一元线性回归模型
第三章 一元线性回归模型

第三章 一元线性回归模型一、预备知识(一)相关概念对于一个双变量总体,若由基础理论,变量和变量之间存在因果),(i i x y x y 关系,或的变异可用来解释的变异。
为检验两变量间因果关系是否存在、x y 度量自变量对因变量影响的强弱与显著性以及利用解释变量去预测因变量x y x ,引入一元回归分析这一工具。
y 将给定条件下的均值i x i yi i i x x y E 10)|(ββ+=(3.1)定义为总体回归函数(PopulationRegressionFunction,PRF )。
定义为误差项(errorterm ),记为,即,这样)|(i i i x y E y -i μ)|(i i i i x y E y -=μ,或i i i i x y E y μ+=)|(i i i x y μββ++=10(3.2)(3.2)式称为总体回归模型或者随机总体回归函数。
其中,称为解释变量x (explanatory variable )或自变量(independent variable );称为被解释y 变量(explained variable )或因变量(dependent variable );误差项解释μ了因变量的变动中不能完全被自变量所解释的部分。
误差项的构成包括以下四个部分:(1)未纳入模型变量的影响(2)数据的测量误差(3)基础理论方程具有与回归方程不同的函数形式,比如自变量与因变量之间可能是非线性关系(4)纯随机和不可预料的事件。
在总体回归模型(3.2)中参数是未知的,是不可观察的,统计计10,ββi μ量分析的目标之一就是估计模型的未知参数。
给定一组随机样本,对(3.1)式进行估计,若的估计量分别记n i y x i i ,,2,1),,( =10,),|(ββi i x y E 为,则定义3.3式为样本回归函数^1^0^,,ββi y ()i i x y ^1^0^ββ+=n i ,,2,1 =(3.3)注意,样本回归函数随着样本的不同而不同,也就是说是随机变量,^1^0,ββ它们的随机性是由于的随机性(同一个可能对应不同的)与的变异共i y i x i y x 同引起的。
一元线性回归模型

1 n ˆ xi )2 = 1 ( Lyy − bLxy ). ˆ ˆ 即 σ = ∑ ( yi − a − b ˆ n i =1 n
2
n σ 2. 而σ 的无偏估计是 ˆ n−2
2
∴σ ˆ
*2
n 1 2 ˆ σ = ( Lyy − bLxy ). = ˆ n−2 n−2
ex1. 设有一组观察值如下,求回归方程 设有一组观察值如下,求回归方程.
ˆ ˆ ˆ 对于x0可得 y0 = a + bx0 , 称其为 Y0的点预测.
( 2) Y0的区间估计 : 选取 T =
σ* ˆ
ˆ Y0 − y0 ~ t ( n − 2) 2 1 ( x0 − x ) 1+ + n Lxx
对于任意给定的 0 < α < 1, 有 P { T < tα ( n − 2)} = 1 − α .
研究变量间的相关关系,确定回归函数, 研究变量间的相关关系,确定回归函数,由此预测和控 制变量的变化范围等就是回归分析。 制变量的变化范围等就是回归分析。 研究两个变量间的相关关系,称为一元回归分析; 研究两个变量间的相关关系,称为一元回归分析; 研究多个变量间的相关关系,称为多元回归分析; 研究多个变量间的相关关系,称为多元回归分析; 若回归函数为线性函数,则称为线性回归分析。 若回归函数为线性函数,则称为线性回归分析。
所以y与 之间显著地存在线性关系 之间显著地存在线性关系. 所以 与x之间显著地存在线性关系
四、一元线性回归模型的应用—预测与控制 一元线性回归模型的应用 预测与控制 1. 预测问题
(根据 = a + bx + ε , 研究 = x0时如何估计 0 ) Y x Y
(1) Y0的点估计 :
一元线性回归模型(计量经济学)

总体回归函数说明被解释变量Y的平均状 态(总体条件期望)随解释变量X变化的 规律。至于具体的函数形式,则由所考 察的总体的特征和经济理论来决定。
在例2.1中,将居民消费支出看成是其可 支配收入的线性函数时,该总体回归函
数为: E (Y |X i)01 X i
它是一个线性函数。其中,0,1是未知
第二章 经典单方程计量经济学模型: 一元线性回归模型
§2.1 回归分析概述 §2.2 一元线性回归模型的基本假设 §2.3 一元线性回归模型的参数估计 §2.4 一元线性回归模型的统计检验 §2.5 一元线性回归模型的预测 §2.6 一元线性回归建模实例
§2.1 回归分析概述
一、变量间的关系及回归分析的基本概念 二、总体回归函数 三、随机扰动项 四、样本回归函数
1430 1650 1870 2112
1485 1716 1947 2200
2002
2420 4950 11495 16445 19305 23870 25025 21450 21285 15510
一个抽样
由于调查的完备性,给定收入水平X的消费 支出Y的分布是确定的。即以X的给定值为条 件的Y的分布是已知的,如 P(Y=561 | X = 800) =1/4。 进而,给定某收入Xi,可得消费支出Y的条 件均值,如 E(Y | X = 800) =605。 这样,可依次求出所有不同可支配收入水平 下相应家庭消费支出的条件概率和条件均值 ,见表2.1.2.
相关分析主要研究随机变量间的相关形式 及相关程度。变量间的相关程度可通过计 算相关系数来考察。
具有相关关系的变量有时存在因果关系,
这时,我们可以通过回归分析来研究它们
之间的具体依存关系。
课堂思考题
一元线性回归模型的参数估计解读

假定1:解释变量X i是确定性变量,不是随机变量
假定2:E(ui ) 0,即随机误差项的均值或期望为零
2 假定3:Var (ui ) ( 2为常数),即各个随机误差
项的方差相同
假定4:Cov(ui , u j ) 0(i j ),即不同的随机误差项 之间是互不相关的
假定5:Cov( X i , ui ) 0,即解释变量和随机误差项 之间也是互不相关的
xi ˆ 1 Y kiYi 2 i xi
1 1 ˆ ˆ 0 Y 1 X Yi kiYi X ( Xki )Yi wY i i n n
ˆ 、 ˆ 的均值(期望)等于总体 2.无偏性,即估计量 0 1 回归参数真值0与1
ˆ k Y k ( X u ) 证: ii i 0 1 i i 1
解释变量是确定性变量不是随机变量常数的方差相同即不同的随机误差项之间是互不相关的即解释变量和随机误差项之间也是互不相关的即每一个随机误差项都服从正态分布以上假定称为线性回归模型的经典假定满足该假定的线性回归模型称为经典线性回归模型
第二节 一元线性回归模型的参数估计
• • • • • • 一元线性回归模型的概念 一元线性回归模型的基本假定 参数的普通最小二乘估计 截距为零的一元线性回归模型的估计 最小二乘估计量的性质 参数估计量的概率分布
Yi
594 638 1122 1155 1408
X i2
X iYi
475200 701800 1570800 1963500 2816000
640000 1210000 1960000 2890000 4000000
6
7 8 9 10 求和
2300
2600 2900 3200 3500 21500
2.2 一元线性回归模型的参数估计

于是,Y的概率函数为
P(Yi ) = 1
− 1 2σ
2
ˆ ˆ (Yi − β 0 − β1 X i ) 2
σ 2π
e
(i=1,2,…n)
4/29/2012
14
因为Yi是相互独立的,所以的所有样本观测值的联 合概率,也即或然函数(likelihood function) 或然函数(likelihood function)为: 或然函数
§2.2 一元线性回归模型的参数估计
一、一元线性回归模型的基本假设 二、参数的普通最小二乘估计(OLS) 参数的普通最小二乘估计(OLS) 参数估计的最大或然法(ML) 三、参数估计的最大或然法(ML) * 四、最小二乘估计量的性质 五、参数估计量的概率分布及随机干扰项方差的估计
4/29/2012
1
640000 352836 1210000 407044 1960000 1258884 2890000 1334025 4000000 1982464 5290000 2544025 6760000 3876961 8410000 4318084 10240000 6682225 12250000 6400900 53650000 29157448
4/29/2012
-973 1314090 1822500 947508 -929 975870 1102500 863784 -445 334050 562500 198381 -412 185580 202500 170074 -159 23910 22500 25408 28 4140 22500 762 402 180720 202500 161283 511 382950 562500 260712 1018 1068480 1102500 1035510 963 1299510 1822500 926599 5769300 7425000 4590020
21一元线性回归模型.ppt

同理,p(Y= ? /X=260)=1/7
条件均值(条件期望 ) :
对Y的每一条件概率分布,我们能算出它 的均值 :
记做E(Y/X=Xi)
[简写为E(Y/Xi) ]
并读为“在X取特定Xi值时的Y的期望值”。
计算方法:
将表2.1中的有关列乘以表2.2中的相应列 的条件概率,然后对这些乘积求和便是。
第二章 一元线性回归模型
§2.1 一元线性回归模型概念基础 回归是计量经济学的主要工具 一、“回归”一词的历史渊源
Francis Galton F.加尔顿
回归一词最先由F.加尔顿 (FrancisC,alton)引入
加尔顿的普遍回归定律还被他的朋友 K.皮尔逊(KartPearson)证实
Karl Pearson K.皮尔逊
综合来看,回归分析一般可以用来:
(1) 通过已知变量的值来估计因变量的均值。
(2)对独立性进行假设检验―――根据经济理 论建立适当的假设。
例如,对于需求函数,你可以检验假设:需求的 价格弹性为-1.0;即需求曲线具有单一的价格 弹性。也就是说,在其他影响需求的因素保持 不变的情况下,如果商品的价格上涨1%,平 均而言,商品的需求量将减少1%。
P (
1/7 1/5 1/5 1/6 1/5 1/7 1/5 1/7 1/5
Y/ 1/7 1/5 1/5 1/6 1/5 1/7 1/5 1/7 1/5
Xi ) 1/7
1/6
1/7
1/7
1/7
1/7
1/7
Y的条 48 46 44 42 40 38 36 34 32 30
件均值
E(Y/X=Xi) Y的条件均值
·
·
·
· ·
计量经济学第二篇一元线性回归模型

第二章 一元线性回归模型2.1 一元线性回归模型的基本假定有一元线性回归模型(统计模型)如下, y t = β0 + β1 x t + u t上式表示变量y t 和x t 之间的真实关系。
其中y t 称被解释变量(因变量),x t 称解释变量(自变量),u t 称随机误差项,β0称常数项,β1称回归系数(通常未知)。
上模型可以分为两部分。
(1)回归函数部分,E(y t ) = β0 + β1 x t ,(2)随机部分,u t 。
图2.1 真实的回归直线这种模型可以赋予各种实际意义,居民收入与支出的关系;商品价格与供给量的关系;企业产量与库存的关系;身高与体重的关系等。
以收入与支出的关系为例。
假设固定对一个家庭进行观察,随着收入水平的不同,与支出呈线性函数关系。
但实际上数据来自各个家庭,来自同一收入水平的家庭,受其他条件的影响,如家庭子女的多少、消费习惯等等,其出也不尽相同。
所以由数据得到的散点图不在一条直线上(不呈函数关系),而是散在直线周围,服从统计关系。
“线性”一词在这里有两重含义。
它一方面指被解释变量Y 与解释变量X 之间为线性关系,即另一方面也指被解释变量与参数0β、1β之间的线性关系,即。
1ty x β∂=∂,221ty β∂=∂0 ,1ty β∂=∂,2200ty β∂=∂2.1.2 随机误差项的性质随机误差项u t 中可能包括家庭人口数不同,消费习惯不同,不同地域的消费指数不同,不同家庭的外来收入不同等因素。
所以在经济问题上“控制其他因素不变”是不可能的。
随机误差项u t 正是计量模型与其它模型的区别所在,也是其优势所在,今后咱们的很多内容,都是围绕随机误差项u t 进行了。
回归模型的随机误差项中一般包括如下几项内容: (1)非重要解释变量的省略,(2)数学模型形式欠妥, (3)测量误差等,(4)随机误差(自然灾害、经济危机、人的偶然行为等)。
2.1.3 一元线性回归模型的基本假定通常线性回归函数E(y t ) = β0 + β1 x t 是观察不到的,利用样本得到的只是对E(y t ) =β0 + β1 x t 的估计,即对β0和β1的估计。
一元回归线性模型

一元回归线性模型
一元线性回归模型,又称为简单线性回归模型,是机器学习中常
用的回归模型,它是利用一个自变量X来预测因变量Y的结果。
一元
线性回归模型将样本数据映射为一条直线,如y=ax+b,其中a是斜率,b是截距,也就是说,一元线性回归模型中的参数是斜率和截距,而拟
合的直线就是根据样本数据估计出来的最佳拟合直线。
目标函数是求解参数 a 和 b,使得误差平方和最小,具体来说,
目标函数的表达式为:J(a,b)=Σi(yi-f(xi))^2,其中f(x)=ax+b,yi为观测值,xi为观测值对应的自变量。
对于一元线性回归模型,求解参数 a 和 b 的最优方法要么是直
接用梯度下降法求解,要么是用最小二乘法求解。
梯度下降法求解时,需构造损失函数,使用梯度下降法迭代更新参数,直到获得最优结果;而最小二乘法求解时,通过求解参数关于损失函数的导数,便可解出
模型参数,从而得到最优结果。
一元线性回归模型在实际应用中有很多优点,其中最重要的就是
它易于拟合和解释,它求解简单,可以很大程度上减少了计算复杂度,而且可以很好地预测因变量的值,也可以用来检验变量之间的关系。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
几个常用结果以及注释 1. Σei =0
2. Σei
Xi=0
3.样本回归方程过( X , Y )点 样本回归方程过( 4.截距为0的一元线性回归模型参数估 计式 一元线性回归模型参数估计举例( P23页)
四、估计量的统计学性质
1. 线性性:b , b 都是Yi的线性函数。
0 1
∑ x y = ∑ x (Y Y ) = ∑ x Y b = ∑ x ∑ x ∑ x ∑ xY = ∑ x x 令: K = 则: b = ∑ K Y 是 Y ∑ x
4.线性回归模型 的普遍性
在实际经济分析中,由于经济变量之间的关系 在实际经济分析中 由于经济变量之间的关系 往往是非常复杂的,所以直接的精确线性模型是较 往往是非常复杂的 所以直接的精确线性模型是较 所以直接的精确线性模型 少的。 少的。 但是,由于第一,线性模型比较容易研究;第 但是,由于第一,线性模型比较容易研究; 二,现实经济分析中许多非线性问题可以经过简 单的数学处理转化为线性模型;第三, 单的数学处理转化为线性模型;第三,非线性模 型的分析基础是线性模型。 型的分析基础是线性模型。 所以,我们研究的思路是先学习线性回归模型, 所以,我们研究的思路是先学习线性回归模型, 然后学习非线性问题。 然后学习非线性问题。
表示 Xi ,Yi…… 离差形式用小写字母表示 xi ,yi……
三、举例说明
计量经济学模型为什么引入随机扰动项ui ? 例题:需求模型 如前所述需求量Q受到商品价格P、当期 收入Yt 、其它商品价格P1 、前期收入Y t-1 、 经济政策G 、……等因素影响。所以, Q=f(P、 Y t 、P1、Y t-1、G……)
i i i i i 1 2 2 2 i i i i i 2 i i i 2 1 i i i
i
∑ x Y ∑ x
i 2 i
i
的线性函数
同样可以证明:b 也是 Y i的线性函数
0
2. 无偏性:即 b b 的均值(数学期望) 等于总体(真实)的参数值b0、 b 1
0 1
E(b )= b 0
0
E(b )= b 1 ,
σ
对假定的学习思路:先结合随机项的特性,理
解假定含义,认为这些假定是成立的,学习参 数的估计、模型检验等。然后,在后面的章 节讨论这些假定是否成立?不成立会出现什 么问题?怎样检验?如何解决?
把握这个思路很重要哦!
四、回归分析 1.什么是回归分析? 是回归模型的建立、估计、检验理论和 方法的统称 2.回归分析的主要内容
一、古典假定
关于最小二乘法的基本假定: 假定一:ui是一个随机实变量 假定二:任何特定时期(或不同样本对 应)ui 的平均值为零,即 E(ui)=0 假定三:每个时期(或不同样本对应) 的ui项方差为常数 Var(ui)= σu2 ,称无异方差性
假定四.:ui服从正态分布 假定五:不同时期(或样本)Xi与Xj对 应的随机项ui与uj之间是独立不相关的,即 Cov(ui,uj)=0,称无序列相关性或无自 相关。 假定六:解释变量X是一组确定性变量, 随机扰动项 ui与解释变量Xi无关, 即 Cov( ui,Xj )=0 。 假定七:解释变量之间不是完全线性相 关的。称无完全多重共线性。
在计量经济模型中引入随机项扰动 ui 的理由如下:
第一,表示被解释变量Y与解释变量X的 不确定性关系 第二,模型不可能包含所有变量,次要变 量要省略 ; 第三,确定模型数学形式肯定会有误差 ; 第四,样本数据会有测量误差 ; 第五,一些随机因素无法选入模型。
所以,需求模型必须引入随机扰动项 u ,才能准确取等号 Q=f(P、 Yt 、P1、Yt-1、G、 u ……) 函数形式“ f ”如果是线性的: Q =b0+b1P+ b2Yt + b3 P1 +b4Yt-1 + b5G+ u
我们把
ei= Yi- Y
i
i
都尽量的小。
ei= Yi- Y
称为残差。
Σei (min)
Σ|ei|(min)
Σei2 (min)
(3)最小二乘准则
使Σei2(min)来确定一元线性回归模型 Y=b0+b1X+u 参数估计值
、b1 。 b
0
作业题 :为什么不用使Σei或Σ|ei|(min)作为确 作业题 为什么不用使Σ 定
b
0
的准则? b 的准则? 、
1
3.最小二乘式的推导 最小二乘式的推导
(1)令
0 1 Q(b , b ) = ∑ei = ∑(Y i Y ) =∑(Y i b b X i) 0 1 i
2 2
2
要使上式达到最小,根据求极值的原理可得正规方程为:
Q (b , b )
0 1
b
0
=
∑ (Y i b
1
3.有效性(最小方差性):是指在所有 线性、无偏估计量中,最小二乘估计量的方 差最小。(证明略) (证明略)
= b + ∑ K u 所以, b Var(b ) = Var(b + ∑ K u ) = Var(b ) + ∑ K Var(u ) ∑x = σ =σ ∑ 2 (∑ xi ) ∑ x 2 2 ∑ Xi Var (b ) = σ u 0 同样可以证明: 2 n ∑ xi
1 1 i i 2 1 1 i i 1 i i 2 2 2 i u u 2 2 i
估计量如果同时具有线性性、无偏性、 有效性,则 称是具有BLUE(Best Linear Unbiasde Estimators)性质的优良估计量。普 通最小二乘估计量具有以上的优良性质。
β 的密度函数
Var ( β )
1
b = ∑ K Y = ∑ K (b + b X + u ) = b ∑ K +b ∑ K i X + ∑ K u 因为, K = ∑ x = 0 , ∑ K i X = 1 ∑ ∑x 所以, = b + ∑ K u , E (b ) = E (b + ∑ K u ) = b b
1 i i i 0 1 i i 0 i 1 i i i i i 2 i i 1 1 i i 1 1 i i
Y
i
三、普通最小二乘法(OLS方法) Ordinary Least Square的简称
1.基本思路 基本思路:对模型: Yi= b0+b1Xi+ui 基本思路 已知样本点(Xi,Yi)i=1,2,…,n,以及ui满 足基本假定, 求 b0 、 b1的满意估计值: 的满意估计值:
b
0
,
b
1.ຫໍສະໝຸດ ..拟合好拟合差X
怎样进行拟合优度检验(R2检验或度量)? 2 定理: 个度量。 R2 =
∑ y ∑ y
i 2 i
是回归直线拟合优劣的 一
证明: 1. 总离差平方和的分解公式:
∑ y
总离差
2 i
=
∑ y
2 i
+
∑e
i
2 i
y =Y
i
i
Y
i i
被解释离差
残差
关
2)回归关系:变量间非确定性的因果关系 因果关系:两个及以上变量在行为机制 上的依赖性。
3.回归模型:变量X 、Y具有回归关系 , 则: Y=f(X,u)称为回归模型 (删除) 其中,u 是随机扰动项。 函数形式“ f ”如果是线性的,则称为线性 回归模型。
请理解并记住重要结论:经济定量分
析中我们遇到的变量大部分是具 有回归关系的变量。
2、拟合准则 、
(1)问题提出:如果不加限制,通过样 本点(Xi,Yi)可以拟合许多直线。
例如:
… .
Y . . .
O
X
(2)拟合准则的提出 拟合准则的提出
如果已求出样本回归方程: i = b0+ b1 Xi , Y 一个很自然的想法是使得每一个真实值Yi与估
计值 Y i 的差
1
b1 X i ) 0 b
1
2
=0
2
Q(b , b )
1
b
=
∑ (Y i b
0
b1 X i) 0 b
0
=0
整理得:
∑ (Y i b b
0 i 0
2
1
X i)
i
=0 =0 i
∑ (Y b b X ) X
1
解上面方程得: = b
0
∑ X ∑Y ∑ X ∑ X Y n ∑ X (∑ X ) 2 n∑ X Y ∑ X ∑Y = b n∑ X (∑ X )2
第二章 一元线性回归模型
目的与要求:1.掌握一元线性回归模型的概念 目的与要求:
2.理解关于最小二乘法的基本假定 3.掌握最小二乘法及最小二乘准则 4.掌握最小二乘估计量的统计性质及分
布
5.掌握一元线性回归模型的统计检验(拟 掌握一元线性回归模型的统计检验( 合优度、t检验、F检验) 合优度、 检验、 检验) 6.会用一元线性回归模型分析简单问题
二、一元线性回归模型
1.一元线性回归模型(单变量模型) Y=b0+b1X+u 2.样本形式 Yi= b0 + b 1Xi+ ui (Xi、 Yi) i=1、 2、 3、…n 为一组样本 点。线性模型的涵义:被解释变量Y 是解释变量X的线性函数;被解释变 量Y是参数b 的线性函数。
说明:本书中样本点形式用大写字母
2 2 i
2.标准误差
s
s
bo
=
∑ X ∑e n∑ x n 2
2 i 2 i
2
i
b1
=
1
∑ x
∑ e
2 i
2 i
n 2
第三节 一元线性回归模型的统计检验