RC正弦波振荡电路的振荡频率与R

合集下载

RC正弦波振荡电路的振荡频率与R

RC正弦波振荡电路的振荡频率与R

1 LC
f0

2p
1 LC
R为电感和回路中的损耗电阻
LC并联谐振特点:谐振时,总路电流很小,支路 电流很大,电感与电容的无功功率互相补偿,电 路呈阻性。
LC并联谐振回路的幅频特性曲线 Q为谐振回路的品
Z0=R L|C Z=| Q0L=Q 0C=QC L
质因数,Q值越大,
曲线越陡越窄,选
Q小
频特性越好。
容性
L R
f
6.4.2. 石英晶体正弦波振荡电路
利用石英晶体的高品质因数的特点,构成LC振荡电路。
1. 并联型石英晶体振荡器
-A +

+
C2
Cs
X 感性
-A +

+
C 2 fC s
0
fs fp
C1
石英晶体

CL
1

石英晶体工作在fs与fp之间,相当一个大电感,与C1、C2 组成电容三点式振荡器。由于石英晶体的Q值很高,可达到几
在输入端加入一正极 C b
(+)
性的信号,用瞬时极
(+)
Uf L1 L2
(-)
Uo

性法判定反馈信号的
极性。若反馈信号与
输入信号同相,则满 足相位条件;否则不 满足。
R b2
Re

LC正弦波振荡器举例
V cc
(+)
R b1
L1
L2 (+)
C
(+)
Cb R b2
(+) C e
Re 满足相位平衡条件
LC正弦波振荡器举例
K:双联波段开关,

rc振荡电路详解

rc振荡电路详解

rc 振荡电路详解
RC 振荡电路,采用RC 选频网络构成,适用于低频振荡,一般用于
产生1Hz~1MHz(fo=1/2πRC)的低频信号。

对于RC 振荡电路来说,增
大电阻R 即可降低振荡频率,而增大电阻是无需增加成本的;而对于LC 振荡电路来说,一般产生的正弦波频率较高,若要产生频率较低的正弦振荡,势必要求振荡回路要有较大的电感和电容,这样不但元件体积大、笨重、安装不便,而且制造困难、成本高。

因此,200kHz 以下的正弦振荡电路,一般采用振荡频率较低的RC 振荡电路。

电路特点
对于RC 振荡电路来说,增大电阻R 即可降低振荡频率,而增大电阻是无需增加成本的。

常用LC 振荡电路产生的正弦波频率较高,若要产生频率较低的正弦振荡,势必要求振荡回路要有较大的电感和电容,这样不但元件体积大、笨重、安装不便,而且制造困难、成本高。

因此,200kHz 以下的正弦振荡电路,一般采用振荡频率较低的RC 振荡电路。

常用类型
RC 移相式振荡器。

模拟电子线路实验实验报告答案

模拟电子线路实验实验报告答案

网络高等教育《模拟电子线路》实验报告学习中心:层次:专业:年级:学号:学生姓名:实验一常用电子仪器的使用一、实验目的答:1、了解并掌握模拟电子技术实验箱的主要功能及使用方法。

2、了解并掌握数字万用表的主要功能及使用方法。

3、学习并掌握TDS1002型数字存储示波器和信号源的基本操作方法。

二、基本知识1.简述模拟电子技术实验箱布线区的结构及导电机制。

答:模拟电子技术实验箱布线区:用来插接元件和导线,搭接实验电路。

配有2只8脚集成电路插座和1只14脚集成电路插座。

结构及导电机制:布线区面板以大焊孔为主,其周围以十字花小孔结构相结合,构成接点的连接形式,每个大焊孔与它周围的小孔都是相通的。

2.试述NEEL-03A型信号源的主要技术特性。

答:NEEL-03A型信号源的主要技术特征:1、输出波形:三角波、正弦波、方波、二脉、四脉、八脉、单次脉冲信号;2、输出频率:10HZ~1MHZ连续可调;3、幅值调节范围:0~10VP-P连续可调;4、波形衰减:20dB/40dB;5、带有6位数字频率计,即可以作为信号源的输出监视仪表,也可以作外侧频率计用。

注意:信号源输出端不能短路。

3.试述使用万用表时应注意的问题。

答:应注意使用万用表进行测量时,应先确定所需测量功能和量程。

确定量程的原则:1、若已知被测参数的大致范围,所选量程应“大于被测值,且最接近被测值”。

如果被测参数的范围未知。

则先选择所需功能的最大量程测量,根据初测结、2.果,逐步把量程下调到最接近于被测值的量程,以便测量出更加准确的数值。

如屏幕上显示“1”,表明已超过量程范围,须将量程开关转至相应的档位上。

4.试述TDS1002型示波器进行自动测量的方法。

答:按下“测量”按钮可以自动进行测量。

共有十一种测量类型。

一次最多可以显示五种。

按下顶部的选项按钮可以显示“测量1”菜单,可以在“信源”中选择在其上进行测量的通道。

可以在“类型”中选择测量类型。

测量类型有:频率、周期、平均值、峰-峰值、均方根值、最小值、最大值、上升时间、下降时间、正频宽、负频宽。

rc正弦波振荡电路设计

rc正弦波振荡电路设计

rc正弦波振荡电路设计
RC正弦波振荡电路的设计过程可以按照以下步骤进行:
1.确定振荡频率:根据需要,选择合适的振荡频率。

2.确定电路参数:根据振荡频率,计算RC电路的参数,即电阻R和电容C 的值。

对于正弦波振荡电路,振荡频率f与R和C的关系为f=1/2πRC。

因此,已知振荡频率f,可以求出R和C的值。

3.设计电路:根据计算出的R和C的值,设计RC正弦波振荡电路。

电路一般由放大器、RC电路和正反馈网络组成。

放大器可以选择合适的运放或比较器等器件,RC电路选择相应的电阻和电容器件,正反馈网络可以选择相应的电阻或电容元件。

4.调整电路:在实际应用中,可能需要根据实际情况对电路进行调整,以获得更好的性能。

例如,可以通过调整放大器的反馈系数、RC电路的元件值等来调整振荡频率和幅度。

5.测试电路:在调整完成后,对电路进行测试,观察是否能够正常工作并产生稳定的正弦波输出。

总之,RC正弦波振荡电路的设计需要综合考虑电路参数、元件选择、电路结构等因素,并经过调整和测试来获得最佳性能。

rc正弦波振荡实验报告

rc正弦波振荡实验报告

rc正弦波振荡实验报告RC正弦波振荡实验报告引言:RC正弦波振荡电路是电子学中非常重要的一种电路,它能够产生稳定的正弦波信号。

本实验旨在通过搭建RC正弦波振荡电路,研究其工作原理和参数对振荡频率的影响。

实验装置和步骤:实验所需的装置包括一个电容器(C)、一个电阻器(R)、一个信号发生器和一个示波器。

具体步骤如下:1. 将电容器和电阻器按照串联的方式连接起来。

2. 将信号发生器的输出端与电容器的一端相连,将示波器的输入端与电容器的另一端相连。

3. 打开信号发生器和示波器,调节信号发生器的频率和幅度,观察示波器上的波形。

实验结果:在实验过程中,我们通过调节信号发生器的频率和幅度,观察了示波器上的波形。

当频率较低时,波形呈现出较为平缓的正弦波;当频率逐渐增加时,波形开始变得不规则,并且出现了衰减的现象。

通过进一步调节电容器和电阻器的数值,我们发现改变这两个参数可以对振荡频率进行调节。

当电容器的容值较大或电阻器的阻值较小时,振荡频率较低;反之,当电容器的容值较小或电阻器的阻值较大时,振荡频率较高。

讨论:RC正弦波振荡电路的工作原理是基于电容器和电阻器的充放电过程。

当电容器充电时,电流通过电阻器流入电容器,电容器的电压逐渐增加;当电容器放电时,电流从电容器流出,电容器的电压逐渐减小。

这个充放电过程会不断重复,从而产生稳定的正弦波信号。

在实验中,我们观察到当频率较低时,波形呈现出较为平缓的正弦波。

这是因为在较低的频率下,电容器有足够的时间来充放电,从而形成较为平缓的波形。

而当频率逐渐增加时,电容器的充放电时间变得不足,导致波形变得不规则,并且出现了衰减的现象。

此外,我们还观察到改变电容器和电阻器的数值可以对振荡频率进行调节。

这是因为电容器的容值和电阻器的阻值直接影响了电容器的充放电时间。

当电容器的容值较大或电阻器的阻值较小时,电容器的充放电时间较长,振荡频率较低;反之,当电容器的容值较小或电阻器的阻值较大时,电容器的充放电时间较短,振荡频率较高。

实验八 RC正弦波振荡器

实验八 RC正弦波振荡器

实验八 RC正弦波振荡器实验目的:1.熟悉仿真软件MULTISIM的使用,掌握基于软件的电路设计和仿真分析方法。

2.熟悉POCKETLAB硬件实验平台,掌握基于功能的使用方法。

3.掌握RC正弦波振荡器的设计和分析方法。

4.掌握RC正弦波振荡器的安装与调试方法。

实验内容:一.仿真实验1.RC相移振荡电路如图8-1所示,在MULTISIM中搭建其开环分析电路,理解起振和稳定的相位条件与振幅条件。

图8-1 RC相移振荡电路所以f=649.7HZ所以放大器的增益绝对值大于29.图8-3 RC相移振荡电路开环仿真图图8-4 RC相移振荡电路开环仿真幅频图和相频图由幅频特性曲线图可知,该电路的振荡频率为640.4004HZ。

2.在MULTISIM中搭建8-1电路,进行瞬态仿真。

所以=19.89*10^-5意向网络增益为1/3,所以为满足起振条件,基本放大器增益应大于3.表8-1 RC相移振荡电路振荡频率计算值仿真值实测值振荡频率649.7HZ 628.099HZ 633HZ3.将8-1电路振荡频率增加或减小10倍,重新设计电路参数。

表8-2 RC相移振荡电路振荡频率改动原件改动前频率减小10倍频率增加10倍R R=10k R=100k;R20=3000kC C=10nF C=100nF60.84HZ C=1nF 6.08kHZC=1nF C=100nFR=100K4.调试修改文氏电桥振荡器,进行瞬态仿真。

表8-3 文氏电桥振荡电路振荡频率C1(uF) R1(K) R2(K) R3(K) R4(K) 0.01 20 10 4.7 16.8表8-4 文氏电桥振荡电路振荡频率设计值仿真值实测值振荡频率800HZ 791.76HZ 830HZ图8-5 文氏电桥振荡器瞬态波形图图8-6 文氏电桥振荡器频谱图一.硬件实验1.电路连接2.瞬态波形观测3.频谱测量图8-7 RC电路瞬态波形图图8-8 RC电路频谱图4.按以上步骤对文氏电桥电路进行相应硬件实验图8-9 文氏电桥振荡器瞬态波形图图8-10 文氏电桥振荡器频谱图实验思考:1.将8-1所示电路中的C从10nF改为0.1nF后,进行仿真,结果如何?请解释原因。

rc桥式正弦波振荡电路的振荡频率

rc桥式正弦波振荡电路的振荡频率

rc桥式正弦波振荡电路的振荡频率RC桥式正弦波振荡电路的振荡频率RC桥式正弦波振荡电路是一种常用的电路,它可以产生稳定的正弦波信号。

在RC桥式正弦波振荡电路中,由电容器和电阻器构成的RC网络起到了关键作用,决定了振荡电路的振荡频率。

我们来了解一下RC桥式正弦波振荡电路的基本原理。

该电路由一个非反相输入放大器和一个反相输入放大器组成,两个放大器的输出端通过一个电容器相连,形成一个反馈回路。

在该电路中,电容器扮演着储存电荷和释放电荷的作用,而电阻器则控制着电荷的流动速度。

当电荷在电容器和电阻器之间往复流动时,就会产生振荡信号。

而这个振荡信号的频率就是我们所说的振荡频率。

振荡频率的计算公式为f=1/(2πRC),其中f表示振荡频率,π为圆周率,R为电阻值,C为电容值。

从这个公式中我们可以看出,振荡频率与电阻值和电容值有关。

电阻值越大,振荡频率越小;电容值越大,振荡频率越小。

这是因为电阻器的作用是限制电流的流动,而电容器的作用是储存电荷,所以电阻值越大,电流流动越慢,振荡频率也就越小;电容值越大,储存的电荷越多,振荡频率也就越小。

为了更好地理解RC桥式正弦波振荡电路的振荡频率,我们可以举一个具体的例子。

假设我们有一个RC桥式正弦波振荡电路,电阻值为1000欧姆,电容值为0.1微法。

根据振荡频率的计算公式,我们可以计算出振荡频率为f=1/(2πRC)=1/(2π×1000×0.1×10^(-6))≈1591Hz。

这就意味着在这个RC桥式正弦波振荡电路中,每秒钟会产生大约1591次的正弦波振荡。

除了电阻值和电容值的影响,振荡频率还受到其他因素的影响。

例如,放大器的增益、输入信号的幅度等都会对振荡频率产生影响。

此外,电路中的元件参数和电源电压的稳定性也会对振荡频率产生一定的影响。

因此,在实际应用中,我们需要根据具体的要求选择合适的电阻值和电容值,并对电路进行精确的调试和校准,以确保振荡频率的稳定性和准确性。

rc正弦波振荡器结构与工作原理

rc正弦波振荡器结构与工作原理

深度探讨RC正弦波振荡器结构与工作原理一、引言在电子学领域中,RC正弦波振荡器是一种常见的振荡电路,它能够产生稳定的正弦波信号。

在本文中,我们将深度探讨RC正弦波振荡器的结构与工作原理,并对其进行全面评估。

二、RC正弦波振荡器的结构1. 电容电阻网络RC正弦波振荡器的核心是由电容和电阻构成的电容电阻网络。

电容负责存储电荷,而电阻则限制电流的流动。

这个电容电阻网络是RC正弦波振荡器能够产生稳定正弦波信号的重要组成部分。

2. 反馈网络在RC正弦波振荡器中,反馈网络起着至关重要的作用。

它能够将一部分输出信号送回输入端,从而实现正反馈,使电路产生振荡。

三、RC正弦波振荡器的工作原理1. 正反馈RC正弦波振荡器利用正反馈来实现信号的产生和放大。

当电路输出正弦波时,一部分信号被送回输入端,从而增强了输入信号,使得电路不断产生振荡。

2. 能量损耗与补偿在RC正弦波振荡器中,由于电容和电阻存在能量损耗,需要通过外部的能量补偿来保持振荡的稳定。

3. 频率决定RC正弦波振荡器的频率由电容和电阻的数值决定,当电容或电阻发生变化时,频率也会相应地发生变化。

四、对RC正弦波振荡器的全面评估1. 结构分析通过对RC正弦波振荡器的结构进行分析,我们可以清晰地了解其组成部分及各部分之间的作用关系。

这有助于我们深入理解振荡器的工作原理。

2. 工作原理振荡器的工作原理对于我们理解其产生信号的机理至关重要。

只有通过深入分析其工作原理,我们才能真正掌握振荡器的运行方式。

3. 频率稳定性RC正弦波振荡器的频率稳定性是其性能的重要指标之一。

在实际应用中,我们需要考虑电容和电阻的稳定性,以保证振荡器的性能符合要求。

五、个人观点和理解对于RC正弦波振荡器的结构与工作原理,我深信其在电子学领域有着重要的应用。

通过深入研究振荡器的结构与工作原理,我们可以更好地应用它,并在实际工程中发挥其作用。

六、总结与回顾通过本文的深度探讨,我们全面了解了RC正弦波振荡器的结构与工作原理。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

通常R1=R2=R,C1=C2=C,则有 1 1 = F = 若令 0 RC 则上式变为 1 3 + j( RC )
= F 1 3 + j( - 0 ) 0
1 f f0 3 +j - f f 0
RC
因为式中ω=2πf ,ω0=2πf0
= F 1 f f0 32 + - f f 0
.
.
=1
. F = | F | j F
所以,自激振荡条件也可以写成: (1)振幅条件: (2)相位条件:
| AF | = 1
j A + j F = 2 np
n是整数
6.1.2.振荡的物理过程
起振条件: F |1 (略大于) |A
结果:产生增幅振荡
起振过程
稳幅过程:
F |1 起振时, | A F |=1 稳定振荡时, | A
R1C1 串联阻抗:
+
Z1 = R1 + (1 / jC1 )
R2C2 并联阻抗:
+
R1 C1
+
+
Z 2 = R2 //(1 / jC2 ) R2 = 1 + jR2C2
选频特性:
uo +
R2
C 2 uf +
Uf Z2 F= = U o Z1 + Z 2
Z1 = R1 + (1 / jC1 )
五、振荡频率的调节:
K:双联波段开关, 切换R,用于 粗调振荡频率。
R1
R2 R3
K
Rf
振荡频率:
R
R2
_


uo
1 f0 = 2pRC
C
R3
+
+
C
R1
R1
K
C:双联可调电容,改变C,用于细调振荡频率。
6、RC正弦波振荡电路的适用范围
RC 正弦波振荡电路的振荡频率与 R、C 的乘积成反比,
f
R
f
2R
1
1
4、稳幅措施
半导体热敏电阻 (负温度系数) 起振时Rt较大 使 A>3,易起振。 当uo幅度自激增 长时, Rt减小, A减小。
10k 0.1u uf 10k 0.1u
10k 100k
Rt
∞ - A + +
39k
uo
当uo幅度达某一 值时, A→3。 当uo进一步增大 时, RT再减小 , 使A<3。 因此uo幅度自动 稳定于某一幅值。
2
= F
j f=-arctg
f0=
1 2 π RC
f f - 0 f0 f 3
RC串并联网络完整的频率特性曲线:
1 0 = RC
1 f0 = 2pRC
|F|
1/3
o
φF +90°

1 当 = 0 = 时, RC
│F│= │F│max=1/3
jF = 0
o

6.2.2.基本电路形式及振荡的建立过程
+
只有正反馈电路才能产生自激振荡。
Xi +
+
Xd
Xd
基本放大器
Xo
A
反馈网络
Xf F
如果:X f = X i , 则去掉 X i , 仍有信号输出。
基本放大器 A
Xo
Xf
反馈信号代替了放大 电路的输入信号。
反馈网络 F
Xd
Xf
基本放大器 A
Xo
动画演示
Xd=Xf FA=1
反馈网络 F
自激振荡的条件: A F . 因为: A = | A | j A
能自动稳幅的振荡电路
R f1 R f2
D1
1 2
R C
.
D2
将Rf分为Rf1 和Rf2 ,
uo
∞ - A + +
C R1
Rf2并联二极管
R
EWB演示——RC振荡器
起振时D1、D2不导通, Rf1+Rf2略大于2R1。随着 uo的增加, D1、D2逐渐 导通,Rf2被短接,A自动 下降,起到稳幅作用。
第六章 正弦波振荡电路
8.1 正弦波振荡电路的基本原理 8.2 RC桥式正弦波振荡电路
8.3 LC正弦波振荡电路
8.4 石英晶体振荡电路
8.5 正弦波振荡电路工程应用技术
6.1 正弦波振荡电路的基本原理
6.1.1. 振荡的条件
Xi +

Xd
基本放大器
Xo
A
反馈网络
Xf F
改成正反馈
Xd = Xi - X f
1.放大电路
2.正反馈网络
3.选频网络——只对一个频率满足振荡条件 ,从而获得单一频率的正弦波输出。 常用的选频网络有RC选频和LC选频 4.稳幅电路——使电路易于起振又能稳定振 荡,波形失真小。
6.1.4、正弦波振荡电路的分析方法
• (一)判断电路能否产生正弦波 • 1、检查电路中是否存在放大电路、正反馈网 络、选频网络、稳幅环节。 • 2、检查放大电路能否正常工作,即能否建立 合适的静态工作点并能正常放大。 • 3、利用瞬时极性法判断电路是否引入了正反 馈,即是否满足相位平衡条件。
6.1.5、正弦波振荡电路与负反馈放大电路 自激的比较
振荡电路
反馈极性不同
负反馈电路
引入正反馈→ 引入负反馈→ 产生自激振荡 改善电路性能 电路结构保证 正反馈存在 电抗元件使负 反馈变正
振荡条件不同
目的不同
利用自激振荡 避免自激振荡
6 . 2 RC桥式正弦波振荡电路
6.2.1. RC 串并联选频网络
RC
R C
桥 式 正 弦 波 振 R 荡 电 路
Rf
=0 在 f0 处 j F = 0 ,
jA + jF = 0
只需:A=3
因为: j A
∞ - A + +
C
uo 1.满足相位条件:
uf
R1
2.振幅条件:AF=1
F=1 3
输出正弦波频率:
引入负反馈:
1 f0 = 2pRC
选:
3.起振条件
Rf = + A 1 R R = 2R
(二)计算振荡频率、求起振条件
(二)计算振荡频率、求起振条件
F F =1可知, A • 由维持振荡的条件 A 为实数, 因此只要令复数表示式的虚部等于零,对频 率求解,即可求得振荡频率。将振荡频率代 F >1,可求出满足起振条件 入起振条件 A 的有关电路参数值,即常用的以电路参数表 示的起振条件。
Xd
Xf
基本放大器 AXoFra bibliotek稳幅措施:
反馈网络 F
1、被动:器件非线性 2、主动:在反馈网络中加入非线性稳幅环节,用以调节 放大电路的增益
过程:
接通电源后,各种电扰动→ 放大→ 选 频 → 正反馈 → 再放大→ 再正反馈 …… →
振荡器输出电压↑ →器件进入非线性区 →
稳幅振荡
6.1.3.正弦波振荡电路的组成
U Z2 f F= = U Z1 + Z 2 o
= (1 +
R2 1 + jR2 C 2 = 1 R2 R1 + + jC1 1 + jR2 C 2 1
R2 Z 2 = R2 //(1 / jC2 ) = 1 + jR2C2
R1 C2 1 + ) + j(C 2 R1 ) R2 C1 R2C1
相关文档
最新文档