箱梁模板施工计算_pdf
箱梁横梁计算方法研究

( 上接 第 1 7页 ) 0
5 结 语
本 文 采 用 混 合 有 限 元 方 法 ,较 为 精 确 地 得 到 了九 堡 大 桥 主 桥 钢 与 混 凝 土 组 合 梁 板 件 的应 力 , 分 析 了混 凝 土 板 件 的应 力 分 布 。通 过 理 论 分析 , 得 到 以下 结 论 :1 九堡 大 桥 主 桥 钢 与 混 凝 土 组 合 梁 () 截 面 正 应 力 分 布 复 杂 ,近 拱 脚 截 面 的混 凝 土 桥 面 板 应 力 分 布 不 均 匀 现 象 显 著 ,近 跨 中截 面 混凝 土 桥 面 板 的应 力 分 布 相 对 较 为 均 匀 ,混 凝 土 桥 面板 最 大 应 力 不 均 匀 系 数 随 着 荷 载 水 平 的 增 大 而 减 小 ;2 由于 钢 横梁 对 混 凝 土 桥 面 板 的 支 承 作用 , ()
222 方 法二 : 板 剪 力法 .。 腹
该 方 法 需先 在 腹 板 下 设 置 支 座 ,无 支 座 位 置 加虚 拟 支 座 ,求 出所 有 车 道 荷 载 作 用 下 每 个 支 座
21 年 7 02 月第 7 期
城 市道 桥 与 防 洪
桥梁结构
15 1
的最 大 支 反 力 F, 以该 反 力 F做 为 腹 板 的 均 布荷 载 进 行 加 载 , 载模 型 见 图 3所 示 。 加
e etv wit c tra o c mp st b d e id r. Ju a o f cie dh r e fr o oi i i e r g gres o r l f i n
b dee g er g20 ,23:2 - 3 . i r g n n e n 0 7 1() 5 3 8 i i 3
(参考资料)32m预制箱梁计算书

32m 预制箱梁计算书1. 计算依据与基础资料1.1. 标准及规范1.1.1. 标准•跨径:桥梁标准跨径30m ;•设计荷载:公路-I 级(城-A 级验算);•桥面宽度:(路基宽26m ,城市主干路),半幅桥全宽13m ,0.5m (栏杆)12.25m (机动车道)+0.5/2m (中分带)=13m 。
•桥梁安全等级为一级,环境类别一类。
1.1.2. 规范《公路工程技术标准》JTG B01-2013《公路桥涵设计通用规范》(JTGD60-2015);(简称《通规》)《公路钢筋混凝土及预应力混凝土桥涵设计规范》JTG D62-2004(简称《预规》) 《城市桥梁设计规范》(CJJ11-2011); 1.1.3. 参考资料《公路桥涵设计手册》桥梁上册(人民交通出版社2004.3)1.2. 主要材料1)混凝土:预制梁及现浇湿接缝、横梁为C50、现浇调平层为C40;2)预应力钢绞线:采用钢绞线15.2s φ,1860pk f MPa =,51.9510p E Mpa =× 3)普通钢筋:采用HRB400,400=sk f MPa ,52.010SE Mpa =× 1.3. 设计要点1)预制组合箱梁按部分预应力砼A 类构件设计;2)根据小箱梁横断面,采用刚性横梁法计算汽车荷载横向分布系数,将小箱梁简化为单片梁进行计算,荷载横向分配系数采用刚性横梁法计算。
3)预应力张拉控制应力值0.75σ=con pk f ,混凝土强度达到90%时才允许张拉预应力钢束;4)计算混凝土收缩、徐变引起的预应力损失时张拉锚固龄期为7d;5)环境平均相对湿度RH=80%;6)存梁时间不超过90d。
2.标准横断面布置2.1.标准横断面布置图2.2.跨中计算截面尺寸3. 汽车荷载横向分布系数、冲击系数计算3.1. 汽车荷载横向分布系数计算1) 抗扭惯矩计算计算得边梁抗扭惯矩4T I 0.462m =边,中梁抗扭惯矩4T I 0.458m =中,计算结果表明:悬臂对主梁抗扭惯矩贡献很小,为简化计算,可以忽略悬臂影响;同时边、中梁截面几何特性相差不到1%,按主梁截面均相同计算对结果影响不大,以下计算按主梁截面均相同考虑。
箱梁横隔梁计算方法研究

中 外 公 路
第 30 卷 第 4 期 2 0 1 0 年 8 月
文章编号 :1671 - 2579 (2010) 04 - 0140 - 05
箱梁横隔梁计算方ห้องสมุดไป่ตู้研究
宫亚峰 , 毕海鹏 , 李祥辉
( 吉林大学 交通学院 , 吉林 长春 130022)
摘 要 : 以 6 跨预应力混凝土连续箱梁桥为工程背景 ,利用有限元程序建立了该桥梁的 实体模型 ,获得空间分析的横隔梁的应力状态 。在实桥修建过程中将振弦式应变计埋入横隔 梁中 ,获得桥梁结构的实际内力分布特点 ,并与有限元计算结果进行对比分析 。提出一种实 用的利用两次杆系有限元计算分析横隔梁内力的简化方法 ,为预应力混凝土箱形梁桥横隔梁 的设计与计算提供借鉴 。 关键词 : 箱梁 ; 横隔梁 ; 简化计算方法 ; 有限元 ; 振弦式应变计
kN 824 837 849
kN 989 1 004 1 019
(kN ・ m - 1) 147 149 151
c = 6 hf c = 5 hf c = 4 hf
表3 两次杆系有限元试算与实测数据对比 ( c = 6 hf ) 横隔梁 截面位置
1 - 1 截面 2 - 2 截面 3 - 3 截面 1 - 1 截面 2 - 2 截面 3 - 3 截面 1 - 1 截面 2 - 2 截面 3 - 3 截面
掌握 。 1. 1 计算模式 首先建立全桥纵向的杆系有限元模型 , 计算横隔 梁处的内力 。根据计算结果反算横隔梁荷载 。然后取 横隔梁为隔离体 ,单独建立横隔梁的杆系有限元模型 , 计算在简化荷载作用下横隔梁的内部应力 。 1. 2 受力分析 预应力连续箱梁主要通过箱梁腹板及顶 、 底板在 纵向上把恒载传递到横隔梁处 , 再由横隔梁传递至支 座及墩柱结构 。从连续箱梁桥纵向上看 , 由于腹板刚 度最大 ,预应力钢束布置多 ,腹板将作为纵向传力的主 要构件将大部分荷载传递至横隔梁上 ; 同时箱梁的顶 、 底板在整个箱宽上也能够传递适当比例的纵向荷载 。 假定将腹板传递的荷载以集中荷载的形式作用在 横梁相应位置 , 顶 、 底板传递荷载则以均布荷载的形式 作用在横梁全长上 , 两者各占适当比例 , 并假定中腹板 集 中力 F1 为边腹板集中力 F2 的 1 . 2 倍 , 如图 1 所示 。
箱梁计算书

桥梁设计计算书课程名称道桥工程设计姓名杨鑫龙学号年级与专业 2016交通工程指导教师提交日期目录一、设计资料 (4)1.1设计资料 (4)二、主梁构造布置及尺寸 (4)2.1横截面布置 (4)2.2主梁尺寸 (5)2.3横隔梁布置 (5)2.4主梁截面特性简易计算表 (5)三、主梁内力计算 (5)3.1恒载内力计算 (6)3.2活载内力计算 (8)3.3内力组合 (14)3.4弯矩剪力包络图 (15)四、预应力钢筋截面面积估算及布置 (15)4.1预应力钢筋截面面积估算 (15)4.2非预应力钢筋截面面积估算 (17)4.3预应力钢束的布置 (17)五、换算截面几何特性 (20)5.1换算截面图示 (20)5.2换算截面几何特性计算 (20)六、钢束预应力损失计算 (21)6.1预应力钢筋与管道壁之间的摩擦引起的预应力损失 (21)6.2锚具变形、钢筋回缩和接缝压缩引起的预应力损失 (22)6.3混凝土弹性压缩引起的预应力损失 (22)6.4预应力钢筋应力松弛引起的预应力损失 (23)6.5混凝土收缩和徐变引起的预应力损失 (24)6.6预应力钢筋张拉控制应力与各阶段预应力损失组合及有效预应力值25七、持久状况承载能力极限状态计算 (26)7.1正截面强度验算 (26)7.2斜截面抗剪强度验算 (26)7.3箍筋或弯起钢筋设计 (26)八、正常使用极限状态验算 (28)8.1正截面抗裂性验算 (28)8.2斜截面抗裂性验算 (28)8.3变形验算 (30)8.3.1使用阶段挠度计算 (30)8.3.2预加力引起的反拱计算及预拱度的设置 (31)九、主梁持久状况应力验算 (31)9.1跨中截面砼法向压应力验算 (31)9.2受拉区预应力筋最大拉应力验算 (32)9.3斜截面主应力验算 (32)十、主梁短暂状态应力验算 (33)10.1主梁短暂状态应力验算 (33)十一、主梁行车道板的内力计算及配筋 (34)11.1恒载作用 (34)11.2活载作用 (35)11.3主梁肋间内力计算 (35)11.4行车道板配筋计算 (37)11.5行车道板截面复核 (38)十二、横隔梁内力计算及配筋 (39)12.1横隔梁内力计算 (39)12.2横隔梁配筋计算 (42)12.3横隔梁截面复核 (43)十三、主梁端部局部承压验算 (43)13.1端部承压区截面尺寸验算 (43)13.2端部承压区承载力验算 (44)十四、结语 (45)十五、参考文献 (45)十六、附录 (46)附录A:主梁截面尺寸图 (46)附录B:横隔梁配筋图 (46)一、设计资料1.1设计资料(1)设计跨径:标准跨径35.82m(墩中心距离),简支梁计算跨径(相邻支座中心距离)35.22m,主梁全长35.78m。
普通钢筋混凝土箱梁计算书

A 匝道桥第一联计算书1 普通钢筋混凝土箱梁纵向验算 1.1 荷载组合短期效应组合:永久作用标准值效应与可变作用频遇值效应相组合长期效应组合:永久作用标准值效应与可变作用准永久值效应相组合 标准组合:作用取标准值,汽车荷载考虑冲击系数基本组合:永久作用的设计值效应与可变作用设计值效应相组合偶然组合: 永久作用标准值效应与可变作用某种代表值效应、一种偶然作用标准值效应相组合1.2 验算规则1.2.1 裂缝宽度验算新《公桥规》第6.4条规范以及《城市桥梁设计规范》 A.0.3 3) 条规范: 1.2.1.1 钢筋混凝土构件,在正常使用极限状态下的裂缝宽度,应按作用(或荷载)短期效应组合并考虑长期效应影响进行验算。
1.2.1.2 钢筋混凝土构件 其计算的最大裂缝宽度不应超过下列规范的限值:1)Ⅰ类和Ⅱ类环境 0.25mm 2)Ⅲ类和Ⅳ类环境 0.15mm1.2.1.3 矩形、T 行和I 形截面钢筋混凝土构件,其最大裂缝宽度W fk 可按下列公式计算:12330()0.2810SSfk SSdW C C C E σρ+=+ (mm )0()S Pf fA A bh b b h ρ+=+−1.2.2 正截面抗弯承载力验算新《公桥规》第5.2.2条规范:矩形截面或翼缘位于受拉边的T 形截面受弯构件,其正截面抗弯承载力计算应符合以下规定:()()()'''''''000002d cd sd s s pd p p p x M f bx h f A h a f A h a γσ⎛⎞≤−+−+−−⎜⎟⎝⎠混凝土受压区高度x 应按下式计算:()'''''sd s pd p cd sd s pd po p f A f A f bx f A f A σ+=++−1.2.3 斜截面抗剪承载力验算新《公桥规》第5.2.7条规范:矩形、T 形和I 形截面的受弯构件,当配置箍筋和弯起钢筋时,其斜截面抗剪承载力计算应符合下列规定:0d cs sb pb V V V V γ≤++31230.4510cs V bh ααα−=×30.7510sin sb sd sb s V f A θ−=×∑ 30.7510sin pb pd pb p V f A θ−=×∑新《公桥规》第5.2.9条规范:矩形、T 形和I 形截面的受弯构件,其抗剪截面应符合下列要求:000.5110d V γ−≤× ()kN1.3 计算模型4x20m (8.0m 宽)箱梁纵向计算模型1.4 正常使用极限状态裂缝验算短期效应组合弯矩图(kN*m )短期效应组合裂缝图(kN*m )经计算,最大负弯矩处裂缝宽度为0.12mm ,最大正弯矩处裂缝宽度为0.16mm ,均符合规范要求。
30+40+30 现浇箱梁 计算书

杭(州)长(兴)高速公路北延(泗安至浙苏界)工程施工图阶段上部构造(30+40+30)m预应力混凝土连续箱梁(桥宽8.5m) 设 计 计 算 书铁道第三勘察设计院集团有限公司2013年10月目录1、桥梁概况 (2)2、技术标准及规范 (2)3、主要材料 (2)4、温度模式 (3)5、施工步骤简述 (3)6、结构离散 (3)7、受力阶段计算要素(30+40+30)m预应力混凝土连续箱梁(桥宽8.5m)主要计算结果 (4)1. 桥梁概况本桥共一联:(30+40+30)m预应力混凝土连续箱梁;下部结构:桥台采用肋板台,桥墩采用柱式墩,墩台均采用钻孔桩基础。
本桥平面位于直线上。
2. 技术标准及规范(一)技术标准1、荷载标准:采用公路-Ⅱ级2、安全等级:一级3、地震烈度:Ⅵ度4、预应力控制要求:按全预应力构件设计(二)技术规范(1)《城市道路设计规范》CJJ37-90;(2)《城市桥梁设计规范》CJJ11-2011;(3)《公路工程技术标准》JTG B01-2003;(4)《公路桥涵设计通用规范》JTG D60-2004;(5)《公路钢筋混凝土及预应力混凝土桥涵设计规范》 JTGD62-2004;(6)《公路圬工桥涵设计规范》 JTG D61-2005;(7)《公路桥涵地基与基础设计规范》JTG D63-2007;(8)《公路桥梁抗震设计细则》JTG/T B02-01-2008;(9)《公路工程混凝土结构防腐蚀技术规范》JTG/TB07-1-2006;(10)《混凝土结构耐久性设计规范》GB/T 50476-2008;(11)《公路交通安全设施设计细则》JTG/T D81-2006;(12)《建筑工程抗震设防分类标准》GB 50223-2008;(13)《公路桥涵施工技术规范》JTG/T F50-2011;(14)《城市桥梁抗震设计规范》CJJ166-2011;3. 主要材料1)混凝土:C50混凝土,重力密度γ=26.0 kN/m3,弹性模量为Ec=3.45×104MPa;2)预应力钢绞线:弹性模量Ep=1.95×105 MPa,公称直径15.2mm,公称面积139mm2,抗拉标准强度为1860Mpa,松驰系数=0.3;3)钢束张拉控制应力:详见各联钢束构造图;4)锚具:设计参照OVM型锚具,锚具变形、钢筋回缩取6mm(一端);5)波纹管:圆形塑料波纹管;6)管道摩擦系数:u=0.17;7)管道偏差系数:κ=0.0015;8)不均匀沉降:Δ=5mm;9)年平均相对湿度:80%。
20M简支箱梁计算(详细)

- 0 -《20M 简支箱梁计算》 (JTGD62-2004)一、计算参数1、 使用对象:(双向4车道,高速公路),半幅宽度12.75m2、 环境条件:Ⅱ类3、 主要材料:混凝土强度等级 C40钢材:R235、HRB335,15.2sφ预应力钢绞线:1860pk f Mpa =二、横断面布置三、结构计算(一)、板块结构几何尺寸预制板截面几何特性跨中断面(边板)- 1 -毛截面:314992.8943.857184isiS y cm A ===∑"4314992.8943.8513812438.23i i i I S y m ==⨯=∑'"402659390.3319638963.0413812438.238485915.14i i i I I I I m =+-=+-=∑∑∑换算截面:331440.2345.007364.74is iSy cm A ===∑234T s A I b td tα=+⎰ 221(145.5149.5)959595145.5149.522014+1812=+⨯++⨯+340.2237.520222677086600022333708cm +⨯⨯+==(式中α高等学校教材“表2-4-3)跨中截面(中板)- 2 -毛截面:28595048.115944is iSy cm A ===∑'40i 2120672.7818882276.8628595048.117245895.14i i s I I I S y m =+-=+-⨯=∑∑∑换算截面:301123.3449.286110.74is iSy cm A ===∑'42120672.7820263050.9301123.3449.287544365.49i i i s I I I S y cm =+-=+-⨯=∑∑∑换22212121241()2T s A I S S h d S S S t t t t ==+++⎰221(141149)95951411492(1418)/21212=+⨯⨯+++4184100902521058834cm 11.87524.167⨯⨯+==(二)荷载效应标准值 1、结构重力 1)板自重一期(预制板)326/r KN m =260.5915.45/q A K N ⨯ 中中=r ==- 3 -260.718418.68/m q A KN ⨯ 边边=r ==;二期(现浇铰缝、铺装层、护栏)铰缝混凝土 325/r K N m =[]250.950.730.08250.038 1.31/mq K N ⨯⨯⨯⨯⨯边=(0.085)-(0.04)/2-(0.12+0.22)==2 1.31 2.62/q K N m ⨯中== 铺装24(0.080.1) 1.5 6.48/q KN m ⨯+⨯中==24(0.08 1.7850.11.375) 6.73/q KN m ⨯⨯+⨯边==护栏按两侧刚性护栏对称布置,混凝土0.353/m m2(250.35)/8 2.19/q KN m ⨯⨯=栏=1.31 6.7310.23/q KN m +∑边==2.62 6.48 2.1911.29/q KN m ++∑中==2)内力影响线- 4 -2、汽车荷载效应 1)公路Ⅰ级荷载均布荷载 10.5/k q K N m= 集中荷载 19.55180(1)238505k P K N -=⨯+=-当计算剪力时: 1.2238285.6k P KN =⨯= 2)冲击系数 结果基频 1f =(桥JTGD62-2004条文说明4-3条) 322/ 1.57710/c m G g NS m ==⨯1 5.05f Hz ==当11.514Hz f Hz ≤≤:0.1767ln 0.0157f μ=- (桥规JTGD60-2004,4.3.2式)所以 0.270μ= 1 1.270μ+= 3)汽车荷载横向分配系数3(~)44c l lk 修正的刚性横梁法 2ii ii ii iI a I R e Ia I β=±∑∑- 5 -221112ii iGl T E a I β=+∑∑ (式中G/E=0.4 )20.0848660.072330.604iI=⨯+⨯=∑;20.0033460.21059 1.71iT =⨯+⨯=∑222222 5.250.084862(3.75 2.250.75)0.07246 4.6779 2.85317.531i ia I=⨯⨯+++⨯=+=∑边板 1 5.25a m = 11 5.250.084860.446I a =⨯=∴210.2579119.5 1.7110.4127.531β==<⨯+⨯ 符合规定 10.084860.08486 5.250.25790.14050.0153i i R e e ⨯=±⨯=±二列车影响线布载得:(0.22250.19500.17440.1470)/c k =+++= 0.5k 支= 沿桥纵向布置:- 6 -(三)持久状态承载能力极限状态计算1、正截面抗弯承载能力按《规范》5.2.2-1式计算00()2d cd x M f bx h γ≤-顶板:0b=183cm,t=12cm,h =91cm混凝土抗力:618.41830120 4.0410cd f bt N =⨯⨯=⨯由于顶板混凝土抗力大于钢筋抗力,混凝土受压区高度x 在顶板内,'112602800280791111.418.41830Pd P sd S cd f A f A x mm f b +⨯+⨯===⨯根据JTG D60-2004 基本组合表达式 (4.1.6-1)取用分项系数0γ――结构重要性系数,0γ=1.1;G γ――结构自重分项系数, G γ=1.21Q γ――汽车荷载(含冲击力)的分项系数,取1Q γ=1.4- 7 -001112()m nd Gi Gik Q Q k c Qj Qjk i j M S S S γγγγφγ===++∑∑[]1.11.2(887.86486.23) 1.4(10.270)613.123012.94K N m =⨯++⨯+⨯=⋅ 60111.4(18.41830111.4(910)3204.531022r cd x M f bx h N mm =-=⨯⨯-=⨯⋅03204.533012.94dK N m M K N mγ=⋅>=⋅ 符合规定 2、斜截面抗剪承载能力按《桥规》5.2.7-1式计算0d cs sb pb V V V V γ≤++ (荷载效应分项系数同正截面抗弯强度)计算斜截面位置距支点/2h ,d V 是斜截面受压端上由作用效应产生的最大剪力组合设计值:[]0 1.11.2(155.5385.17) 1.4(10.270)156.20623.22d V KN γ=⨯++⨯+⨯=1) 预制板截面尺寸应符合《规范》5.2.9式000.5100.51102140910821.86623.22d V b h KN KN γ--≤⨯⋅=⨯⨯⨯=>按《规范》5.2.10式检验斜截面要不要设箍筋330200.5100.510 1.25 1.652140910159.25d td V f bh KN γα--≤⨯=⨯⨯⨯⨯⨯⨯=对于板式受弯构件 1.25159.25=199.06K N <62⨯ 所以 预制板截面尺寸满足《规范》要求,但斜截面得设箍筋。
现浇箱梁支架方案计算

现浇箱梁⽀架⽅案计算温泉⼤桥现浇箱梁万能杆件⽀架⽅案计算书⼀、编制依据1、重庆市统景国际温泉度假区连接道路⼯程施⼯图设计⽂件及地勘报告,以及设计变更、补充、修改图纸及⽂件资料。
2、国家有关的政策、法规、施⼯验收规范和⼯程建设标准强制性条⽂(城市建设部分),以及现⾏有关施⼯技术规范、标准等。
3、现场勘察和研究所获得的资料,以及相关补充资料。
4、建设单位、监理单位对本⼯程施⼯的有关要求。
5、我单位施⼯类似⼯程项⽬的能⼒和技术装备⽔平。
6、参考《建筑施⼯⽀架架安全技术规范》、《混凝⼟⼯程模板与⽀架技术》、《公路桥涵施⼯⼿册》、《建筑施⼯计算⼿册》。
⼆、⼯程概况温泉⼤桥桥长190m(K0+100~K1+290),桥梁平⾯位于直线和曲线上,纵⾯位于竖曲线上。
由主桥和单侧引桥共三联组成,设计为(2×25m)预应⼒砼连续梁+(50m+90m+50m) 预应⼒砼下承式连续梁拱组合。
主桥连续刚构跨径组合为50+90+50m,主桥总长度为190m,边跨与主跨的⽐值为0.556。
主梁采⽤单箱单室,箱顶宽12m,箱底宽6m,主桥箱梁第⼀个T构边跨平⾯位于右偏缓和曲线上,其余位于直线上,位于缓和曲线段主梁内侧翼缘板按照从3.0~3.47m线性加宽,曲线外侧及直线段翼缘板不加宽,为3m宽。
主桥缓和曲线段超⾼采⽤不等⾼腹板进⾏调整,详见施⼯图纸。
箱梁跨中梁⾼2.5m,墩顶梁⾼5.5m,箱梁梁⾼采⽤1.8次抛物线变化;箱梁跨中底板厚度28cm,墩顶底板根部厚度80cm,底板厚度变化采⽤1.8次抛物线;箱梁腹板厚度采⽤50、70cm两个级别变化。
主梁零号块处腹板厚度为90cm,边跨箱梁腹板从合拢段到梁端则由50cm增加到80cm。
为满⾜桥⾯横坡要求,将箱梁顶板设置成双向横坡的型式,使桥⾯铺装厚度横向⼀致。
结合有利施⼯、缩短悬臂浇注周期、降低施⼯钢材数量的原则考虑,主梁悬臂浇注梁段共划分为3.5m、4m、4.5m三种长度节段,最⼤悬臂浇注梁段重量为140t,设计时采⽤挂篮重60t。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
箱梁模板施工计算
一、简介
A19~A24箱梁一联五孔125m(5×25m)。
A19~A21单箱三室,渐
G
.B18~B23箱梁一联五孔120m(20+4×25)单箱三室,在一般结
筑
龙
网
W
W W
.Z
H U L O
N G
1、箱梁模板支架体系
2、底模下方木铺设
采用10×15cm 的方木纵向(顺桥向)铺设作为模板主肋,其间距为91.4cm,采用10×10cm 方木横向铺设作为模板次肋,间距30cm,上部面板采用1220×2440×18mm 的竹胶板。
3、结构受力分析
以墩柱两侧4.0m 结构过渡区荷载最大段进行验算,如果满足要求,则一般结构区也满足要求。
(1)、模板主肋
建立受力模型见图3-8
抗弯=M/W=0.077×q×L2/w=0.077×30×1.222×106/375
]=15MPa
≈9.2MPa<[f
m
qL4/100EI
挠度:w=K
挠度系数
=0.632×30×1.224/100×0.1×2812.5=1.5×10-3m=1.5mm
据《现行建筑规范大全》规定,结构表面外露的模板,最大变形
筑
龙网
W
W W
.
值不超出模板构件计算跨度的1/400。
2.44×1/400=0.0061=6.1mm 抗剪τ=σ/A=K 剪力系数
×ql÷bh=0.607×30×1.22/0.1×
0.15=1.48MPa<1.5Mpa
W=bh 2/6=167cm 3,I=bh 3
/12=833cm 4
,q=32.8×0.3=10KN/m
抗弯=M/W=0.077×q×L 2
/w=0.077×10×0.9142
×106/167
≈3.9MPa<[f m ]=15MPa 挠度:w=K 挠度系数qL 4
/100EI
=0.632×10×0.9144
/100×0.1×833=0.5×10-3
m=0.5mm 据《现行建筑规范大全》规定,结构表面外露的模板,最大变形值不超出模板构件计算跨度的1/400。
2.44×1/400=0.0061=6.1mm
抗剪 τ=σ/A=K 剪力系数×ql÷bh=0.607×10×0.914/0.1×0.1 =0.55MPa<1.5Mpa
筑
龙
网
W
W W
.Z
H U L O
(3)、模板受力分析
建立受力模型进行简力分析,受力模型见图3-10
采用18×1220×2440mm 竹胶板,其主要物理力学性能指标(JG/T3026-1995标准要求)
静曲弹性模量: E 横向≥4×103Mpa ,E 纵向≥6×103Mpa 模板按连续四跨简支梁分布荷载计算:
Ix=bh 3
/12=30.5×1.83
/12=14.8cm 4
,q=32.8×0.914=30KN/m 挠度:w=K 挠度系数qL 4
/100EI
=0.632×30×0.3054
/100×14.8×10-8
×4×106
=2.8×10-3
m=2.8mm
据《现行建筑规范大全》规定,结构表面外露的模板,最大变形值不超出模板构件计算跨度的1/400。
2.44×1/400=0.0061=6.1mm
.C O
M
4、箱梁外模施工
(1)、模板铺设
支架体系采用MJ1219门式满堂支架,上部采用立杆可调顶托,并利用脚手架上U 型托来调节方木支撑的高度。
顶托上用10×15cm
2
方木做纵梁。
纵梁上方用10×10cm 2
方木做横梁。
箱梁翼板滴水模采用0.2m×1.5m 定型钢模,箱梁其余外模均采用18×1220×2440mm 竹
胶板。
为使本桥脱模后线条流畅,同时根据模板的支撑结构(见图3-7)、
W
W W
.(2)、模板加固
底模采用支架支撑,模板主肋10cm×15cm、L=4.0m 方木按91.4cm 纵向铺设,接头处下托5×10cm 方木;次肋10cm×10cm、L=4.0m 方 向布置,间距55cm,上、中、下三道;次肋5cm×10cm 横向布置,
间距30cm。
外模和内模的中间采用制作好的砼支撑作控制内空尺寸
的内撑,梅花型布置,共分两层,间距55cm。
见图3-14
筑
龙网
W
W W
.Z
H U L O
N G
.C O
M
5、内模施工
箱梁内腔模板采用1.5×0.3m、1.5×0.2m、1.5×0.15m 定型钢模作面板,U 形卡、L 形插销拼接、加固,φ42管扣制作成龙骨架作内支撑,砼支撑预先设置在底板的顶层钢筋上,以保证钢筋的保护层,并作为支撑上部内模重量的支点。