九年级数学寒假每日一练(7)

合集下载

初三数学寒假作业每日练习

初三数学寒假作业每日练习

初三2019数学寒假作业每日练习查字典数学网为大家整理了初三数学寒假作业每日练习的相关内容,希望能陪大家度过一个美好的假期,小编提醒,贪玩不能耽误学习哦!一、选择题(本大题共12个小题.1-6小题,每小题2分,7-12小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.在下列各数(-1)0 、- 、(-1) 3 、(-1) -2 中,负数的个数有A.0个B.1个C.2个D.3个2、在下列几何体中,主视图是等腰三角形的是3.下列计算正确的是A.x+x=x2B. xx=2xC.(x2)3=x5D. x3x=x24、一个正方形的面积等于10,则它的边长a满足A. 35.如图,矩形ABCD的对角线ACOF,边CD在OE上,BAC=70,则EOF等于A. 10B. 20C. 30D. 706.以下四种说法:①为检测酸奶的质量,应采用抽查的方式;②甲乙两人打靶比赛,平均各中5环,方差分别为0.15,0.17,所以甲稳定;③等腰梯形既是中心对称图形,又是轴对称图形;④举办校运会期间的每一天都是晴天是必然事件.其中正确的个数是A.4B.3C.2D.17. 若不等式组有解,则a的取值范是A.a-1B.a-1C.a1D.a18.如图,等边三角形的边长为3,点为边上一点,且,点为边上一点,若,则的长为AAA. B. C. D.19.某公园有一个圆形喷水池,喷出的水流呈抛物线,一条水流的高度h(单位:m)与水流运动时间t(单位:s)之间的关系式为h=30t-5t2,那么水流从抛出至回落到地面所需要的时间是A.6sB.4sC.3sD.2s10.如图:⊙O与AB相切于点A,BO与⊙O交于点C,BAC=30,则B等于A.20B.50C.30D. 6011.函数y=4x和y=1x在第一象限内的图象如图,点P是y=4x 的图象上一动点,PCx轴于点C,交y=1x的图象于点A. PDy 轴于点D,交y=1x的图象于点B。

初三精彩寒假数学试卷题

初三精彩寒假数学试卷题

一、选择题(每题5分,共50分)1. 若一个数的平方等于它本身,则这个数是()。

A. 0和1B. 0和-1C. 1和-1D. 0,1和-12. 下列各数中,属于有理数的是()。

A. √2B. πC. 0.1010010001…D. 33. 已知一元二次方程x² - 5x + 6 = 0的两个根为a和b,则a + b的值为()。

A. 5B. -5C. 6D. 04. 在直角坐标系中,点A(-2,3)关于原点对称的点的坐标是()。

A.(-2,3)B.(2,-3)C.(-2,-3)D.(2,3)5. 若一个等差数列的前三项分别为a,b,c,且a + c = 8,b = 4,则该数列的公差是()。

A. 2B. 3C. 4D. 56. 下列函数中,在定义域内单调递增的是()。

A. y = x²B. y = 2xC. y = -xD. y = 3x - 27. 已知等腰三角形的底边长为10cm,腰长为13cm,则该三角形的面积是()。

A. 50cm²B. 65cm²C. 80cm²D. 100cm²8. 在一次函数y = kx + b中,若k > 0,b < 0,则该函数图象经过的象限是()。

A. 第一、二、四象限B. 第一、二、三象限C. 第一、三、四象限D. 第一、二、三、四象限9. 下列各组数中,存在等差数列的是()。

A. 2,4,8,16B. 1,3,5,7C. 3,6,9,12D. 2,5,8,1110. 已知正方体的棱长为a,则其表面积S为()。

A. 6a²B. 8a²C. 12a²D. 16a²二、填空题(每题5分,共50分)1. 若sinθ = 1/2,则cosθ = _______。

2. 若a² - b² = 36,且a > b,则a + b = _______。

九年级上册数学每日一练

九年级上册数学每日一练

1.若关于x的方程2x2﹣(k﹣1)x+k+1=0的两个实数根满足关系式|x1﹣x2|=1,则k的值为()A.11B.﹣1C.11或﹣1D.11或﹣1或1 2.抛物线y=x2可以由抛物线y=(x+2)2﹣3平移得到,则下列平移过程正确的是()A.先向左平移2个单位,再向上平移3个单位B.先向左平移2个单位,再向下平移3个单位C.先向右平移2个单位,再向下平移3个单位D.先向右平移2个单位,再向上平移3个单位3.关于x的一元二次方程kx2+2x﹣5=0有两个不相等的实数根,则k的取值范围是.4.关于x的一元二次方程x2﹣2(m+1)x+m2+5=0有两个实数根.(1)求m的取值范围;(2)若Rt△ABC的两条直角边AC,BC的长恰好是此方程的两个实数根,斜边AB=6,求△ABC的周长.1.随着春天的到来,到植物园赏花的游客越来越多,2023年3月份的游客人数是元月份的3倍.设2、3月份游客人数的平均增长率为x,则下列方程正确的是()A.1+x=3B.1+2x=3C.(1+x)2=3D.1+x+(1+x)2=32.已知二次函数y=x2+ax+b=(x﹣x1)(x﹣x2)(a,b,x1,x2为常数),若1<x1<x2<3,记t=a+b,则()A.﹣3<t<0B.﹣1<t<0C.﹣1<t<3D.0<t<33.设x1,x2是方程2x2+6x﹣1=0的两根,则x1+x2+x1x2的值是.4.如图,在平面直角坐标系中,线段AB的端点坐标分别为A(1,2)、B(5,2),抛物线y=﹣x2+2mx﹣m2+2m(m为常数)和线段AB有公共点时,m的取值范围是.5.解方程:(1)x2﹣2x=99;(2)(x+3)2=﹣2(x+3).1.下列方程属于一元二次方程的是()A.x+y=1B.x2+x=0C.D.1﹣2x=x2.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,对于下列结论:①b2>4ac;②a+b <﹣c;③abc<0;④8a+c>0;⑤方程ax2+bx+c=0的根是x1=﹣1,x2=3,其中正确结论的个数是()A.5B.4C.3D.23.抛物线的顶点坐标为.4.如图,天娇生态园要建造一圆形喷水池,在水池中央垂直于水面安装一个柱子OA,O 恰在水面中心,OA高3米,如图1,由柱子顶端处的喷头向外喷水,水流在各方面沿形状相同的抛物线落下.(1)如果要求设计成水流在离OA距离为1米处达到最高点,且与水面的距离是4米,那么水池的内部半径至少要多少米,才能使喷出的水不致落到池外;(利用图2所示的坐标系进行计算)(2)若水流喷出的抛物线形状与(1)相同,水池内部的半径为5米,要使水流不落到池外,此时水流达到的最高点与水面的距离应是多少米?1.m、n为正整数,m2+n2+1=2m+2n,则m+n的值为()A.2B.3C.4D.52.函数y=ax+b与函数y=bx2+a(a,b是常数,且ab≠0)在同一平面直角坐标系中的图象可能是()A.B.C.D.3.x2﹣4x+1=(x﹣2)2﹣.4.若a是方程x2﹣2x﹣1=0的解,则代数式2a2﹣4a+2022的值为.5.已知关于x的一元二次方程x2﹣(m+2)x+m﹣1=0.(1)求证:无论m取何值,方程总有两个不相等的实数根.(2)若a和b是这个一元二次方程的两个根,且a2+b2=9,求m的值.1.已知关于x的一元二次方程x2+ax+a=0的一个根是3,则a的值是()A.B.C.2D.2.关于二次函数y=(x﹣3)2+2,下列说法正确的是()A.函数图象的开口向下B.函数图象的顶点坐标是(﹣3,2)C.该函数有最大值,最大值是2D.当x>3时,y随x的增大而增大3.代数式a2﹣2a+5的最小值为.4.解方程:x2+2x=0.5.有一个抛物线形的拱形桥洞,桥洞离水面的最大高度为4m,跨度为12m.现将它的图形放在如图所示的直角坐标系中.(1)求这条抛物线的解析式.(2)一艘宽为4米,高出水面3米的货船,能否从桥下通过?1.已知m、n是一元二次方程x2+x﹣2023=0的两个实数根,则代数式m2+2m+n的值等于()A.2019B.2020C.2021D.20222.如图是二次函数y=ax2+bx+c(a≠0)的大致图象,其顶点坐标为(1,﹣4a),现有下列结论:①a<﹣;②a﹣b+c<0;③c﹣2b<0;④方程a(x﹣3)(x+1)+1=0没有实数根.其中正确的有()A.1个B.2个C.3个D.4个3.已知二次函数y=x2+4x+c的图象与两坐标轴共有2个交点,则c=.4.关于x的一元二次方程x2﹣3x+k﹣1=0有两个相等的实数根,则k的值为.5.已知二次函数y=ax2,当x=3时,y=3.(1)求当x=﹣2时,y的值.(2)写出它的图象的对称轴、顶点坐标和开口方向.1.方程x2+kx+1=0有两个相等的实数根,则k的值是()A.﹣2B.2C.±2D.2.已知二次函数y=2x2﹣4bx﹣5(b≥﹣1),当﹣3≤x≤1时,函数的最小值为﹣13,则b 的值为()A.B.2C.D.13.二次函数y=x2﹣2ax+a(a为常数)的图象经过点A(﹣4,y1)、B(﹣1,y2)、C(3,y3).若y1>y3>y2,则a的取值范围为.4.已知二次函数y=﹣x2+2x+2(1)填写表中空格处的数值x…﹣1013…y=﹣x2+2x+2…2﹣1…(2)根据上表,画出这个二次函数的图象;(3)根据表格、图象,当0<x<3时,y的取值范围.(4)根据图象,当x时,y随x的增大而增大.1.若关于x的一元二次方程(k﹣1)x2+4x+1=0有两个不相等的实数根,则k的取值范围是()A.k<5B.k>5C.k≤5,且k≠1D.k<5,且k≠1 2.有一个人患流感,经过两轮传染后共有64个人患流感,每轮传染中平均一个人传染几个人?设每轮传染中平均一个人传染x个人,可列方程为()A.1+2x=64B.1+x2=64C.1+x+x2=64D.(1+x)2=64 3.将抛物线y=x2向下平移2个单位长度,得到的抛物线为()A.y=x2+2B.y=x2﹣2C.y=(x﹣2)2D.y=(x+2)2 4.解下列方程:(1)x2+4x=0;(2)x2﹣3x﹣2=0.5.渠县是全国优质黄花主产地,某加工厂加工黄花的成本为30元/千克,根据市场调查发现,批发价定为48元/千克时,每天可销售500千克,为增大市场占有率,在保证盈利的情况下,工厂采取降价措施,批发价每千克降低1元,每天销量可增加50千克.(1)设批发价每千克降x元,写出工厂每天的利润W元与降价x元之间的函数关系式.(2)当降价多少元时,工厂每天的利润最大,最大为多少元?(3)若工厂每天的利润要达到9750元,并让利于民,则定价应为多少元?1.用配方法解方程x2﹣4x+2=0,配方后正确的是()A.(x﹣2)2=2B.(x+2)2=2C.(x﹣2)2=﹣2D.(x﹣2)2=0 2.若抛物线y=﹣x2+4x﹣n的顶点在x轴的下方,则实数n的取值范围是.3.(1)计算:.(2)解方程x2﹣4x+1=0.4.晨光中学课外活动小组准备围建一个矩形生物苗圃园,其中一边靠墙,另外三边用长为30米的篱笆围成.已知墙长为18米(如图所示),设这个苗圃园垂直于墙的一边的长为x米.(1)设这个苗圃园的面积为S,求S与x之间的函数关系,并直接其自变量x的取值范围;(2)当矩形场地的面积为100m2时,求垂直于墙的一边的长.1.我国南宋数学家杨辉在《田亩比类乘除捷法》中记录了这样的一个问题:“直田积八百六十四步,只云长阔共六十步,问长多阔几何?”其大意是:矩形面积是864平方步,其中长与宽和为60步,问长比宽多多少步?若设长比宽多x步,则下列符合题意的方程是()A.(60﹣x)x=864B.C.(60+x)x=864D.(30+x)(30﹣x)=8642.已知二次函数y=ax2+2x+1(a为实数,且a<0),对于满足0≤x≤x0的任意一个x的值,都有﹣3≤y≤3,则x0的最大值为()A.2﹣2B.2+2C.2+2D.2﹣23.将抛物线y=x2﹣6x+5先向左平移2个单位长度,再向上平移1个单位长度,得到的新抛物线的顶点坐标为.4.解方程(1)x2+2x﹣3=0;(2)1+x+x(1+x)=121.5.已知二次函数y=2(x﹣1)2的图象如图所示,求△ABO的面积.1.当x满足时,方程x2﹣2x﹣4=0的根是()A.B.C.D.2.将抛物线y=3x2向右平移1个单位,再向上平移2个单位后所得到的抛物线的解析式为()A.y=3(x+1)2﹣2B.y=3(x+1)2+2C.y=3(x﹣1)2﹣2D.y=3(x﹣1)2+23.已知关于x的一元二次方程x2﹣(m+2)x+m+1=0.(1)求证:该方程总有两个实数根;(2)若该方程两个实数根的差为2,求m的值.4.某商场将进价为30元的台灯以40元售出,平均每月能售出600个.调查发现,售价在40元至70元范围内,这种台灯的售价每上涨1元,其销售量就减少10个.为了实现每月获得最大的销售利润,这种台灯的售价应定为多少?最大利润为多少元?1.把一元二次方程(2﹣x)(x+3)=1化成一般形式,正确的是()A.x2+x﹣5=0B.x2﹣5x﹣5=0C.x2﹣5x﹣6=0D.﹣x2﹣x+6=0 2.定义{a,b,c}=c(a<c<b),即{a,b,c}的取值为a,b,c的中位数,则如:{1,3,2}=2,{8,3,6}=6,已知函数y={x2+1,﹣x+2,x+3}(1)求当x=时,y=;(2)当直线y=x+b与上述函数有3个交点时,则b的值为.3.已知关于x的函数y=ax2+bx+c.若a=1,函数的图象经过点(1,﹣4)和点(2,1),求该函数的表达式和最小值.4.在平面直角坐标系中,设二次函数y=(x+a)(x﹣a﹣1)(a>0).(1)求二次函数对称轴;(2)若当﹣1≤x≤3时,函数的最大值为4,求此二次函数的顶点坐标.1.如图,某小区居民休闲娱乐中心是建在一块长方形(长30米,宽20米)场地,被3条宽度相等的绿化带划分为总面积为480平方米的6块活动场所.如果想求绿化带的宽度x 米,可列出的方程为()A.(30﹣x)(20﹣x)=480B.(30﹣2x)(20﹣2x)=480C.(30﹣2x)(20﹣x)=480D.(30﹣x)(20﹣2x)=4802.已知抛物线y=x2﹣(m﹣3)x﹣m.求证:无论m为何值时,抛物线与x轴总有两个交点.3.新定义:[a,b,c]为二次函数y=ax2+bx+c(a≠0,a,b,c为实数)的“图象数”,如:y=﹣x2+2x+3的“图象数”为[﹣1,2,3](1)二次函数y=x2﹣x﹣1的“图象数”为.(2)若“图象数”是[m,m+1,m+1]的二次函数的图象与x轴只有一个交点,求m的值.1.已知x1,x2是关于x的一元二次方程x2﹣2(t+1)x+t2+5=0的两个实数根,若+=36,则t的值是()A.﹣7或3B.﹣7C.3D.﹣3或7 2.(1)已知a,b,c均为实数,且+|b+1|+(c+2)2=0,求关于x的方程ax2+bx+c=0的根.(2)已知二次函数y=ax2+bx+c的图象经过A(﹣1,0),B(0,﹣3),C(3,0)三点,求该二次函数的解析式.3.已知函数y=x2+2mx+m﹣1(m为常数).(1)若该函数图象与y轴的交点在x轴上方,求m的取值范围;(2)求证:不论m取何值,该函数图象与x轴总有两个公共点.。

数学初三年级下册寒假练习精选

数学初三年级下册寒假练习精选

数学初三年级下册寒假练习精选2019聪明出于勤奋,天才在于积累。

尽快地掌握科学知识,迅速提高学习能力,接下来查字典数学网为大家提供的数学初三年级下册寒假练习。

一、选择题:本大题共10个小题,每小题3分,共30分,每小题给出的四个选项中,只有一项是符合题目要求的,将此选项的字母填涂在答题卡上.1.﹣3的绝对值是( )A.3B.﹣3C.﹣D.2.节约是一种美德,节约是一种智慧.据不完全统计,全国每年浪费食物总量折合粮食可养活约3亿5千万人.350 000 000用科学记数法表示为( )A.3.5107B.3.5108C.3.5109D.3.510103.如图的几何体是由一个正方体切去一个小正方体形成的,它的主视图是( )A. B. C. D.4.下列计算错误的是( )A.bull; =B. + =C.divide; =2D. =25.将直角三角尺的直角顶点靠在直尺上,且斜边与这根直尺平行,那么,在形成的这个图中与互余的角共有( )A.4个B.3个C.2个D.1个6.下列图形中,是轴对称图形又是中心对称图形的是( )A. B. C. D.7.已知⊙O的半径是6cm,点O到同一平面内直线l的距离为5cm,则直线l与⊙O的位置关系是( )A.相交B.相切C.相离D.无法判断8.用10米长的铝材制成一个矩形窗框,使它的面积为6平方米.若设它的一条边长为x米,则根据题意可列出关于x的方程为( )A.x(5+x)=6B.x(5﹣x)=6C.x(10﹣x)=6D.x(10﹣2x)=69.二次函数y=x2+bx+c,若b+c=0,则它的图象一定过点( )A.(﹣1,﹣1)B.(1,﹣1)C.(﹣1,1)D.(1,1)10.如图,边长为1的正方形ABCD中,点E在CB延长线上,连接ED交AB于点F,AF=x(0.2x0.8),EC=y.则在下面函数图象中,大致能反映y与x之闻函数关系的是( )A. B. C. D.二、填空题:本大题共8小题,每小题4分,共32分.把答案写在答题卡中的横线上.11.分解因式:2a2﹣4a+2= .12.化简:= .13.等腰△ABC中,AB=AC=10cm,BC=12cm,则BC边上的高是cm.14.一元二次方程(a+1)x2﹣ax+a2﹣1=0的一个根为0,则a= .15.△ABC中,A、B都是锐角,若sinA= ,cosB= ,则C= .16.已知x、y为实数,且y= ﹣+4,则x﹣y= .17.如图,四边形ABCD是菱形,O是两条对角线的交点,过O点的三条直线将菱形分成阴影和空白部分.当菱形的两条对角线的长分别为6和8时,则阴影部分的面积为12 .18.观察下列各式:13=1213+23=3213+23+33=6213+23+33+43=102猜想13+23+33+ (103)三、解答题(一):本大题共5小题,共38分.解答时,应写出必要的文字说明、证明过程或演算步骤.19.计算:(﹣2)3+ (2019+)0﹣|﹣|+tan260.20.阅读理解:我们把称作二阶行列式,规定他的运算法则为=ad﹣bc.如=25﹣34=﹣2.如果有0,求x的解集.21.如图,△ABC中,C=90,A=30.(1)用尺规作图作AB边上的中垂线DE,交AC于点D,交AB于点E.(保留作图痕迹,不要求写作法和证明);(2)连接BD,求证:BD平分CBA.22.为倡导“低碳生活”,人们常选择以自行车作为代步工具、图(1)所示的是一辆自行车的实物图.图(2)是这辆自行车的部分几何示意图,其中车架档AC与CD的长分别为45cm和60cm,且它们互相垂直,座杆CE的长为20cm.点A、C、E在同一条只显示,且CAB=75.(参考数据:sin75=0.966,cos75=0.259,tan75=3.732)(1)求车架档AD的长;(2)求车座点E到车架档AB的距离(结果精确到1cm).23.如图,在直角坐标系xOy中,直线y=mx与双曲线相交于A(﹣1,a)、B两点,BCx轴,垂足为C,△AOC的面积是1.(1)求m、n的值;(2)求直线AC的解析式.四、解答题(二):本大题共5小题,共50分.解答时,应写出必要的文字说明、证明过程或演算步骤.24.在一个不透明的布袋里装有4个标号为1、2、3、4的小球,它们的材质、形状、大小完全相同,小凯从布袋里随机取出一个小球,记下数字为x,小敏从剩下的3个小球中随机取出一个小球,记下数字为y,这样确定了点P的坐标(x,y).(1)请你运用画树状图或列表的方法,写出点P所有可能的坐标;(2)求点(x,y)在函数y=﹣x+5图象上的概率.25.某校课外小组为了解同学们对学校“阳光跑操”活动的喜欢程度,抽取部分学生进行调查,被调查的每个学生按A(非常喜欢)、B(比较喜欢)、C(一般)、D(不喜欢)四个等级对活动评价,图1和图2是该小组采集数据后绘制的两幅统计图,经确认扇形统计图是正确的,而条形统计图尚有一处错误且并不完整.请你根据统计图提供的信息.解答下列问题:(1)此次调查的学生人数为;(2)条形统计图中存在错误的是(填A、B、C、D中的一个),并在图中加以改正;(3)在图2中补画条形统计图中不完整的部分;(4)如果该校有600名学生,那么对此活动“非常喜欢”和“比较喜欢”的学生共有多少人?26. D、E分别是不等边三角形ABC(即ABBCAC)的边AB、AC的中点.O是△ABC所在平面上的动点,连接OB、OC,点G、F分别是OB、OC的中点,顺次连接点D、G、F、E.(1)如图,当点O在△ABC的内部时,求证:四边形DGFE是平行四边形;(2)若四边形DGFE是菱形,则OA与BC应满足怎样的数量关系?(直接写出答案,不需要说明理由.)27.如图,Rt△ABC中,ABC=90,以AB为直径作半圆⊙O交AC与点D,点E为BC的中点,连接DE.(1)求证:DE是半圆⊙O的切线.(2)若BAC=30,DE=2,求AD的长.28.如图,在平面直角坐标系xOy中,顶点为M的抛物线是由抛物线y=x2﹣3向右平移一个单位后得到的,它与y轴负半轴交于点A,点B在该抛物线上,且横坐标为3.(1)求点M、A、B坐标;(2)联结AB、AM、BM,求ABM的正切值;“师”之概念,大体是从先秦时期的“师长、师傅、先生”而来。

初三试卷数学每日一练

初三试卷数学每日一练

一、选择题(每题4分,共40分)1. 下列数中,不是有理数的是()A. -3.14B. $\sqrt{2}$C. $\frac{1}{3}$D. 02. 已知a,b是实数,且a+b=0,那么a和b的关系是()A. a和b都是正数B. a和b都是负数C. a和b互为相反数D. a和b相等3. 下列方程中,解为整数的是()A. 2x+3=7B. 3x-5=2C. 5x+2=10D. 4x-1=74. 若一个等腰三角形的底边长为6cm,腰长为8cm,则该三角形的周长为()A. 20cmB. 21cmC. 22cmD. 24cm5. 在一次数学竞赛中,甲、乙、丙三人的平均分分别为80分、85分和90分,那么他们的总分为()A. 255分B. 255.5分C. 256分D. 257分6. 下列函数中,y是x的二次函数的是()A. y=x^2+3x+2B. y=x^2+2x-1C. y=2x^2-3x+1D. y=3x^2-2x+47. 已知等差数列{an}的公差为d,首项为a1,第n项为an,则第n项和为()A. n(a1+an)/2B. n(a1+an)C. n(an-a1)/2D. n(an-a1)8. 在直角坐标系中,点A(2,3)关于x轴的对称点为()A. (2,-3)B. (-2,3)C. (2,3)D. (-2,-3)9. 若一个正方体的体积为64立方厘米,则它的对角线长为()A. 4厘米B. 8厘米C. 12厘米D. 16厘米10. 下列命题中,正确的是()A. 平行四边形的对边相等B. 矩形的对角线相等C. 等腰三角形的底角相等D. 直角三角形的两条直角边相等二、填空题(每题5分,共50分)11. 计算:$\frac{5}{6} - \frac{2}{3} + \frac{1}{2}$12. 简化:$(a^2 - b^2)(a^2 + b^2)$13. 已知x+y=10,x-y=2,求x和y的值。

初中九年级的数学寒假每日一练

初中九年级的数学寒假每日一练

九年级数学寒假每日一练(3)一、1、甲,乙商场了促一种定价相同的商品,甲商场两次降价10,乙商场一次性降价 20,在哪家商场此种商品合算()A 、甲B、乙 C 、同 D 、与商品价格相关2、以下是由一些完好相同的小立方搭成的几何体的三种,那么搭成个几何体所用的小立方的个数是()A 、 5 个B、 6 个C、 7 个 D 、 8 个主(正)视图左视图俯视图3、以下运算正确的选项是()A 、4a2 (2a)2 2a 2 B、( a3 ) a3 a6 C、123 2 D、 1 1 01 x a 1y3与x 1 1 x4、已知代数式3x b y2a b是同,那么a、 b 的分是()2a 2B 、a 2C、a 2D 、a 2A 、1 b 1 b 1 b 1b5、直l : y (m 3) x n 2 ( m , n 常数)的象如3,yl化:︱m 3 ︱- 2 4 4 得()o n nA、 3 m n B 、5 C、-1D、m n 5 (10)x二、填空(把正确的答案填在相的横上,每小 3 分,共 24 分)6、函数y x 1 的自量x的取范是______________。

36cm7、把a3ab22a 2b 分解因式的果是______________。

8、如( 4),底面半径9cm,母 36cm,面张开的心角。

9、已知等腰ABC 的腰AB=AC=10cm,,底BC=12cm, A 的均分的是cm. 9cmI图 (6)410、如 6,若是以正方形 ABCD 的角 AC 作第二个正方形 ACEF ,再以角 AE 作第三个正方形 AEGH ,这样下J G EFD C去,⋯ ,已知正方形ABCD 的面s1 1,按上述方法所作的正 6H AB方形的面依次s2, s3,⋯..,s n(n正整数),那么第8个正方形的面积s8 = _______。

三、解答题11、某蔬菜公司收买蔬菜进行销售的盈利情况以下表所示:销售方式直接销售粗加工后销售精加工后销售每吨盈利(元)100250450现在该公司收买了140 吨蔬菜,已知该公司每日能精加工蔬菜 6 吨或粗加工蔬菜16 吨(两种加工不能够同时进行)。

初三数学每日一练

初三数学每日一练

初三数学小测验
2024年 月 日 星期 姓名: 成绩:
18-2
一、单选题
1.顺次连结任意四边形各边中点所得的四边形必定是( )
A .任意四边形
B .平行四边形
C .菱形
D .矩形
二、填空题
2.如图所示,四边形PONM 是平行四边形.则x = .
2题图 3题图 4题图
三、解答题
3.如图,在正方形网格由,每个小正方形的边长部是1,点A ,B ,C 都在格点上,点D ,E 分别是线段AC ,BC 的中点.
(1)图中的△ABC 是不是直角三角形?答:______;(填“是”或“不是”)
(2)计算线段DE 的长.
4.如图,在5×5的网格中,△ABC 的三个顶点都在格点上.
(1)在图1中画出一个以AB 为边的▱ABDE ,使顶点D ,E 在格点上.
(2)在图2中画出一条恰好平分△ABC 周长的直线l (至少经过两个格点).
5.如图,已知BD 是△ABC 的角平分线,点E 、F 分别在边AB 、BC 上,ED∥BC,EF∥AC.求证:BE=CF .。

2019-2020浙江省九年级数学中考寒假练兵作业7含答案

2019-2020浙江省九年级数学中考寒假练兵作业7含答案

2019-2020浙江省九年级数学中考寒假练兵作业7含答案一、选择题(共20题)1.方程的两根为、,则等于()A. -6B. 6C. -3D. 32.如图所示的两台天平保持平衡,已知每块巧克力的重量相等,且每个果冻的重量也相等,则每块巧克力和每个果冻的重量分别为()A. ,B. ,C. ,D. ,3.若关于x的方程kx2﹣x﹣=0有实数根,则实数k的取值范围是()A. k=0B. k≥﹣且k≠0C. k≥﹣D. k>﹣4.某工厂计划生产300个零件,由于采用新技术,实际每天生产零件的数量是原计划的2倍,因此提前5天完成任务.设原计划每天生产零件x个,根据题意,所列方程正确的是()A. ﹣=5B. ﹣=5C. ﹣=5D. ﹣=55.某种衬衫因换季打折出售,如果按原价的六折出售,那么每件赔本40元;按原价的九折出售,那么每件盈利20元,则这种衬衫的原价是()A. 160元B. 180元C. 200元D. 220元6.扬帆中学有一块长,宽的矩形空地,计划在这块空地上划出四分之一的区域种花,小禹同学设计方案如图所示,求花带的宽度.设花带的宽度为,则可列方程为()A. B.C. D.7.用配方法解方程x2-6x-8=0时,配方结果正确的是()A. (x-3)2=17B. (x-3)2=14C. (x-6)2=44D. (x-3)2=18.小慧去花店购买鲜花,若买5支玫瑰和3支百合,则她所带的钱还剩下10元;若买3支玫瑰和5支百合,则她所带的钱还缺4元.若只买8支玫瑰,则她所带的钱还剩下()A. 31元B. 30元C. 25元D. 19元9.一道来自课本的习题:小红将这个实际问题转化为二元一次方程组问题,设未知数x,y,已经列出一个方程,则另一个方程正确的是()A. B. C. D.10.如图是一个2×2的方阵,其中每行、每列的两数和相等,则可以是()A. B. -1 C. 0 D.11.中国清代算书《御制数理精蕴》中有这样一题:“马四匹、牛六头,共价四十八两(我国古代货币单位);马三匹、牛五头,共价三十八两.问马、牛各价几何?”设马每匹两,牛每头两,根据题意可列方程组为()A. B. C. D.12.关于x,y的二元一次方程组的解是,则的值为()A. 4B. 2C. 1D. 013.已知方程组,则2x+6y的值是()A. ﹣2B. 2C. ﹣4D. 414.若一元二次方程x2﹣x﹣2=0的两根为x1,x2,则(1+x1)+x2(1﹣x1)的值是()A. 4B. 2C. 1D. ﹣215.《九章算术》是我国古代数学名著,卷七“盈不足”中有题译文如下:今有人合伙买羊,每人出5钱,会差45钱;每人出7钱,会差3钱.问合伙人数、羊价各是多少?设合伙人数为人,所列方程正确的是()A. B. C. D.16.方程的解是()A. 无解B.C.D.17.已知a、b满足方程组,则a+b的值为( )A. 2B. 4C. —2D. —418.已知二元一次方程组,则的值是()A. B. 5 C. D. 619.某施工队承接了60公里的修路任务,为了提前完成任务,实际每天的工作效率比原计划提高了25%,结果提前60天完成了这项任务.设原计划每天修路公里,根据题意列出的方程正确的是()A.B.C.D.20.一个等腰三角形的底边长是6,腰长是一元二次方程的一根,则此三角形的周长是()A. 16B. 12C. 14D. 12或16二、填空题(共15题)21.若关于的方程有两个不相等的实数根,则的取值范围是________.22.某种药品原价每盒60元,由于医疗政策改革,价格经过两次下调后现在售价每盒48.6元,则平均每次下调的百分率为________.23.分解因式:________;分式方程的解为________.24.一元二次方程﹣﹣=的根是________.25.若实数、满足﹣=,且、恰好是直角三角形的两条边,则该直角三角形的斜边长为________.26.若关于x的一元二次方程x2+(2+a)x=0有两个相等的实数根,则a的值是________.27.分式方程的解为________.28.为了美化校园环境,某中学今年春季购买了A,B两种树苗在校园四周栽种,已知A种树苗的单价比B 种树苗的单价多10元,用600元购买A种树苗的棵数恰好与用450元购买B种树苗的棵数相同.若设A种树苗的单价为x元,则可列出关于x的方程为________.29.a是方程的一个根,则代数式的值是________.30.如果关于x的方程x2-x+m=0没有实数根,那么实数m的取值范围是________.31.若,是关于、的二元一次方程的解,则________.32.方程的解为________.33.定义:,则方程的解为________.34.你知道吗,对于一元二次方程,我国古代数学家还研究过其几何解法呢!以方程即为例加以说明.数学家赵爽(公元3~4世纪)在其所著的《勾股圆方图注》中记载的方法是:构造图(如下面左图)中大正方形的面积是,其中它又等于四个矩形的面积加上中间小正方形的面积,即,据此易得.那么在下面右边三个构图(矩形的顶点均落在边长为1的小正方形网格格点上)中,能够说明方程的正确构图是________.(只填序号)35.二元一次方程组的解是________.三、解答题(共15题)36.列方程(组)解应用题绿水青山就是金山银山,为了创造良好的生态环境,防止水土流失,某村计划在荒坡上种树棵,由于青年志愿者支援,实际每天种树的棵树是原计划的倍,结果提前天完成任务,则原计划每天种树多少棵?37.中国古代入民很早就在生产生活中发现了许多有趣的数学问题,其中《孙子算经》中有个问题,原文:今有三人共车,二车空;二人共车,九人步,问人与车各几何?译文为:今有若干人乘车,每3人共乘一车,最终剩余2辆车,若每2人共乘一车,最终剩余9个人无车可乘,问共有多少人,多少辆车?38.改善小区环境,争创文明家园.如图所示,某社区决定在一块长()16 ,宽()9 的矩形场地上修建三条同样宽的小路,其中两条与平行,另一条与平行,其余部分种草.要使草坪部分的总面积为112 ,则小路的宽应为多少?39.某公司用火车和汽车运输两批物资,具体运输情况如下表所示:试问每节火车车皮和每辆汽车平均各装物资多少吨?40.列方程解应用题:中华优秀传统文化是中华民族的“根”和“魂”.为传承优秀传统文化,某校购进《西游记》和《三国演义》若干套,其中每套《西游记》的价格比每套《三国演义》的价格多40元,用3200元购买《三国演义》的套数是用2400元购买《西游记》套数的2倍,求每套《三国演义》的价格.41.已知关于x的一元二次方程有两不相等的实数根.①求m的取值范围.②设x1,x2是方程的两根且,求m的值.42.己知关于,的二元一次方程组的解满足,求的取值范围.43.为加快新旧动能转换,提高公司经济效益,某公司决定对近期研发出的一种电子产品进行降价促销,使生产的电子产品能够及时售出,根据市场调查:这种电子产品销售单价定为元时,每天可售出个;若销售单价每降低元,每天可多售出个.已知每个电子产品的固定成本为元,问这种电子产品降价后的销售单价为多少元时,公司每天可获利元?44.列方程(组)解应用题:德上高速公路巨野至单县段正在加速建设,预计2019年8月竣工.届时,如果汽车行驶高速公路上的平均速度比在普通公路上的平均速度提高,那么行驶81千米的高速公路比行驶同等长度的普通公路所用时间将会缩短36分钟,求该汽车在高速公路上的平均速度.45.时下正是海南百香果丰收的季节,张阿姨到“海南爱心扶贫网”上选购百香果,若购买2千克“红土”百香果和1千克“黄金”百香果需付80元,若购买1千克“红土”百香果和3千克“黄金”百香果需付115元.请问这两种百香果每千克各是多少元?46. 2019年在法国举办的女足世界杯,为人们奉献了一场足球盛宴.某商场销售一批足球文化衫,已知该文化衫的进价为每件40元,当售价为每件60元时,每个月可售出100件.根据市场行情,现决定涨价销售,调查表明,每件商品的售价每上涨1元,每个月会少售出2件,设每件商品的售价为x元,每个月的销量为y件.(1)求y与x之间的函数关系式;(2)当每件商品的售价定为多少元时,每个月的利润恰好为2250元;(3)当每件商品的售价定为多少元时,每个月获得利润最大?最大月利润为多少?47.某公司研发了一款成本为50元的新型玩具,投放市场进行试销售.其销售单价不低于成本,按照物价部门规定,销售利润率不高于90%,市场调研发现,在一段时间内,每天销售数量y(个)与销售单价x(元)符合一次函数关系,如图所示:(1)根据图象,直接写出y与x的函数关系式;(2)该公司要想每天获得3000元的销售利润,销售单价应定为多少元(3)销售单价为多少元时,每天获得的利润最大,最大利润是多少元?48.某县有A、B两个大型蔬菜基地,共有蔬菜700吨.若将A基地的蔬菜全部运往甲市所需费用与B基地的蔬菜全部运往甲市所需费用相同.从A、B两基地运往甲、乙两市的运费单价如下表:(1)求A、B两个蔬菜基地各有蔬菜多少吨?(2)现甲市需要蔬菜260吨,乙市需要蔬菜440吨.设从A基地运送吨蔬菜到甲市,请问怎样调运可使总运费最少?49.网络销售是一种重要的销售方式.某乡镇农贸公司新开设了一家网店,销售当地农产品.其中一种当地特产在网上试销售,其成本为每千克10元.公司在试销售期间,调查发现,每天销售量y(kg)与销售单价x (元)满足如图所示的函数关系(其中).(1)直接写出y与x之间的函数关系式及自变量的取值范围.(2)若农贸公司每天销售该特产的利润要达到3100元,则销售单价x应定为多少元?(3)设每天销售该特产的利润为W元,若,求:销售单价x为多少元时,每天的销售利润最大?最大利润是多少元?50.某养殖场为了响应党中央的扶贫政策,今年起采用“场内+农户”养殖模式,同时加强对蛋鸡的科学管理,蛋鸡的产蛋率不断提高,三月份和五月份的产蛋量分别是2.5万kg与3.6万kg,现假定该养殖场蛋鸡产蛋量的月增长率相同.(1)求该养殖场蛋鸡产蛋量的月平均增长率;(2)假定当月产的鸡蛋当月在各销售点全部销售出去,且每个销售点每月平均销售量最多为0.32万kg.如果要完成六月份的鸡蛋销售任务,那么该养殖场在五月份已有的销售点的基础上至少再增加多少个销售点?答案一、选择题1. C2. C3. C4. C5. C6. D7. A8. A9. B 10. D 11. D 12. D 13. C14. A 15. B 16. C 17. A 18. C 19. D 20. A二、填空题21. 22. 10% 23. ;24. 25. 或26. ﹣2 27. 28. 29. 8 30. 31. 32. 33.34. ② 35.三、解答题36. 解:设原计划每天种树棵.由题意,得解得,=经检验,=是原方程的解.答:原计划每天种树棵。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档