线:继电保护速断2. 第二道防线:切机、快关、电气制动、快速励磁调节等3. 第三道防线:低频减载甩负荷、解列? 简述提高电力系统静态稳定和暂态稳定的主要措施有哪些?静态稳定:1. 采用自动励磁调节装置;2. 采用分裂导线;3. 提高线路的额定电压等级;4. 改善系统结构、减小电气距离;5. 采用串联补偿设备;6. 采用并联补偿设备。

110KV变电站主变压器及主接线方式选择

110KV变电站主变压器及主接线方式选择

110KV变电站主变压器及主接线方式选择作者:周俊来源:《中国科技博览》2014年第26期[摘要]本文是针对110kV 变电站主变容量计算、主接线方案的研究总结,分析110KV变电站主变压器及主接线方式的差异,从而作出相应的选择。

[关键词]110kV;主变;主接线;选择中图分类号:TM645 文献标识码:A 文章编号:引言:在城网和农网建设及改造发展计划的推动下,110KV变电站的建设得到了快速发展。

在110KV变电站设计中,主变的选择和接线方式的选择是其中比较重要的技术环节,对于110KV变电站主变和接线方式如何进行选择,是110KV变电站设计中需要研究的一个重要课题。

一、主变压器的选择在变电站中,主变压器的台数和容量,应根据地区供电条件、负荷性质、用电容量和运行方式等条件综合考虑确定。

在有一、二级负荷的变电站中宜装设两台主变压器,当技术经济比较合理时,可装设两台以上主变压器。

装有两台及以上主变压器的变电站,当断开一台时,其余主变压器的容量不应小于60%的全部负荷,并应保证用户的一、二级负荷。

具有三种电压的变电站,如通过主变压器各侧线圈的功率均达到该变压器容量的15%以上,主变压器宜采用三线圈变压器。

主变压器台数和容量直接影响主接线的形式和配电装置的结构。

1)主变容量的确定。

主变压器容量应根据5-10年的发展规划进行。

根据城市规划、负荷性质、电网结构等综合考虑确定其容量。

对重要变动站,应考虑当一台主变压器停运时,其余变压器容量在计算过负荷能力允许时间内,应满足Ⅰ类及Ⅱ类负荷的供电。

例如:某变电站设计负荷情况:主要为一、二级负荷35KV侧:最大36MVA,最小25MVA,功率因数cosΦ=0.85,Tmax=5000小时10KV侧:最大25MVA,最小16MVA,功率因数cosΦ=0.85,Tmax=3500小时变电所110KV侧的功率因数为0.9,所用电率0.9%主变容量选择计算为:每年的有效小时数是:365*24=8760次级负荷数是:【(36/0.85+25/0.85)*5000/8760】/0.9*0.9=51MVA故而建议选用容量为53MVA的主变压器作为主变比较合适。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三、变电所主变压器及主接线方案的选择3.1变电所主变压器台数的选择变压器台数应根据负荷特点和经济运行进行选择。

当符合下列条件之一时,宜装设两台及以上变压器:有大量一级或二级负荷;季节性负荷变化较大;集中负荷较大。

结合本厂的情况,考虑到二级重要负荷的供电安全可靠,故选择两台主变压器。

3.2变电所主变压器容量选择。

每台变压器的容量N T S ⋅应同时满足以下两个条件:1) 任一台变压器单独运行时,宜满足:30(0.6~0.7)N T S S ⋅=⋅2) 任一台变压器单独运行时,应满足:30(111)N T S S ⋅+≥,即满足全部一、二级负荷需求。

代入数据可得:N T S ⋅=(0.6~0.7)×1169.03=(701.42~818.32)kV A ⋅。

又考虑到本厂的气象资料(年平均气温为20C ),所选变压器的实际容量:(10.08)920N T NT S S KVA ⋅=-⋅=实也满足使用要求,同时又考虑到未来5~10年的负荷发展,初步取N T S ⋅=1000kV A ⋅。

考虑到安全性和可靠性的问题,确定变压器为SC3系列箱型干式变压器。

型号:SC3-1000/10 ,其主要技术指标如下表所示:(附:参考尺寸(mm ):长:1760宽:1025高:1655 重量(kg ):3410)3.3电气主接线的概念发电厂、变电所的一次接线是由直接用来生产、汇聚、变换、传输和分配电能的一次设备的一次设备构成的,通常又称为电气主接线。

主接线代表了发电厂(变电所)电气部分的主体结构,是电力系统网络结构的重要组成部分。

它对电气设备选择、配电装置布置、继电保护与自动装置的配置起着决定性的作用,也将直接影响系统运行的可靠性、灵活性、经济性。

因此,主接线必须综合考虑各方面因素,经技术经济比较后方可确定出正确、合理的设计方案。

3.4电气主接线设计需要考虑的问题在进行变电站电气接线设计时,需要重点考虑以下一些问题:(1)需要考虑变电所在电力系统中的位置,变电所在电力系统中的地位和作用是决定电气主接线的主要因素。

变电所是枢纽变电所、地区变电所、终端变电所、企业变电所、还是分支变电所,由于它们在电力系统中的地位和作用不同,对其电气主接线的可靠性、灵活性和经济性的要求了也不同。

(2)要考虑近远期的发展规模,变电所电气主接线的设计,应根据5到10年电力发展规划进行。

根据负荷的大小、分布、增长速度、根据地区网络情况和潮流分布,分析各种可能的运行方式,来确定电气主接线的形式以及连接电源灵数和出线回数。

(3)考虑负荷的重要性分级和出线回数多少对电气主接线的影响,对一级负荷,必需有两个独立电源供电,且当一个电源失去后,应保证全部一级负荷不间断供电,且当一个电源失去后,应保证大部分二级负荷供电。

(4)考虑主变台数对电气主接线的影响,变电所主变的台数对电气主接线的选择将产生直接的影响,传输容量不同,对主接线的可靠性,灵敏性的要求也不同。

(5)考虑备用容量的有无和大小对电气主接线的影响,发、送、变的备用容量是为了保证可靠的供电,适应负荷突增、设备检修、故障停运情况下的应急要求。

电气主接线的设计要根据备用容量的有无有所不同,例如,当断路器或母线检修时,是否允许线路、变压器停运;当线路故障时允许切除线路、变压器的数量等,都直接影响着电气主接线的形式。

3.5主接线方案的选择3.5.1 电气主接线设计的基本要求电气主接线应满足以下基本要求:a具有一定的灵活性主接线在力求简单、明了、操作方便的同时,也要求有一定的灵活性,以适应系统不同运行方式的要求。

1) 调度时,应可以灵活的投入和切除发电机、变压器和线路,调配电源和负荷,满足系统在事故运行方式、检修运行方式以及特殊运行方式下的系统调度要求。

2) 检修时,可以方便的停运断路器、母线及其继电保护设备,进行安全检修而不致影响电力网的运行和对用户的用电。

3) 扩建时,可以容易的从初期接线过渡到最终接线。

在不影响连续供电或停电时间最短的情况下,投入新装机组、变压器或线路而不互相干扰,并且对一次和二次部分的改建工作量最小。

b操作应尽可能简单、方便主接线应简单清晰、操作方便,尽可能使操作步骤简单,便于运行人员掌握。

复杂的接线不仅不便于操作,还往往会造成运行人员的误操作而发生事故。

但接线过于简单,可能又不能满足运行方式的需要,而且也会给运行造成不便或造成不必要的停电。

c可靠性供电可靠性是电力生产和分配的首要任务,保证供电可靠性是电气主接线最基本的要求。

分析和研究主接线可靠性通常应从以下几方面综合考虑:(1)变电站在电力系统中的地位和作用变电站都是电力系统的重要组成部分,其可靠性应与系统相适应。

例如:对一个中小型变电站的主接线就毋须要求过高的可靠性,也就没有必要采取太复杂的接线形式;而对于一个大型发电厂或超高压变电站,由于它们在电力系统中的地位很重要,供电容量大、范围广,发生事故可能使系统稳定运行遭破坏,甚至瓦解,造成巨大损失。

因此,其主接线应采取供电可靠性高的接线形式。

(2)变电站的运行方式及负荷性质电能的特点是:发电、变电、输电和用电同时完成。

而负荷的性质按其重要性又有Ⅰ类、Ⅱ类和Ⅲ类之分。

因此,根据发电厂的运行方式和负荷的要求,进行具体分析,以满足必要的供电可靠性。

(3)断路器检修时是否会影响对用户的供电。

(4)设备和线路故障或检修时,停电线路的多少和停电时间的长短,以及能否保证对重要用户的供电。

d 经济主接线在保证安全可靠、操作灵活方便的基础上,还应使投资和年运行费用小,占地面积最少,使其尽地发挥经济效益。

一般应当从以下几方面考虑:1)投资小:主接线应简单清晰,以节约开关电器数量,降低投资;要适当采用限制断路电流的措施,以便选用价廉的电器;二次控制与保护方式不应过于复杂,以利于运行和节约二次设备的投资。

2)占地面积少:主接线要为配电装置布置创造节约土地的条件,尽可能使占地面积减少。

3)电能损耗少:在发电厂或变电站中,正常运行时,电能损耗主要来自变压器,应经济合理地选择变压器的型式、容量和台数,尽量避免两次变压而增加电能损耗。

e 扩建的可能性由于近年来,我国的经济建设高速发展,各地区的电力负荷的需求近年来增加的很快,尤其是江苏省沿江地区,电力需求增长很快。

而本课题要设计的变电站正好处于该地区,因此,在选择主接线时,要充分考虑到具有扩建的可能性,并且预留出合适的扩建空间。

3.5.2电气主接线的基本形式主接线的总体分类: a 单母线接线母线起汇集和分配电能的作用。

每一条进出线回路都组成一个接线单元,每个接线单元都与母线相连,可分为: 1)接线方法及工作要求,见图1。

⑴主母线的作用 ⑵开关电器的配置线路有反馈电可能或为架空配电线应装设QS ⑶操作程序“先通后断”原则 合:QF QS QS L B →→; 分:B L QS QS QF →→。

2)特点⑴优点:简单、经济。

①接线简单(设备少)、清晰、明了;②布置、安装简单,配电装置建造费用低;③断路器与隔离开关间易实现可靠的防误闭锁,操作安全、方便,母线故障的几率低;④易扩建和采用成套式配电装置。

⑵缺点:不够灵活可靠。

①主母线、母隔故障或检修,全厂停电;②任一回路断路器检修,该回路停电。

L4图1单母线b双母线接线1、不分段的双母线1)接线方法及运行方式见图2。

2)特点:⑴可轮流检修母线而不影响正常供电⑵检修任一母线侧隔离开关时,只影响该回路供电⑶工作母线发生故障后,所有回路短时停电并能迅速恢复供电⑷可利用母联断路器代替引出线断路器工作⑸便于扩建⑹由于双母线接线的设备较多,配电装置复杂,运行中需要用隔离开关切换电路,容易引起误操作;同时投资和占地面积也较大。

6~10kV配电装置出线回路数目为6回及以上时,可采用单母线分段接线。

而双母线接线一般用于引出线和电源较多,输送和穿越功率较大,要求可靠性和灵活性较高的场合。

110kV终端变电站的10 kV部分一般采用单母线分段,互为备用。

由课题所给条件进行综合分析:对图1和图1所示的方案Ⅰ、Ⅱ综合比较,见表1表1主接线方案比较经过综合比较方案Ⅰ在经济性上比方案Ⅱ好,且调度和灵活性也可以保证供电的可靠性。

所以选用方案Ⅰ。

七、变电所二次回路方案选择及继电保护的整定7.1二次回路方案选择7.1.1二次回路电源选择二次回路操作电源有直流电源,交流电源之分。

蓄电池组供电的直流操作电源带有腐蚀性,并且有爆炸危险;由整流装置供电的直流操作电源安全性高,但是经济性差。

考虑到交流操作电源可使二次回路大大简化,投资大大减少,且工作可靠,维护方便。

这里采用交流操作电源。

7.1.2高压断路器的控制和信号回路高压断路器的控制回路取决于操作机构的形式和操作电源的类别。

结合上面设备的选择和电源选择,采用弹簧操作机构的断路器控制和信号回路。

7.1.3电测量仪表与绝缘监视装置这里根据GBJ63-1990的规范要求选用合适的电测量仪表并配用相应绝缘监视装置。

a)10KV电源进线上:电能计量柜装设有功电能表和无功电能表;为了解负荷电流,装设电流表一只。

b) 变电所每段母线上:装设电压表测量电压并装设绝缘检测装置。

c) 电力变压器高压侧:装设电流表和有功电能表各一只。

d) 380V 的电源进线和变压器低压侧:各装一只电流表。

e) 低压动力线路:装设电流表一只。

7.1.4电测量仪表与绝缘监视装置在二次回路中安装自动重合闸装置(ARD )(机械一次重合式)、备用电源自动投入装置(APD )。

7.2继电保护的整定继电保护要求具有选择性,速动性,可靠性及灵敏性。

由于本厂的高压线路不很长,容量不很大,因此继电保护装置比较简单。

对线路的相间短路保护,主要采用带时限的过电流保护和瞬时动作的电流速断保护;对线路的单相接地保护采用绝缘监视装置,装设在变电所高压母线上,动作于信号。

继电保护装置的接线方式采用两相两继电器式接线;继电保护装置的操作方式采用交流操作电源供电中的“去分流跳闸”操作方式(接线简单,灵敏可靠);带时限过电流保护采用反时限过电流保护装置。

型号都采用GL-25/10 。

其优点是:继电器数量大为减少,而且可同时实现电流速断保护,可采用交流操作,运行简单经济,投资大大降低。

此次设计对变压器装设过电流保护、速断保护装置;在低压侧采用相关断路器实现三段保护。

7.2.1变压器继电保护变电所内装有两台10/0.4kV 1000kV A ⋅的变压器。

低压母线侧三相短路电流为(3)28.213k I kA =,高压侧继电保护用电流互感器的变比为200/5A ,继电器采用GL-25/10型,接成两相两继电器方式。

下面整定该继电器的动作电流,动作时限和速断电流倍数。

a)过电流保护动作电流的整定:1.3,0.8,rel re K K ==1w K =,200/540i K ==max 1224100010)230.95L N T I I kV A kV A ⋅⋅=⨯=⨯⋅= 故其动作电流: 1.31230.959.380.840op I A A ⨯=⨯=⨯动作电流整定为9A 。

相关文档
最新文档