第三章 斩波电路
第3章-1开关电源拓扑及控制模式

DT
和
Vd VO V t on O t off L L toff (1 D ) T
பைடு நூலகம்
,可得
VO D Vd
因此,Buck电路输出电压平均值与占空比D 成正比,D从0变到1,输出电压从0变化,且 输出电压最大值不超过输入电压。
第3章开关电源拓扑及控制模式 • 电容两端的电压变化量实际上就是输出电压的纹波 电压。假设负载电流io的脉动量很小而可以忽略, 则 iC i L iO ,即电感的峰峰脉动电流 I L 即为电容C 充放电电流 iC i L。电容充电电荷量即电流曲线与 横轴所围的面积:
node 10
第3章开关电源拓扑及控制模式
开关管 电压 电感 电流 输入 电流 二极管 电流 电容 电流 负载 电压
第3章开关电源拓扑及控制模式
Buck变换器的元器件参数选择
Lf
RLd + Uo _
Q Ui
D
Cf
已知条件: 输入电压Ui(变化范围) 输出电压Uo 输出电流Io 输出电压稳定精度 输出电压纹波
Vd VO V ton O t 'off L L
O
Vd
on
ton t off
'
on
ton
T
t off
'
D D'
T
•
' D D 1 电感电流连续时,
,电感电流断续
时,D D ' 1 。 变换器输出电流等于电感电流平均值:
2 Vd 1 1 1 D ' I L Q iL ton t off 1 Vd 2 fL VO T T 2
第3章直流斩波电路

电容泵常用于小功率电源电路(IC) 由于不用电感,电磁干扰小
26
3.2.3
多重斩波电路:
多重斩波电路
等效频率升高,有利滤波平稳电流 可增大输出容量 可冗余备用,提高抗故障能力。
27
本章小结
本章介绍了6种基本斩波电路、2种复合斩波电路及多 相多重斩波电路。
本章的重点 降压和升压斩波电路,2,4象限斩波电路 ---- 原理,输入输出关系、分析方法、工作特点
5
例
E=200V ,Em=30V, R=1.0Ω,ρ=0.01 m=30/200=0.15 α=0.25, Io=(200*0.25-30)/1.0=20A---? Δi=0.01*0.25*(1-0.25)*200/1.0=0.375 A Io>Δi/2—io连续,Io有效 或: αc=0.15+0.01/8=0.151 α> αc ---……
6
降压斩波器I闭环驱动LED
LD—电流给定,CS—电流反馈
7
升压斩波电路 (Boost Chopper) 电路 ---利用L电势升压
储存电能
保持输 出电压
8
3.1.2 升压斩波电路
工作原理
α期间V通D断: L由 E充电; C向R放电。 β期间V断D通: E和L同时向C和R放电。 电流连续时输出平均电压: 按波形: UV =βUo 按电路: E-r*IL= Uv (电感UL=0 电容Ic=0) 略电源侧r Uo=E/β=E/(1- α) α↑ Uo↑ (同降压..
-∑In*rLn/3
In=(Un-Uo)/rLn可闭环控为Io/3
特点 (1)等效开关频率升为3倍,有利滤 波平稳电流. (2)可增大电流容量 (3)可冗余备用,提高抗故障能力
第3章 直流斩波电路 习题及答案

第三章 直流斩波电路

u1正半周:V1导通输出电压,V1关断时,V3 续流;
u1负半周:V2导通;V2关断 时,V4续流。 可通过改变占空比α调节输出电压的大小。
通过谐波分析可知,电源电流中不含有低次 谐波,只含有和开关周期T成反比的高次谐波, 这些高次谐波用很小的滤波器即可滤除。电路的 功率因数接近1。
4.1.2 三相交流调压电路
这种电路常用于电炉的温度控制等时间常数很 大的负载中,以周期为单位进行控制足够了。 当晶闸管导通时刻是正弦波的起始点时,在电 源电压接通期间,负载电压是正弦波,没有谐 波污染。
4.2.2 交流电力电子开关
把反并联的晶闸管串入交流电路中起 接通和断开电路的作用,这就是交流电力 电子开关。其作用是代替电路中的机械开 关。
以交流电的周期(2π)为单位来控 制晶闸管的通断,从而调节输出平均功率 的电路,称为交流调功电路。
设控制周期为M,晶闸管在前N个周期导通, 后M-N个周期关断。
当M=3、N=2时的电路波形如图4-13所示。
调功电路和调压电路的电路形式完全相同,只 是控制方式不同。因其直接调节对象是电路的 平均输出功率,所以被称作交流调功电路。
1)T不变,调节ton,称为脉冲宽度调制,简称PWM; 2) ton不变,改变T,称为频率调制或调频型; 3) ton和T 都调节,称为混合型。 其中第一种方式使用最多。
3.1.2 升压斩波电路
1、工作原理:
当V导通时,E向L补充电能,充电电流为I1,C向负载R 供电,u0基本恒定。 当V阻断时,E和L共同向C充电,并向负载提供能量。
S U1I 0 U1 2
α的移项范围为0°——180°。
2、阻感负载
若把α=0点仍定在电源电压的零点,显然, 阻感负载下稳态时α的移项范围应为 φ<=α<=π。其中负载的阻抗角为φ,负载电 流应滞后于电源电压u1φ角度。在用晶闸管控制 时,很显然只能进行滞后控制,使负载电流更为 滞后,而无法使其超前。
直流斩波电路

图3-8 可关断晶闸管电极判别
(3)可关断晶闸管触发特性测试
如图3-9所示。将万用表置于R×1档,黑表笔 接可关断晶闸管的阳极A,红表笔接阴极G悬空,这 时晶闸管处于阻断状态,电阻应为无穷大(∞), 如图3-9(a)所示。
(4)可关断晶闸管关断能力的初步检测
测试方法如图3-10所示。采用1.5V干电池一节, 普通万用表一只。
3.1.4绝缘栅双极晶体管
1.IGBT工作原理 由结构图可知,IGBT相当于一个由MOSFET
驱动的厚基区GTR。其剖面图见图3-21, N沟道IGBT的图形符号如图3-22所示。
图3-21 IGBT结构剖面图
图3-22 N-IGBT图形符号
2.IGBT主要特性
(1)静态特性
IGBT的静态特性包括转移特性和输出特性。
图3-16 功率MOSFET的输出特性
图3-17 功率MOSFET的转移特性
图3-18 功率MOSFET开关过程的电压波形
3.功率MOSFET 的主要参数 (1)通态电阻Ron (2)开启电压UGS(th) (3)跨导gm (4)漏源击穿电压BUDS (5)栅源击穿电压BUGS 4.功率MOSFET的安全工作区
IGBT的转移特性是描述集电极电流IC与栅射电压 UGE之间关系的曲线,如图3-23(a)所示。
图3-23(b)是以栅源电压UGE为参变量的IGBT正 向输出特性,也称伏安特性 。
(2)动态特性
IGBT的动态特性也称开关特性,包括开通和关 断两个部分,如图3-24所示。
图3-23 IGBT的静态特性曲线 (a)转移特性 (b)输出特性
图3-9 可关断晶闸管触发特性简易测试方法
图3-10 可关断晶闸管的Leabharlann 断能力测试3.1.2电力晶体管
降压斩波电路课程设计

降压斩波电路课程设计一、课程目标知识目标:1. 掌握降压斩波电路的基本原理与结构;2. 理解降压斩波电路中元器件的作用及其相互关系;3. 学会分析降压斩波电路的输出电压与输入电压的关系;4. 了解降压斩波电路在实际应用中的优势与局限性。
技能目标:1. 能够正确绘制降压斩波电路的原理图;2. 能够利用仿真软件对降压斩波电路进行仿真分析;3. 能够根据实际需求设计和调试简单的降压斩波电路;4. 能够通过实验和数据分析,解决降压斩波电路中存在的问题。
情感态度价值观目标:1. 培养学生对电力电子技术课程的兴趣,激发学习热情;2. 培养学生具备良好的团队合作精神和沟通能力,提高解决问题的能力;3. 增强学生的环保意识,了解电力电子技术在实际应用中对环境保护的重要性;4. 培养学生的创新意识,鼓励学生勇于尝试,积极探索电力电子技术的新应用。
本课程针对高年级电子专业的学生,结合课程性质、学生特点和教学要求,将目标分解为具体的学习成果,以便后续的教学设计和评估。
通过本课程的学习,学生将能够掌握降压斩波电路的相关知识,具备一定的电力电子技术应用能力,同时培养良好的情感态度价值观。
二、教学内容1. 降压斩波电路基本原理:讲解降压斩波电路的工作原理、电路结构及关键元器件的功能;- 课本章节:第三章第三节“降压斩波电路基本原理”- 内容:开关器件、脉冲宽度调制、输出滤波器等2. 降压斩波电路分析与设计:分析电路的输出电压、电流波形,探讨元器件参数对电路性能的影响;- 课本章节:第三章第四节“降压斩波电路分析与设计”- 内容:输出电压与输入电压关系、开关频率、电感、电容等参数的选择3. 降压斩波电路仿真与实验:利用仿真软件进行电路仿真,进行实验验证,提高学生的实际操作能力;- 课本章节:第三章第五节“降压斩波电路仿真与实验”- 内容:仿真软件操作、实验步骤、数据采集与处理4. 降压斩波电路应用案例分析:介绍降压斩波电路在实际应用中的案例,分析其优势与局限性;- 课本章节:第三章第六节“降压斩波电路应用案例”- 内容:开关电源、电动汽车、可再生能源等领域应用5. 教学进度安排:共4课时,分别进行以下内容的教学:- 第1课时:降压斩波电路基本原理- 第2课时:降压斩波电路分析与设计- 第3课时:降压斩波电路仿真与实验- 第4课时:降压斩波电路应用案例分析教学内容科学系统,结合课程目标,确保学生能够全面掌握降压斩波电路的相关知识,提高学生的理论水平和实践能力。
单片机第三章直流斩波电路n

滤波原理
直流斩波电路通过滤波电路对 高频脉冲进行滤波,得到稳定 的直流输出。
控制原理
直流斩波电路通过控制器对开 关元件的控制信号进行调节, 实现对输出的精确控制。
直流斩波电路的基本结构
控制器
控制器负责生成开关元件的控制 信号,用于调节电源的输出。
开关元件
滤波电路
开关元件是直流斩波电路的核心 部分,负责快速切换电源的输出。
优点
• 高效率 • 精确控制 • 能量回收
局限
• 电磁干扰 • 纹波幅度 • 成本较高
直流斩波电路的未来发展趋势
随着电力电子技术的不断进步,直流斩波电路将进一步提高电压和电流的调 节精度,降低纹波幅度,并应用于更广泛的领域,如新能源和电动汽车。
直流斩波电路的作用
电压/电流调节
直流斩波电路能够调节直流电源的输出电压或电流,满足特定的需求。
能量回收
直流斩波电路可实现电能的回收利用,减少能源的浪费。
电机驱动
直流斩波电路可用于控制电机的速度和转向,实现高精度的电机控制。
直流斩波电路的原理
切换原理
直流斩波电路通过开关元件的 快速切换,将直流电源的输出 转换为高频脉冲。
直流斩波电路
直流斩波电路是一种用于调节直流电源输出的电路,通过切换电源的开关来 改变输出电压或电流。
直流斩波电路的定义
1 调节直流电源
直流斩波电路可通过高频开关路由,调节直流电源的输出电压或电流。
2 重要组成部分
直流斩波电路主要由控制器、开关元件和滤波电路组成。
3 作为电源变换器
直流斩波电路也可以将直流电源转换为交流电源。
滤波电路对高频脉冲进行滤波, 使输出稳定且纹波尽可能小。
直流斩波电路的应用示例
斩波电路

斩波器直流斩波器(D.C. Chopper)又称为截波器,它是将电压值固定的直流电,转换为电压值可变的直流电源装置,是一种直流对直流的转换器(DC to DC Converter)已被广泛使用,如直流电机之速度控制、交换式电源供应器(Switching-Power-Supply)等。
直流斩波是将固定的直流电压变换成可变的直流电压,也称为DC/DC变换。
斩波器的工作方式有两种,一是脉宽调制方式,Ts(周期)不变,改变Ton(通用,Ton为开关每次接通的时间),二是频率调制方式,Ton不变,改变Ts(易产生干扰)。
其具体的电路由以下几类:1、Buck电路:降压斩波器,其输出平均电压Uo小于输入电压Ui,输出电压与输入电压极性相同。
2、Boost电路:升压斩波器,其输出平均电压Uo大于输入电压Ui,输出电压与输入电压极性相同3、Buck-Boost电路:降压或升压斩波器,其输出平均电压Uo大于或小于输入电压Ui,输出电压与输入电压极性相反,电感传输。
4、Cuk电路:降压或升压斩波器,其输出平均电压Uo大于或小于输入电压Ui,输出电压与输入电压极性相反,电容传输。
用直流斩波器代替变阻器可节约电能(20~30)%。
直流斩波器不仅能起调压的作用(开关电源),同时还能起到有效地抑制电网侧谐波电流噪声的作用。
当今软开关技术使得DC/DC发生了质的飞跃,美国VICOR公司设计制造的多种ECI软开关DC/DC变换器,其最大输出功率有300W、600W、800W 等,相应的功率密度为(6、2、10、17)W/cm^3,效率为(80-90)%。
日本NemicLambda公司最新推出的一种采用软开关技术的高频开关电源模块RM 系列,其开关频率为(200-300)kHz,功率密度已达到27W/cm^3,采用同步整流器(MOS-FET代替肖特基二极管),是整个电路效率提高到90%。
编辑本段基本原理直流斩波器乃利用功率组件对固定电压之电源做适当之切割以达成负载端电压改变之目的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三章斩波电路
一、填空题
1.直流斩波电路完成得是直流到________的变换。
2.直流斩波电路中最基本的两种电路是________和________。
3.斩波电路有三种控制方式:________、________和________。
4.升压斩波电路的典型应用有________和________等。
5.升降压斩波电路呈现升压状态的条件为________。
6.斩波电路用于拖动直流电动机时,降压斩波电路能使电动机工作于第________象限,升压斩波电路能使电动机工作于第________象限,________电路能使电动机工作于第1和第2象限。
7.桥式可逆斩波电路用于拖动直流电动机时,可使电动机工作于第________象限。
三、简答题
1.画出降压斩波电路原理图并简述其工作原理。
2.画出升压斩波电路原理图并简述其基本工作原理。
3.试分别简述升降压斩波电路和Cuk斩波电路的基本原理,并比较其异同点。
5.分析题图3-15a所示的电流可逆斩波电路,并结合题图3-15b的波形,绘制出各个阶段电流流通的路径并标明电流方向。
6.对于题图3-16所示的桥式可逆斩波电路,若需使电动机工作于反转电动状态,试分析此时电路的工作情况,并绘制相应的电流流通路径图,同时标明电流流向。
7.多相多重斩波电路有何优点?
四、计算题
1.在题图3-18所示的降压斩波电
路中,已知E=200V,R=10Ω,L值
极大,E M=30V,T=50μs,t on=20μs,
计算输出电压平均值U o,输出电流
平均值I o。
2.在题图3-19所示的降压
斩波电路中,E=100V,
L=1mH,R=0.5Ω,E M=10V,
采用脉宽调制控制方式,
T=20μs,当t on=5μs时,
计算输出电压平均值U o,输出
电流平均值I o,计算输出电流
的最大和最小值瞬时值并判断
负载电流是否连续。
当
t on=3μs时,重新进行上述计
算。
3.在题图3-20所示的升压斩波
电路中,已知E=50V,L值和C值极大,R=20Ω,
采用脉宽调制控制方式,当T=40μs,t on=25μs
时,计算输出电压平均值U o,输出电流平均值I o。
4.在题图3-21所示的升压斩波电路中,设E=
100V,R=250W, =0.8,C=∞。
(1)计算输出电压平均值Uo,输出电流平均值Io。
(2)计算输入输出功率。
5.如题图3-22所示降压斩波电路,设输入电压为
200V,电感L是100mH, 电容C无穷大,输出接10W
的电阻,电路的工作频率是50kHz,全控器件导通占
空比 为0.5,求:
(1)输出直流电压U o,输出直流电流I o。
(2)流过IGBT的峰值电流。
(3)如果将IGBT的峰值电流减小为输出直流电流I o的110%,应改变什么参数,它的值是多大。