考研数学极限求法模版
求极限的12种方法总结及例题

求极限的12种方法总结及例题求极限的12种方法总结及例题1. 引言在数学学习中,求极限是一个重要的概念,也是许多数学题解的基础。
在学习求极限的过程中,有许多不同的方法可以帮助我们理解和解决问题。
本文将总结12种方法,帮助我们更全面地理解求极限的概念,并提供相应的例题进行演示。
2. 利用极限的定义我们可以利用极限的定义来求解问题。
根据定义,当x趋向于a时,函数f(x)的极限为L,即对于任意的正数ε,总存在正数δ,使得当0<|x-a|<δ时,有|f(x)-L|<ε。
利用这个定义,可以求得一些简单的极限,如lim(x→0) sinx/x=1。
3. 利用夹逼准则夹逼准则是求极限常用的方法之一。
当我们无法直接求出某个函数的极限时,可以利用夹逼准则来找到该函数的极限值。
要求lim(x→0) xsin(1/x)的极限,可以通过夹逼准则来解决。
4. 利用极限的四则运算极限的四则运算法则是求解复杂函数极限的基本方法之一。
利用这个法则,我们可以将复杂的函数分解成简单的部分,再进行求解。
要求lim(x→0) (3x^2+2x-1)/(x+1),可以利用极限的四则运算法则来求解。
5. 利用洛必达法则当我们遇到不定型的极限时,可以利用洛必达法则来求解。
洛必达法则可以帮助我们求出不定型极限的值,例如0/0、∞/∞、0*∞等形式。
通过洛必达法则,我们可以将求解不定型极限的过程转化为求解导数的问题,从而得到极限的值。
6. 利用泰勒展开泰勒展开是求解复杂函数极限的有效方法之一。
当我们遇到无法直接求解的函数极限时,可以利用泰勒展开将其转化为无穷级数的形式,然后再进行求解。
通过泰勒展开,我们可以将复杂函数近似为一个多项式,从而求得函数的极限值。
7. 利用换元法换元法是求解复杂函数极限的常用方法之一。
通过适当的变量替换,可以将复杂的函数转化为简单的形式,然后再进行求解。
对于lim(x→∞) (1+1/x)^x,可以通过换元法将其转化为e的极限形式来求解。
考研数学:极限计算方法——利用单侧极限

考研数学:极限计算方法——利用单侧极限今天给大家带来极限计算方法中的利用单侧极限来求极限。
为什么会有单侧极限这种极限的计算方法呢,我们知道极限存在的充要条件要求函数左右两侧的极限同时存在且相等才表示函数极限存在,那么在极限计算中出现哪些“信号”是要分左右极限计算呢?第一,当分段函数的分段点两侧表达式不同时,求分段点处的极限利用单侧极限。
例如,讨论函数1,0arcsin(tan )()2,0ln(1arctan )0121x e x x f x x x x ⎧-<⎪⎪⎪==⎨⎪>+-在0=x 处的极限。
分析:在做这道题时我们发现0=x处左右两侧的解析式是不同的,所以计算0=x 处的极限要分左右来求解,也即1lim 221arctan lim 121)arctan 1ln(lim 000==⨯=-+++++→→→x x x x x x x x x ,1tan lim )arcsin(tan 1lim 00==---→→xx x e x x x ,左右两侧的极限同时存在且相等,所以1)(lim 0=→x f x 。
有一些特殊的分段函数,如,[],max{},min{},sgn x x x ,当题目中出现这几个函数时需要考虑单侧极限。
第二,如果出现(),arctan e a ∞∞∞,求极限是要分左右的,例如,⎪⎪⎪⎭⎫ ⎝⎛+++→x x e e x x x sin 12lim 410分析:这道题让我们求解0=x 处的极限,我们发现它有x,在脱绝对值时会出现负号,同时出现了e ∞,故分单侧计算极限,11144400002sin 2sin 2sin lim lim lim lim 1111x x x x x x x e x e x e x x x x e e e ++++→→→→⎛⎫⎛⎫+++ ⎪ ⎪+=+== ⎪ ⎪ ⎪ ⎪+++⎝⎭⎝⎭,11144400002sin 2sin 2sin lim lim lim lim 1111x x x x x x x x x x e x e x e x x x x e e e ----→→→→⎛⎫⎛⎫+++ ⎪ ⎪+=-=-= ⎪ ⎪ ⎪ ⎪+++⎝⎭⎝⎭,所以1sin 12lim 410=⎪⎪⎪⎭⎫ ⎝⎛+++→x x e e x x x 。
16种求极限的方法及一般题型解题思路分享

首先说下我的感觉,假如高等数学是棵树木得话,那么极限就是他的根,函数就是他的皮。
树没有跟,活不下去,没有皮,只能枯萎,可见这一章的重要性。
为什么第一章如此重要?各个章节本质上都是极限,是以函数的形式表现出来的,所以也具有函数的性质。
函数的性质表现在各个方面:首先对极限的总结如下:极限的保号性很重要,就是说在一定区间内函数的正负与极限一致。
极限分为一般极限,还有个数列极限,(区别在于数列极限是发散的,是一般极限的一种)。
解决极限的方法如下:(我能列出来的全部列出来了!你还能有补充么?)1、等价无穷小的转化,(只能在乘除时候使用,但是不是说一定在加减时候不能用,前提是必须证明拆分后极限依然存在,e的X次方-1或者(1+x)的a次方-1等价于Ax等等。
全部熟记(x趋近无穷的时候还原成无穷小)。
2、洛必达法则(大题目有时候会有暗示要你使用这个方法)。
首先他的使用有严格的使用前提!必须是X趋近而不是N趋近!(所以面对数列极限时候先要转化成求x趋近情况下的极限,当然n趋近是x趋近的一种情况而已,是必要条件(还有一点数列极限的n当然是趋近于正无穷的,不可能是负无穷!)必须是函数的导数要存在!(假如告诉你g(x),没告诉你是否可导,直接用,无疑于找死!!)必须是0比0无穷大比无穷大!当然还要注意分母不能为0。
洛必达法则分为3种情况:0比0无穷比无穷时候直接用;0乘以无穷,无穷减去无穷(应为无穷大于无穷小成倒数的关系)所以无穷大都写成了无穷小的倒数形式了。
通项之后这样就能变成第一种的形式了;0的0次方,1的无穷次方,无穷的0次方。
对于(指数幂数)方程方法主要是取指数还取对数的方法,这样就能把幂上的函数移下来了,就是写成0与无穷的形式了,(这就是为什么只有3种形式的原因,LNx两端都趋近于无穷时候他的幂移下来趋近于0,当他的幂移下来趋近于无穷的时候,LNX趋近于0)。
3、泰勒公式(含有e的x次方的时候,尤其是含有正余弦的加减的时候要特变注意!)E 的x展开sina,展开cosa,展开ln1+x,对题目简化有很好帮助。
16种求极限方法及一般题型解题思路分享

16种求极限方法及一般题型解题思路分享求极限是微积分中的重要内容之一,常见于各种数学和工程科学中。
为了求出一个函数在某一点的极限,需要使用合适的方法。
下面介绍16种常用的求极限方法,以及一般题型解题思路。
一、直接代入法对于多项式函数和分式函数,可以直接将自变量代入函数表达式中计算极限。
例如,求函数 f(x) = 2x + 3 在 x = 1 处的极限,直接代入即可得到结果。
二、分解因式法对于分式函数,可以通过分解因式来简化计算,特别适用于分子和分母都是多项式的情况。
例如,求函数 f(x) = (x^2 - 1)/(x - 1) 在 x = 1 处的极限,可以将分子进行因式分解,得到 f(x) = (x - 1)(x + 1)/(x - 1),然后约去公因式,即可得到结果。
三、夹逼定理夹逼定理用于解决复杂函数在某一点处的极限问题。
如果一个函数在某一点附近被两个其他函数夹住,并且这两个函数的极限都存在且相等,那么原函数的极限也存在且等于这个相等的极限。
例如,对于函数 f(x) = x*sin(1/x),当 x 趋近于 0 时,f(x) 被两个函数 g(x) = x 和 h(x) = -x 夹住,且 g(x) 和 h(x) 的极限都是 0,所以 f(x) 的极限也是 0。
四、变量代换法第1页/共5页对于一些特殊的函数,可以通过变量代换来简化计算。
例如,对于函数f(x) = sin(1/√x),当 x 趋近于 0 时,可以将√x = t,那么 x = t^2,且当 x 趋近于 0 时,t 也趋近于 0,所以求 f(x) 在 x = 0 处的极限可以转化为求 g(t) = sin(1/t) 在 t = 0 处的极限。
五、洛必达法则洛必达法则是一种常用的求函数极限的方法,特别适用于形如 0/0 或∞/∞的不定式。
根据洛必达法则,如果一个不定式的分子和分母的极限都存在且为 0 或∞,那么可以分别对分子和分母求导后再次求极限,直到找到一个不是 0/0 或∞/∞的形式。
极限求法总结PDF打印版

9.
lim(tan x) cos x −sin x
x→
4
x1 0 , xn +1 = xn + (n = 1, 2,3, ) 例 设 a0 , 2 x
n
1
a
(1)证明
lim xn 存在; (2)求 lim xn . n →+ n →+
解: (1) xn+1 = xn + xn = a 0 xn a 2 xn xn
无穷小分出法:以分母中自变量的最高次幂除分 子,分母,以分出无穷小量,然后再求极限.
2 x 2 + 5x + 1 . x →1 x 2 − 4 x − 8 2n + 1 . 练习2 求 lim n → n2 + n
练习1 求 lim
练习3 练习4
lim
(2 x − 3) 20 (3x + 2) 30 x → (2 x + 1) 50
2
练习 1
1 lim 1 − 2 x →+ x
x
2 xlim →+
x + 2a = 8 ,求 x−a
a
2012年数学三考研试题 (第二答题填空题第9小题)
1
12. 应用数列的单调有界收敛准则求极限
【分析】一般利用单调增加有上界或单调减少有 下界数列必有极限的准则来证明数列极限的存在。
例:求极限 lim x →0
x ln(1 + x) 1 − cos x
解 lim x →0
x ln(1 + x) xx = lim =2 x →0 1 2 1 − cos x x 2
考研数学:求极限的16种方法1500字

考研数学:求极限的16种方法1500字极限是数学中的重要概念,是解析数学中很多问题的基础。
求极限的方法有很多种,下面就介绍一下求极限的16种常用方法。
1. 直接代入法:对于某个函数在某个点的极限,如果可以直接将极限点代入函数中计算出极限值,则可以使用直接代入法。
2. 连续性法则:如果一个函数在某个点处连续,那么该点的极限值就是函数在该点的函数值。
3. 无穷小量的性质:利用无穷小量的性质对极限进行求解,例如利用已知的极限,对函数进行分子分母的化简、展开等操作。
4. 夹逼法:当一个函数夹在两个函数之间时,利用两个函数的极限值可以求出该函数的极限值。
5. 单调有界原理:对于单调有界的函数,可以通过证明上下确界得到极限值。
6. 极限的四则运算法则:对于两个函数的极限,可以利用四则运算法则求出其和、差、积、商的极限。
7. 换元法:通过对函数进行变量替换,将原来的极限问题转化为更简单的问题求解。
8. 泰勒级数展开法:对于某些函数,可以利用泰勒级数展开的性质,将函数进行级数展开,然后求出极限值。
9. 符号常用极限法:对于一些特殊的函数,例如正弦函数、指数函数等,可以通过符号常用极限值来求出其极限。
10. 隐函数极限法:对于隐函数的极限问题,需要通过隐函数求导的方式来求出极限值。
11. 单调列法:对于一个递增(递减)且有上(下)界的序列,可以通过极限的单调列法求出极限。
12. Stolz定理:当一个数列为无穷大与无穷小的极限的商时,可以利用Stolz定理求出极限。
13. 递推法:对于递归定义的数列,可以通过递推的方式求出极限。
14. 分部积分法:对于一些函数的积分,可以通过分部积分法转化为极限问题求解。
15. L'Hospital法则:对于一些不定型的极限问题,可以通过L'Hospital法则来求出其极限。
16. 堪培拉法则:对于一些含有多个变量的函数,可以利用堪培拉法则求出其极限。
以上是求解极限的16种常用方法,掌握这些方法可以更好地应对极限求解问题。
考研数学:用定积分的定义求极限

f ( x)
在 区 间
[ a, b]
上 有 界 , 在 , 这 样
[ a, b]
内 任 意 插 入
n 1
个 分 点
a x0 x1 x2 ... x n 1 x n b [ xi 1 , xi ], (i 1, 2,..., n)
用 xi
[ a, b]
就 被 分 为 了
1i n
0
i 1
…………………………………………………………………………………………取极限
则作dx lim f (i )xi ,其中 f ( x) 称为被积函数, f ( x)dx 称为被积式, x 称
0
i 1
n
为积分变量, [a, b] 称为积分区间, b, a 分别称为积分上、下限。 我们从定积分的定义内容可知,定积分的本质其实就是和式的极限。因此,我们可以利用定积分 的定义来计算和式的极限。 2.利用定积分的定义求极限 基本公式: lim
i 1 i
n
i
f (1 )x1 f (2 )x2 f (n )xn …………………求和 f ( x)
在 区 间 [ a, b] 上 的 定 积 分 , 记 令
称
f ( x)
在 区 间 [ a, b] 上 可 积 , 该 极 限 称 之 为
n
max(xi ) ,如果有极限 lim f (i )xi 存在且与 [a, b] 的划分及 i 的选取无关
取自 xi 处,那么和式极限就可以表示为 lim
n
f nn
i 1
n
i 1
1
0
f ( x)dx
考研试题中的应用:我们 2017 年研究生考试数一、二、三中就出现了这种题型。 例题:求 lim
考研极限公式范文

考研极限公式范文1.常见的基本极限:- $\lim_{n\to\infty}(1+\frac{1}{n})^n=e$- $\lim_{n\to\infty}{\frac{1}{n^p}}=0$ ($p>0$)- $\lim_{n\to\infty}{\sqrt[n]{a}}=1$ ($a>0$)2.三角函数的极限:- $\lim_{x\to0}\frac{\sin x}{x}=1$- $\lim_{x\to0}\frac{\tan x}{x}=1$- $\lim_{x\to0}\frac{1-\cos x}{x^2}=\frac{1}{2}$3. $e^x$和$\ln x$的极限:- $\lim_{x\to0}\frac{e^x-1}{x}=1$- $\lim_{x\to+\infty}(1+\frac{1}{x})^x=e$- $\lim_{x\to0}\frac{\ln(1+x)}{x}=1$4.可用洛必达法则求解的一些极限:- $\lim_{x\to0}\frac{\sin x}{x}=1$- $\lim_{x\to+\infty}\ln x=x$- $\lim_{x\to0}\frac{\ln(1+x)}{x}=1$5.无穷小形式:- $\sin x \sim x$- $\tan x \sim x$- $1-\cos x \sim \frac{1}{2}x^2$需要说明的是,这些极限公式只是考研数学中的一部分公式,掌握它们可以帮助我们在解题时更快地得到结果,但并不是解题的核心。
在考研数学中,重要的是掌握解题的思路和方法,理解题目的要求,合理运用公式和定理。
综合运用各种公式和解题方法,灵活解决各种题目才是最关键的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
圣才教育
函数的极限既然是微积分的一个
重要内容,于是如何求出已知函数 的极限,就是学习微积分必须掌握 的基本技能。因此,本文对求函数 的方法进行总结,并对于每种方法 都足以定理或简述开头,然后以例 题来全面限
极限的四则运算如下:
2.消去零因子法及有理化求极限
(1):消去零因子法: 通过消公因子达到消零因子的目的,此法适 用于有公因子的0/0型
解:
(2)有理化求极限:将根式差有理化
3.利用无穷小量
➢性质1:有限个无穷小的代数和为无穷小。 ➢性质2:有界函数与无穷小的乘积为无穷 小。 ➢性质3:有限个无穷小的乘积为无穷小。
4.无穷小的等价代换
➢只能做分子或分母的整体替换,或者分子、分母 中的部分因式做替换。 ➢无穷小的等价代换是计算极限时学生最容易出错 的方法之一。 ➢此法的难点在于学生搞不清楚替换的原理及对象。 还有就是对无穷小的等价概念不清,要注意等价 是有极限条件的。 ➢常用代换有:
5.两个重要极限
而我们在使用公式时并非完全套用公式,而是 对其适当的变形,有人也称其为“凑”。
6.洛必达法则
7.变量替换
8.分段函数的极限