塔设备设计

塔设备设计
塔设备设计

塔设备设计

设计规范

塔设计规范如表。

表设计规范

规范标准号

《石油化工塔形设备设计规范》SH 3098-2011

《石油化工塔盘设备设计规范》SH 3088-1998

《石油化工钢制塔、容器现场组焊施工工艺标准》SH3524-1999

《建筑抗震设计规范》GB 50011-2010

《建筑结构载荷规范》GB 50009-2001

设计要求

作为主要用于传质过程的塔设备,必须保证气液两相充分接触,以获得较高的传质效率;同时还应充分考虑设备的经济费用。为此,塔设备应满足以下基本要求:

1)气液两相充分接触,分离效率高;

2)生产能力大,即气液相处理量大;

3)操作弹性大,对气液相负荷波动具有较强的适应性,即能维持操作的稳定性,保持高的分离效率;

4)流体流动阻力小,流体通过塔设备的压降小;

5)结构简单可靠,材料耗用量少,制造安装容易,以降低设备投资,同时尽可能降低操作费用;

6)耐腐蚀和不易堵塞。

本厂有5个塔,我们对其进行了详细设计,并以精馏塔T201为例阐述详细

的计算和选型过程。

工艺参数设计

生产能力

根据Aspen模拟得到塔T201进料量为/h(泡点进料),塔顶采出量为/h,塔底物料流量为/h。

操作参数

精馏塔T101操作参数如表。

表精馏塔T101操作参数

操作压力回流比进料状态理论板数进料位置

泡点进料301

物料衡算和能量衡算

(1)物料衡算

选取整个塔作为衡算系统,则其共有3股物料:进料、塔顶出料、塔底出料,故有 =+(单位:kmol / h)。

(2)能量衡算

同样选取整个塔作为衡算系统,则能量可分为两部分:加热负荷和冷却负荷。由Aspen 模拟结果可知,加热负荷为,冷凝负荷为。

基本结构设计

塔设备选型原则

气液传质分离用的最多的为塔式设备。它分为板式塔和填料塔两大类。板式塔和填料塔均可用作蒸馏、吸收等气液传质过程,但两者各有优缺点,根据具体

情况进行选择。

(1)下列情况优先选择填料塔

1)在分离程度要求高的情况下,因某些新型填料具有很高的传质效率,故可采用新型填料以降低塔的高度;

2)对于热敏性物料的蒸馏分离,因新型填料的持液量较小,压降小,故可优先选择真空操作下的填料塔;

3)具有腐蚀性的物料,可选用填料塔,因为填料塔可采用非金属材料,如陶瓷、塑料等;

4)容易发泡的物料,宜选用填料塔。

(2)填料塔优点

1)小直径塔费用低,便于安装;

2)液压降低,有利于真空精馏;

3)用于难分离的场合以降低塔高;

4)用于腐蚀严重的场合,在这种情况下可采用耐腐蚀材质填料;

5)适合于发泡物系;

6)改造老塔,增加通量,减少消耗,提高产品质量;

7)用于间歇精缩,因为填料塔的持液量低。

(3)下列情况优先选择板式塔

1)塔内液体滞液量较大,操作负荷变化范围较宽,对进料浓度变化要求不敏感,操作易于稳定;

2)液相负荷较小;

3)含固体颗粒,容易结垢,有结晶的物料,因为板式塔可选用液流通道较大的塔板,堵塞的危险性较小;

4)在操作过程中伴随放热或需要加热的物料,需要在塔内设置内部换热组件,如加热盘管,需要多个进料口或多个侧线出料口。这是因为一方面板式塔的结构上容易实现,另外,塔板上有较多的滞液以便与加热或冷却管进行有效地传热;

5)在较高压力下操作的蒸馏塔仍多采用板式塔。

(4)板式塔的优点

1)对于大直径塔设备费用低;

2)不易堵塞,且易清理;

3)适合大液量操作。因为板式塔气流为错流,流量增大对气体负荷影响不大;

4)适合中间内部换热、侧线出料多的场合。

(5)体系特点

本厂工艺液相负荷相对气体负荷较大;物料洁净且无腐蚀。比较分析板式塔和填料塔各自的特点,结合该塔体系的特点,从分离效率、成本和操作维修等方面考虑,主要分离段精馏塔选用板式塔。选用板式塔可以控制成本,有较高的操作弹性,同时维修方便。

塔板选型原则

(1)板式塔塔板种类

根据塔板上气液两相的相对流动状态,板式塔分为穿流式与溢流式。目前板式塔大多采用溢流式塔板。穿流式塔板操作不稳定,很少使用。

(2)各种塔板性能比较

工业上需分离的物料及其操作条件多种多样,为了适应各种不同的操作要求,迄今已开发和使用的塔板类型繁多。这些塔板有各自的特点和适用体系,几种主要塔板的性能比较见表。

表塔板性能比较

类型优点缺点应用条件

泡罩塔板操作弹性较大,液气比范围

大,不易堵塞,适于处理各

种物料,操作稳定可靠

结构复杂,造价高,塔板压

降大,生产能力及板效率较

在设计中除特殊需

要(如分离粘度大、

易结焦等物系)外

一般不宜选用

浮阀塔板结构简单,制造方便,造价

低,塔板开孔率高,生产能

力大,操作弹性大,气液接

触时间长,塔板效率高

处理易结焦,粘度大的物料

时,阀片易与塔板粘结,在

操作过程中有时会发生阀片

脱落或卡死等现象,使塔板

效率和操作弹性较大

分离要求高

筛孔塔板结构简单,造价低,板上液

面落差小,气体压降低。生

产能力较大,气体分散均匀,

传质效率高

筛孔易堵塞,不易处理易结

焦、粘度大的物料

工业应用中以小孔

径筛板为主,大孔

径筛板多用于某些

特殊场合(如分离

粘度大、易结焦等

物系)

舌形塔板操作气速大,可增大处理能

力,塔盘上无液面落差,持

液量少,故压力降低,塔盘

开孔率较大,气液处理量液

胶泡沫型塔盘有所提高

液体在塔盘上的停留时间段

内,塔板效率低于筛板,舌

片尺寸及张角影响塔板效率

及操作稳定性

分离要求较低的闪

浮喷板压力降小浮板易脱落

分离要求较低的减

穿流筛板结构简单操作范围窄

用于小直径的精馏

塔表是几种主要塔板的应用范围。

表塔板应用范围

塔板类型相对生产能力相对板效率操作范围压降结构成本

泡罩板110-100高复杂

筛板低简单

穿流筛板低最简单

浮阀板中一般(3)塔板的选择

本厂的分离过程,生产能力要求高,操作较为稳定,负荷变化不大,对操作范围的要求不高。综合考虑塔板的效率、分离效果和设备的成本、制造、维修等,我们选择目前使用较为广泛的生产能力较大、操作弹性较大及塔板效率高的浮阀塔。浮阀的类型很多,目前国内使用的浮阀有六种,最常用的时V-1型(即F1型),V-4型,其中V-1型浮阀最为普遍,因为V-1型浮阀已有系列化标准,各种设计数据完善,便于设计和对比,因此综合考虑,本厂的5个精馏塔选择浮阀塔(V-1型塔板)。V-1型浮阀的示意图见图。

图 V-1型浮阀

(4)降液管的类型与溢流方式

1)降液管的类型

降液管时塔板间流体流动的通道,也是使溢流液中所夹带气体得意分离的场所。降液管有圆形与弓形两类。通常圆形降液管一般只用于小直径塔,对于直径较大的塔,常用弓形降液管;

2)流型选择

溢流方式与降液管的布置有关,常用的有以下几种形式: U型流、单溢流、双溢流及阶梯式双溢流等(见图)。

(a)U 型流:液体流径最长,可以提高版效率,其板面利用率最高,但液面落差大,仅用于小塔及液体流量小的场合;

(b)单溢流:液体流径较长,塔板效率较高,塔板结构简单,加工方便,广泛应用于直径以下的塔中;

(c)双溢流:此种溢流方式的优点是液体流径短,从而降低液面落差,但塔板结构复杂,板面利用率低,一般用于直径大于2m的塔中及气液比大的场合;

(d)阶梯式双溢流:此种溢流方式可在不缩短液体流径的情况下减小液面落差小,但塔板结构最复杂,只适用于塔径很大、液流量很大的特殊场合。

图塔板流型

(a)单溢流流型(b)U型流(c)双溢流流型

(d)阶梯式(同一板高)(e)阶梯式(不同一塔高)

分离塔T201分离未反应的丙烯和环氧丙烷的过程,生产量较大,生产能力

要求高,并要求具有一定的操作弹性。综合考虑塔板效率、分离效果和设备的

成本、制造以及后期的维修等,我们选用浮阀塔。

T101详细设计

基本数据

根据Aspen软件的模拟结果,回流比为,共有30块塔板,其中精馏段有12块,提馏段有18块。各理论板上的流量见表。表为分离塔在操作条件下的物料特性。

表体积流量表

Mass flow liquid from Mass flow vapor from Stage

kg/hr kg/hr 10

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

表 T201操作条件下的物料特性

气相平均体积流量 V (m3/h)液相平均体

积流量L

(m3/h)

气相平均密度

V

ρ

(kg/m3)

液相平均密度

L

ρ

(kg/m3)

液相表面张力

σ

(mn/m)

精馏段17

提馏段20

塔径的计算

塔板允许的有效空塔气相速度

D

(4-18)式中:

D—塔径,m;

S

V—塔内气体流量,m3/s;

u —空塔气速,即按空塔截面积计算得气体线速度,m/s 。

max u

式中:

L ρ—液相密度,kg/m 3;

V ρ—气相密度;kg/m 3;

max u —极限空塔气速,m/s ;

C —负荷系数,m/s 。

0.2

2020C C σ?? ?

?

???= (4-20) 式中:

C —操作物系的负荷系数,m/s ;

σ—操作物系的液体表面张力,mN/m 。

(4-21) 0.5()L V V

L L V ρρ=

4-22) 式中:

V ρ— 气相密度,㎏/m 3 ;

L ρ — 液相密度,㎏/m 3;

V — 气相流量,m 3/h ;

L — 液相流量,m 3/h ;

T L H H H =- (4-23) 式中:

T H — 塔板间距,m ;

L H — 板上清液层高度,m 。

当表面张力为σ时,用上式进行修正。C 20值可由下图查的,也可由曲线回

归成方程计算得到。

Smith 关联图见图。

图 smith 关联图

按照上述计算公式初估塔径后,要加以圆整,当塔径小于1m 时,间隔按进行圆整;当塔径大于1m 时,间隔按进行圆整。

对于塔T201:

选取板间距T H =;

板上清液层高度L h =;可得:

0.5()L

V

V

L L V ρρ==( x =

查图得:C 20=,由(4-20)得:

0.2

2020C C σ?? ? ? ???= =0. 068*(20*10-3/20)

=

代入式(4-19),得:

max u =*( =( m/s)

代入式(4-21),并取安全系数为,得:

u= max

=*

=s

代入式(4-18),得:

D =(4*3600/

=

塔径向标准圆整后D=700mm ;

塔截面积T A = 4×D 2=4×=;

实际气速s S T u = V /A =3600/= m/s ;

塔板主要工艺尺寸计算

(1) 溢流装置计算

1)流型选择

由于D=, 塔径较小,根据降液管和溢流方式的选择方法,塔T201选择弓形降液管,溢流方式为单溢流如图所示。

图 降液管和塔板

2)溢流堰长lw

弓形降液管的弦长称为堰长,以lw 表示。

取lw==× =

3)溢流堰堰高hw

降液管端面高出塔板板面的距离,称为堰高,以hw 表示。

堰高与板上清液层高度及堰上液层高度的关系为 。

W OW =h +h L h (4-24) 式中:

L

h —板上液层高度m ; W h —堰高,m ;

OW h — 堰上液层高度,m 。

T101的设计采用平直堰,堰上液层高度h ow 可用费朗西斯(Francis )公式计

算,即

2/32.84()1000h

OW w

L E l h (4-25) 式中:

h L — 塔内液体流量,m 3/h ;

E — 液流收缩系数。近似取E =1。

所以, OW h =×1× 2/3 =

则 W

h = =

4)降液管的宽度W d 和降液管的面积A f

根据L w /D=,查图弓形的宽度和面积得:

W d /D=, A f /A T =

经计算得:

Wd = m

A T = m 2

A f = m 2

图 弓形的宽度与面积

降液管内液体停留时间:

f t=A T s

H L (4-26)

式中:

t — 液体在降液管内的停留时间,s ;

f A — 降液管面积,m 2

; T

H — 塔板间距,m ; s L — 液体负荷,m 3

/s 。 由上式计算得t =*3600)=

5)降液管底隙高度o h

降液管底隙高度是指降液管下端与塔板间的距离,以h 0表示。降液管底隙高

度h 0应低于出口堰高度h w ,才能保证降液管底端有良好的液封,一般不应低于6mm,

即:=-0.006o w h h

降液管底隙高度一般不宜小于20~25mm ,否则易于堵塞,或因安装偏差而使液流不畅,造成液泛。

因此:=-0.006o w h h = - = m 。

6)浮阀布置

一般在正常负荷情况下希望浮阀处在刚全开时操作,实验结果表明一般阀此时的动能因数 0F =8~11,由此确定阀数。

孔速u 0由下式计算

0u

式中:

F — 阀孔动能因数; 0

u — 孔速,m / s ; V ρ —气相密度,㎏/m

3 。 0024

s

V N d u π= (4-28) 式中:

s V —上升气体的流量,m 3/s ; 0d —阀孔直径,0d =。

F1型浮阀的孔径为39㎜,故浮阀个数N 为

N=837V s /u 0

对于塔T201,取阀孔动能因数 0

F =10, 则孔速 0

u = 10/ = m / s

浮阀个数 N =837*3600/ = 个=7个

取边缘区宽度W c=,破沫区宽度W s=

a 23.14A =2180arcsin()X R R ????????????

?? /2c

R D W =-== d s

X=D/2-(W+W)=2-+= a

A =2*[ +180/arcsin] =

浮阀排列方式采用等腰三角形叉排,取排与排间阀孔中心距t =75㎜,则同一横排的阀孔中心距()

t'=Aa /N/t =7/75*1000=66㎜考虑到塔的直径较大,必须采用分块式塔板,而各分块板的支撑与衔接也要占去一部分鼓泡去面积,因而排间距不宜采用66㎜,而应小于此值,故取t’=60㎜按N=8,重新核算孔速及阀孔动能因子

u 0’ =3600/4××8)=s

F 0’ =u 0’× 阀孔动能因子变化不大,仍在9—13范围内。

塔板开孔率=0u/u == %

7)进口堰与受液盘

不设进口堰,受液盘采用凹形受液盘,其深度取50㎜。

8)液面梯度

浮阀他盘上液相流动阻力较小,股液面梯度很小,在计算时一般可以忽略不计。

流体力学计算与校核

(1)气体通过塔板的压降

p c l

h =h +h+h (4-29)

1)干板压降

阀全开前(00c u u ≤)

0.175

19.9c L

u h ρ= (4-30) 阀全开后(00c u u ≥)

25.342v c

L

u h g ρρ= (4-31) u 0c

=

且u 0< u 0c 故应按0.1750

19.9c L

u h ρ=计算干板阻力,即h c =

2)板上充气液层阻力

取ε0=,h L = m ,则

10L h =h ε?=×=

式中:

h l — 板上充气液层阻力,m 液柱;

h L — 板上清液层高度,m 液柱。

3)液体表面张力所造成的阻力:此阻力很小,忽略不计。

因此与气体流经塔板的压降相当的液柱高度为

p

h =+= p L

p h g ρ?=??=**= (3)淹塔

为了防止淹塔现象的发生,要求控制降液管中清液层高度,

()d T w

H H h φ≤+ (4-32) 式中:

φ—系数,是考虑到降液管内充气及操作安全两种因素的校正系数。对于一般的物系,取~;对于不易发泡的物系,取~。

()T w p L d c l o L d H h h h h h h h h h φ+=++=++++ (4-33)

1)与气体通过塔板的压强降所相当的业主高度hp 前以算出hp= 液柱

2)液体通过降液管的压头损失:因不设进口堰,故按式

220.153()0.153(')s d w L h u l h == (4-34) 经计算得h d = m 液柱

3)板上液层高度:前已选定板上液层高度为h L =则H d =++= m 取φ=,又已选

定H T = m , h w = m 。则φ(H T +hw )=*(+)= m 可见H d <φ(H T +hw ),符合防止

淹塔的要求。

(4)雾沫夹带

泛点率是指设计负荷与液泛点负荷之比,以百分数表示。泛点率可由下两式确定:

泛点率100%F b (4-35)

泛点率100%F T

(4-36)

上二式中:

L Z

—板上液体流径长度。对单溢流塔板, 2L d Z D W =-,其中D 为塔径,d W 为弓形降液管宽度;

b

A —板上液流面积,m 2。 2b T f A A A =-,其中T A 为塔截面积,f

A 为弓形降液管截面积; F

C —泛点负荷系数; K —物性系数。

2L d Z D W =-

=*=

2b T f

A A A =- =*=

ρ(γg)取物性系数K=,由气相密度Vρ(γg)在泛点负荷因数图(图)F C -V

查的泛点负荷系数F C=

图泛点负荷因数

泛点率1=%,泛点率2=%。可见两泛点率都在80%一下,故可知雾沫夹带量能

够满足e

<(液)/kg(气)的要求。

v

(5)塔板负荷性能图

1)雾沫夹带线

由式(4-35),按泛点率为80%计算如下:

Vs +*Ls*=1***

整理得+=

由上式可知雾沫夹带线为直线,则在操作范围内任取两个Ls值,依似算出

的Vs值列于表。据此,可做出雾沫夹带线。

表雾沫夹带线

雾沫夹带线

Ls(*103m3/s)

Vs(m3/s)

2)液泛线

由式(4-33),得:

00

22/3s 236002.84(1()1000() 5.340.153())2v s T w w

L w L E lw u L H h h g l h ερφρ??+++????+=+ 整理可得: V s 2=在操作范围内任取若干个Ls 值,依式计算出相应的Vs 值,

列于表。

表 液泛线

液泛线

Ls(*103m 3/s)

Vs(m 3/s)

3)液相负荷上限线

液相负荷上限线是液体中夹带的气泡得以分离,液体在降液管内的停留时间不应小于3~5s ,所以对液体的流量应有一个限制,其最大流量必须满足下述条件。

t= A f ×H T /L s ≥3~5s

取t=5s 为液体在降液管中的停留时间的下限,所对应的为液体的最大流量(Ls )max ,即液相负荷上限。依下式计算:

max ()5f T

S AH L = Ls=×5=*10-3 m 3/s ,液相负荷上限线与气相负荷无关的一条直线。

4)漏液线

对于F1型重阀,因F 0 <5 时,会发生严重漏液,故取F 0 =5时计算相应的

气相流量V Smin .。

Vs min .=4× ×8×5× m 3/s

5)液相负荷下限线

取堰上液层高度h ow =作为液相负荷下限条件,作出液相负荷下限线,该线为

与气相流量无关的竖直线。

×E(3600×Ls / lw) 2/3 =

过程设备设计

1压力容器主要由哪几部分组成分别起什么作用 压力容器由筒体,封头密封装置,开孔接管,支座,安全附件六大部件组成。筒体的作用:用以储存物料或完成化学反应所需要的主要压力空间。封头的作用:与筒体直接焊在一起,起到构成完整容器压力空间的作用。密封装置的作用:保证承压容器不泄漏开孔接管的作用:满足工艺要求和检验需要支座的作用:支撑并把压力容器固定在基础上安全附件的作用:保证压力容器的使用安全和测量,控制工作介质的参数 2固定式压力容器安全技术监察规程》在确定压力容器类别时,为什么不仅要根据压力高低,还要视压力与容积的乘积pV大小进行分类: 压力容器所蓄能量与其内部介质压力和介质体积密切相关:体积越大,压力越高,则储存的能量越大,发生爆破是产生的危害也就越大。而《固定式压力容器安全技术监察规程》在确定压力容器类别时是依据整体危害水平进行分类的,所以要这样划分. 3压力容器用钢的基本要求 较好的强度,良好的塑性,韧性,制造性能和与介质的相容性 4为什么要控制压力容器用钢的硫磷含量 硫能促进非金属夹杂物的形成,使塑性和韧性降低,磷能提高钢的强度,但会增加钢的脆性,特别是低温脆性,将硫磷等有害元素控制在较低的水平,就能大大提高钢材的纯净度,可以提高钢材的韧性,抗辐射脆化能力,改善抗应变时效性能,抗回火脆性和耐腐蚀性能 设计双鞍座卧式容器时,支座位置应该按照哪些原则确定试说明理由。 答:根据JB473规定,取A小于等于,否则容器外伸端将使支座界面的应力过大。因为当A=时,双支座跨距中间截面的最大弯矩和支座截面处的弯矩绝对值相等,使两个截面保持等强度。考虑到除弯矩以外的载荷,所以常区外圆筒的弯矩较小。所以取A小于等于。 当A满足小于等于时,最好使A小于等于。这是因为支座靠近封头可充分利用封头对支座处圆筒的加强作用。

过程设备设计计算题

计算题 2.1无力矩方程 应力 试用无力矩理论的基本方程,求解圆柱壳中的应力(壳体承受气体内压p ,壳体中面半径为R ,壳体厚度为t )。若壳体材料由20R[σ(b) =400Mpa,σ(s) =245MPa]改为16MnR[σ(b) =510MPa, σ(s) =345MPa]时,圆柱壳中的应力如何变化?为什么? 2.3 短圆筒 临界压力 1、 三个几何尺寸相同的承受周向外压的短圆筒,其材料分别为(MPa y 220=σ,3.0,1025=?=μMPa E ) 、铝合金(3.0,107.0,1105=?==μσMPa E MPa y )和铜(31.0,101.1,1005=?==μσMPa E MPa y ),试问哪一个圆筒的临界压力最大,为什么? 2.4临界压力 爆破压力 有一圆筒,其内径为1000mm ,壁厚为10mm ,长度为20m ,材料为20 R(3.0,102,245,4005 =?===μσσMPa E MPa MPa y b )。①在承受周向外压时,求其临界压力cr p 。②在承受内压力时,求其爆破压力b p ,并比较其结果。 2.5临界压力 有一圆筒,其内径为1000mm ,壁厚为10mm ,长度为20m ,材料为20 R(3.0,102,245,4005=?===μσσMPa E MPa MPa y b )。①在承受周向外压时,求其临界压力cr p 。②在承受内压力时,求其爆破压力b p ,并比较其结果。 2.6无力矩理论 应力 对一标准椭圆形封头(如图所示)进行应力测试。该封头中面处的长轴D =1000mm,厚度t=10mm,测得E 点(x=0)处的周向应力为50MPa 。此时,压力表A 指示数为1MPa ,压力表B 的指示数为2MPa ,试问哪一个压力表已失灵,为什么?

过程设备设计校核计算

钢制卧式容器计算结果 ============================================================== 筒体计算结果: **********内压圆筒校核********** 计算条件: 计算压力: 2.06 设计温度: 48.00 筒体内径: 1800.00 腐蚀裕量: 2.00 负偏差: 0.00 焊接接头系数: 1.00 材料: Q345R 输入厚度: 14.00 计算结果: 应力校核: 合格 许用压力: 2.50 σt= 155.53 [σ]t*Φ= 189.00 水压试验值: 2.5500 圆筒应力: 192.52 0.9*σs: 310.50 压力试验合格 提示: 参考厚度: 12.00 ========================================================== 左封头计算结果: **********内压椭圆封头校核********** 计算条件: 计算压力: 2.06 设计温度: 48.00 筒体内径: 1800.00 腐蚀裕量: 2.00 负偏差: 0.00 焊接接头系数: 1.00 曲面高度: 450.00 材料: Q345R 输入厚度: 14.00 计算结果: 应力校核: 合格 许用压力: 2.51 水压试验值: 2.5500 椭圆封头应力: 191.89 0.9*σs: 310.50 压力试验合格 提示: 参考厚度: 12.00 ========================================================== 右封头计算结果: **********内压椭圆封头校核********** 计算条件: 计算压力: 2.06 设计温度: 48.00 筒体内径: 1800.00 腐蚀裕量: 2.00 负偏差: 0.00 焊接接头系数: 1.00 曲面高度: 450.00 材料: Q345R 输入厚度: 14.00 计算结果: 应力校核: 合格 许用压力: 2.51 水压试验值: 2.5500 椭圆封头应力: 191.89

塔设备设计说明书

《化工设备机械基础》 塔设备设计 课程设计说明书 学院:木工学院 班级:林产化工0 8 学号: 姓名:万永燕郑舒元 分组:第四组 目录

前言 摘要 塔设备是化工、石油等工业中广泛使用的重要生产设备。塔设备的基本功能在于提供气、液两相以充分接触的机会,使质、热两种传递过程能够迅速有效地进行;还要能使接触之后的气、液两相及时分开,互不夹带。因此,蒸馏和吸收操作可在同样的设备中进行。根据塔内气液接触部件的结构型式,塔设备可分为板式塔与填料塔两大类。板式塔内沿塔高装有若干层塔板(或称塔盘),液体靠重力作用由顶部逐板流向塔底,并在各块板面上形成流动的液层;气体则靠压强差推动,由塔底向上依次穿过各塔板上的液层而流向塔顶。气、液两相在塔内进行逐级接触,两相的组成沿塔高呈阶梯式变化。填料塔内装有各种形式的固体填充物,即填料。液相由塔顶喷淋装置分布于填料层上,靠重力作用沿填料表面流下;气相则在压强差推动下穿过填料的间隙,由塔的一端流向另一端。气、液在填料的润湿表面上进行接触,其组成沿塔高连续地变化。目前在工业生产中,当处理量大时多采用板式塔,而当处理量较小时多采用填料塔。蒸馏操作的规模往往较大,所需塔径常达一米以上,故采用板式塔较多;吸收操作的规模一般较小,故采用填料塔较多。 板式塔为逐级接触式气液传质设备。在一个圆筒形的壳体内装有若干层按一定间距放置的水平塔板,塔板上开有很多筛孔,每层塔板靠塔壁处设有降液管。气液两相在塔板内进行逐级接触,两相的组成沿塔高呈阶梯式变化。板式塔的空塔气速很高,因而生产能力较大,塔板效率稳定,造价低,检修、清理方便 关键字 塔体、封头、裙座、。 第二章设计参数及要求 符号说明 Pc ----- 计算压力,MPa; Di ----- 圆筒或球壳内径,mm; [Pw]-----圆筒或球壳的最大允许工作压力,MPa; δ ----- 圆筒或球壳的计算厚度,mm; δn ----- 圆筒或球壳的名义厚度,mm; δe ----- 圆筒或球壳的有效厚度,mm;

化工设备简介——塔设备.

?化工行业设备大体分为动设备和静设备 静设备包括塔器、换热器、反应器、工业管式炉、气柜、储罐等,又称“化工设备”。 ?动设备是指有驱动机带动的转动设备(亦即有能源消耗的设备),如压缩机、风机、离心机、泵等。即“三机一泵”。又称 “化工机器”。 塔设备通过其内部构件使气(汽)-液相或液-液相之间的充分接触,从而使不同相之间进行质量传递和热量传递。 塔设备完成的单元操作通常有:精馏、吸收、解吸、萃取等,也可以进行介质冷却,气体的净制与干燥以及增湿等。是化工、石油、生物、制药等生产过程中广泛采用的设备。 化工生产对塔设备提出的要求: ?①工艺性能好——塔设备要使气、液两相尽可能充分接触,具有较大的接触面积和分离空间,以获得较高的传质效率。 ?②生产能力大——在满足工艺要求的前提下,要使塔截面上单位时间内物料的处理量大。 ?③操作稳定性好——当气液负荷产生波动时,仍能维持稳定、连续操作,且操作弹性好。 化工生产对塔设备提出的要求: ?④能量消耗小——要使流体通过塔设备时产生的阻力小、压降小,热量损失少,以降低塔设备的操作费用。

?⑤结构合理——塔设备内部结构既要满足生产的工艺要求,又要结构简单、便于制造、检修和日常维护。 ?⑥选材要合理——塔设备材料要根据介质特性和操作条件进行选择,既要满足使用要求,又要节省材料,减少设备投资费 用。 ?⑦安全可靠——在操作条件下,塔设备各受力构件均应具有足够的强度、刚度和稳定性,以确保生产的安全运行。 ?上述各项指标的重要性因不同设备而异,要同时满足所有要求很困难。因此,要根据传质种类、介质的物化性质和操作条件 的具体情况具体分析,抓住主要矛盾,合理确定塔设备的类型 和内部构件的结构形式,以满足不同的生产要求。 ?塔设备的种类很多,常见的分类: ⑴按操作压力分为加压塔、常压塔及减压塔 ⑵按单元操作分为精馏塔、吸收塔、萃取塔、反应塔等。 ⑶按塔内气、液接触构件的结构分为板式塔和填料塔。 ?目前工业生产中应用最广泛的是填料塔和板式塔。 填料塔是一种常用的气、液传质设备。它结构简单,塔内装有填料,其作用是使向下流动的液体与向上逆流的气体在填料层中充分接触达到传质的目的。填料塔造价低,阻力小,具有良好的耐腐蚀性能。 ?在生产中,当生产量较大时,一般采用板式塔。在板式塔中,塔内设有许多块塔盘,相邻两块塔盘有一定的距离,气、液两

过程设备设计5-8章思考题及答案

第三版过程设备设计思考题及答案(5-8) 5.储存设备 5.1 设计双鞍座卧式容器时,支座位置应该按照那些原则确定?试说明理由。 5.2 双鞍座卧式容器受力分析与外伸梁承受均布载荷有何相同何不同,试用剪力图和弯距图比较。 5.3 “扁塌”现象的原因是什么?如何防止这一现象出现? 5.4 双鞍座卧式容器设计中应计算那些应力?如何产生的? 5.5 鞍座包角对卧式容器筒体应力和鞍座自身强度有何影响? 5.6 在什么情况下应对卧式容器进行加强圈加强? 5.7 球形储罐有哪些特点?设计球罐时应考虑那些载荷?各种罐体型式有何特点? 5.8 球形储灌采用赤道正切柱式支座时,应遵循那些准则? 5.9 液化气体存储设备设计时如何考虑环境对它的影响? 6.换热设备 6.1换热设备有哪几种主要形式? 6.2间壁式换热器有哪几种主要形式?各有什么特点? 6.3管壳式换热器主要有哪几种形式? 6.4换热器流体诱导震动的主要原因有哪些?相应采取哪些防震措施? 6.5换热管与管板有哪几种连接方式?各有什么特点? 6.6换热设备传热强化可采用哪些途径来实现? 7.塔设备 7.1塔设备由那几部分组成?各部分的作用是什么? 7.2填料塔中液体分布器的作用是什么? 7.3试分析塔在正常操作、停工检修和压力试验等三种工况下的载荷? 7.4简述塔设备设计的基本步骤。 7.5塔设备振动的原因有哪些?如何预防振动? 7.6塔设备设计中,哪些危险界面需要校核轴向强度和稳定性?

8.反应设备 8.1反应设备有哪几种分类方法?简述几种常见的反应设备的特点。 8.2机械搅拌反应器主要由哪些零部件组成? 8.3搅拌容器的传热元件有哪几种?各有什么特点? 8.4 搅拌器在容器内的安装方法有哪几种?对于搅拌机顶插式中心安装的情况,其流型有什么特点? 8.5常见的搅拌器有哪几种?简述各自特点。 8.6涡轮式搅拌器在容器中的流型及其应用范围? 8.7 生物反应容器中选用的搅拌器时应考虑的因素? 8.8搅拌轴的设计需要考虑哪些因素? 8.9搅拌轴的密封装置有几种?各有什么特点? 思考题答案: 5.储存设备 思考题5.1 根据JB4731规定,取A小于等于0.2L,最大不得超过0.25L,否则容器外伸端将使支座界面的应力过大。因为当A=0.207L时,双支座跨距中间截面的最大弯距和支座截面处的弯距绝对值相等,使两个截面保持等强度。考虑到除弯距以外的载荷,所以常取外圆筒的弯距较小。所以取A小于等于0.2L。 当A满足小于等于0.2L时,最好使A小于等于0.5Rm(Rm为圆筒的平均半径)。这是因为支座靠近封头可充分利用封头对支座处圆筒的加强作用。 思考题5.2 (图见课本) 外伸梁的剪力和弯矩图与此图类似,只是在两端没有剪力和弯矩作用,两端的剪力和弯矩均为零。 思考题5.3 由于支座处截面受剪力作用而产生周向弯距,在周向弯距的作用下,导致支座处圆筒的上半部发生变形,产生所谓“扁塌”现象。

塔器设计时应具备那些知识点.doc

一、塔器的分类及用途 1.塔设备的作用: 2.塔器的分类:①按操作压力分②按单元操作分③按内件结构分:填料塔和 板式塔 3.填料塔的结构:①塔体②支座③人孔或手孔④吊柱及扶梯⑤操作平台 ⑥填料⑦除沫器,等等 4.板式塔的结构:①塔体②支座③人孔或手孔④吊柱及扶梯⑤操作平台⑥ 塔盘等。 5.填料塔使用场合:①分离程度要求高的情况②具有腐蚀性的物料的情况 ③容易发泡的物料的情况 6.板式塔使用场合:①液相负荷较小时②含固体颗粒,容易结垢,有结晶 的物料等。 二、填料塔 1.填料塔的特点: 2.填料分类:散装填料和规整填料 散装填料的分类:(1)环形填料(2)开孔环形填料(3)鞍形填料 (4)金属环矩鞍填料 规整填料分类:(1)丝网波纹填料(2)板波纹填料 填料的选用: 3.液体的分布器分类:(1)管式液体分布器:重力型和压力型(2)槽式液体 分布器(3)喷洒式液体分布器(4)盘式液体分布器 4.液体的分布器作用: 5.了解填料支撑的种类,结构 三、板式塔的种类 1、泡罩塔的结构 优点: 缺点: 2、浮阀塔的结构 优点: 缺点: 3、筛板塔的结构 优点: 缺点: 4、无降液管塔 5、导向筛板塔 6、斜喷型塔 四、板式塔的塔盘 1、板式塔的塔盘分类:溢流型和穿流型 2、板式塔的塔盘结构分类:①整块式塔盘:定距管式塔盘和重叠式塔盘 ②分块式塔盘 3、塔盘支撑结构种类,结构 五、塔设备的附件 1、除沫器的作用: 2、常用的除沫装置:丝网除沫器、折流板式除沫器、旋流板除沫器

3、吊柱的结构: 六、塔设备的计算 塔设备的各种载荷,计算中需要知道设计哪些载荷 塔设备标准的适用范围,什么样的设备,才算是塔设备 设计压力,设计温度如何考虑 材料的选择,负偏差,腐蚀裕量,最小厚度 1.了解塔设备的受力模型,塔设备受力模型的理论基础 地震受力模型 地震水平力如何计算, 地震垂直力如何计算;什么情况下考虑地震垂直作用力 地震弯矩如何计算 多质点的地震弯矩是如何叠加的 风载受力模型 风作用力的计算 风弯矩的计算 地震作用和风载作用是如何叠加的 2.塔设备强度计算包括哪些步骤 3.塔的固有周期,振型的概念是什么,又是如何参与到塔设备计算中的 七、塔设备零部件 1.裙座 1.1 裙座材料的选择,地脚螺栓的选择,许用应力的确定 1.2 裙座的类型,每种类型适用场合,每种结构有何要求 1.3 裙座与塔壳的连接形式,焊缝有和要求 1.4 排气孔,排气管和隔火圈的规格数量的确定 1.5 裙座上面引出管的结构如何设计 1.6检查孔规格,数量的确定 1.7地脚螺栓座的结构有哪些,每种结构尺寸如何确定的 2.塔壳 通常包括的元件有哪些,塔壳结构有哪些 3.静电接地板如何设置 4.地脚螺栓模板的用途,结构如何考虑 5.设置吊柱的目的(分段塔可不设置吊柱),结构尺寸的确定 6.塔设备吊耳如何选择,如何计算 八、设备法兰(专题讨论) 1)设备法兰的类型,以及各种类型的优缺点,各适用什么场合 2)设备法兰的标准号,在选用标准设备法兰需要注意什么 3)非标设备法兰如何计算,结构尺寸如何确定,怎样才算是最优设计 4)设备法兰材料有哪些,如何选择 5)设备法兰的制造,法兰的制造技术要求有哪些 九、螺栓和螺母, 1)螺栓材料选择,标准的选择,载荷计算

过程设备设计复习题及答案

《化工过程设备设计》期末复习题及答案 一、名词解释 1.外压容器 内外的压力差小于零的压力容器叫外压容器。 2.边缘应力 由于容器的结构不连续等因素造成其变形不协调而产生的附加应力为边缘应力。 3.基本风压值 以一般空旷平坦的地面、离地面10米高处,统计得到的30年一遇10分钟平均最大风速为标准计算而得的值叫基本风压值。 4.计算厚度 由计算公式而得的壁厚叫计算壁厚。 5.低压容器 对内压容器当其设计压力为 1.6MPa P 1MPa 0<≤.时为低压容器。 6.等面积补强法 在有效的补强范围内,开孔接管处的有效补强金属面积应大于或等于开孔时减小的金属面积。 7.回转壳体 一平面曲线绕同一平面的轴旋转一周形成的壳体为回转壳体。 8.公称压力 将压力容器所受到的压力分成若干个等级,这个规定的标准等级就是公称压力。 9.计算压力 在相应设计温度下,用以确定容器壁厚的压力为计算压力。 10.20R 20表示含碳量为0.2%,R 表示容器用钢。 11.设计压力 设定在容器顶部的最高压力,与相应的设计温度一起作为设计载荷,其值不低于工作压力。 12.强制式密封 完全依靠螺栓力压紧垫片使之密封为强制式密封。 13.强度 构件在外力作用下不至发生过大变形或断裂的能力。 14.临界压力

导致外压圆筒失稳的外压为临界压力。 15.主应力 在单元体的三对相互垂直的平面上只作用有正应力而无剪应力,这样的平面为主平面。在主平面上作用的正应力为主应力。 16.内压容器 内外压力差大于零的压力容器叫内压容器。 17.强度 构件抵抗外力作用不致发生过大变形或断裂的能力。 18.无力矩理论 因为容器的壁薄,所以可以不考虑弯矩的影响,近似的求得薄壳的应力,这种计算应力的理论为无力矩理论。 19.压力容器 内部含有压力流体的容器为压力容器。 20.薄膜应力 由无力矩理论求得的应力为薄膜应力。

塔设备设计

塔设备设计 设计规范 塔设计规范如表。 表设计规范 规范标准号 《石油化工塔形设备设计规范》SH 3098-2011 《石油化工塔盘设备设计规范》SH 3088-1998 《石油化工钢制塔、容器现场组焊施工工艺标准》SH3524-1999 《建筑抗震设计规范》GB 50011-2010 《建筑结构载荷规范》GB 50009-2001 设计要求 作为主要用于传质过程的塔设备,必须保证气液两相充分接触,以获得较高的传质效率;同时还应充分考虑设备的经济费用。为此,塔设备应满足以下基本要求: 1)气液两相充分接触,分离效率高; 2)生产能力大,即气液相处理量大; 3)操作弹性大,对气液相负荷波动具有较强的适应性,即能维持操作的稳定性,保持高的分离效率; 4)流体流动阻力小,流体通过塔设备的压降小; 5)结构简单可靠,材料耗用量少,制造安装容易,以降低设备投资,同时尽可能降低操作费用; 6)耐腐蚀和不易堵塞。 本厂有5个塔,我们对其进行了详细设计,并以精馏塔T201为例阐述详细

的计算和选型过程。 工艺参数设计 生产能力 根据Aspen模拟得到塔T201进料量为/h(泡点进料),塔顶采出量为/h,塔底物料流量为/h。 操作参数 精馏塔T101操作参数如表。 表精馏塔T101操作参数 操作压力回流比进料状态理论板数进料位置 泡点进料301 物料衡算和能量衡算 (1)物料衡算 选取整个塔作为衡算系统,则其共有3股物料:进料、塔顶出料、塔底出料,故有 =+(单位:kmol / h)。 (2)能量衡算 同样选取整个塔作为衡算系统,则能量可分为两部分:加热负荷和冷却负荷。由Aspen 模拟结果可知,加热负荷为,冷凝负荷为。 基本结构设计 塔设备选型原则 气液传质分离用的最多的为塔式设备。它分为板式塔和填料塔两大类。板式塔和填料塔均可用作蒸馏、吸收等气液传质过程,但两者各有优缺点,根据具体

塔设备设计说明书

塔设备设计说明书 Prepared on 24 November 2020

《化工设备机械基础》 塔设备设计 课程设计说明书 学院:木工学院 班级:林产化工0 8 学号: 姓名:万永燕郑舒元 分组:第四组 目录

前言 摘要 塔设备是化工、石油等工业中广泛使用的重要生产设备。塔设备的基本功能在于提供气、液两相以充分接触的机会,使质、热两种传递过程能够迅速有效地进行;还要能使接触之后的气、液两相及时分开,互不夹带。因此,蒸馏和吸收操作可在同样的设备中进行。根据塔内气液接触部件的结构型式,塔设备可分为板式塔与填料塔两大类。板式塔内沿塔高装有若干层塔板(或称塔盘),液体靠重力作用由顶部逐板流向塔底,并在各块板面上形成流动的液层;气体则靠压强差推动,由塔底向上依次穿过各塔板上的液层而流向塔顶。气、液两相在塔内进行逐级接触,两相的组成沿塔高呈阶梯式变化。填料塔内装有各种形式的固体填充物,即填料。液相由塔顶喷淋装置分布于填料层上,靠重力作用沿填料表面流下;气相则在压强差推动下穿过填料的间隙,由塔的一端流向另一端。气、液在填料的润湿表面上进行接触,其组成沿塔高连续地变化。目前在工业生产中,当处理量大时多采用板式塔,而当处理量较小时多采用填料塔。蒸馏操作的规模往往较大,所需塔径常达一米以上,故采用板式塔较多;吸收操作的规模一般较小,故采用填料塔较多。 板式塔为逐级接触式气液传质设备。在一个圆筒形的壳体内装有若干层按一定间距放置的水平塔板,塔板上开有很多筛孔,每层塔板靠塔壁处设有降液管。气液两相

在塔板内进行逐级接触,两相的组成沿塔高呈阶梯式变化。板式塔的空塔气速很高,因而生产能力较大,塔板效率稳定,造价低,检修、清理方便 关键字 塔体、封头、裙座、。 第二章设计参数及要求 符号说明 Pc ----- 计算压力,MPa; Di ----- 圆筒或球壳内径,mm; [Pw]-----圆筒或球壳的最大允许工作压力,MPa; δ ----- 圆筒或球壳的计算厚度,mm; δn ----- 圆筒或球壳的名义厚度,mm; δe ----- 圆筒或球壳的有效厚度,mm; t] [δ----- 圆筒或球壳材料在设计温度下的许用应力,MPa; t δ ------ 圆筒或球壳材料在设计温度下的计算应力,MPa; φ ------ 焊接接头系数; C ------- 厚度附加量,mm;

过程设备设计答案(简答题和计算题)

1. 压力容器主要由哪几部分组成?分别起什么作用?答:压力容器由筒体、封头、密封装置、开孔接管、支座、安全 附件六大部件组成。筒体的作用:用以储存物料或完成化学反应所需要的主要压力空间。封头的作用:与筒体直接焊在一起,起到构成完整容器压力空间的作用。密封装置的作用:保证承压容器不泄漏。开孔接管的作用:满足工艺要求和检修需要。支座的作用:支承并把压力容器固定在基础上。安全附件的作用:保证压力容器的使用安全和测量、控制工作介质的参数,保证压力容器的使用安全和工艺过程的正常进行。 2. 介质的毒性程度和易燃特性对压力容器的设计、制造、使用和管理有何影响? 答:介质毒性程度越高,压力容器爆炸或泄漏所造成的危害愈严重,对材料选用、制造、检验和管理的要求愈高。如Q235-A 或Q235-B 钢板不得用于制造毒性程度为极度或高度危害介质的压力容器;盛装毒性程度为极度或高度危害介质的容器制造时,碳素钢和低合金钢板应力逐张进行超声检测,整体必须进行焊后热处理,容器上的A 、B 类焊接接头还应进行100%射线或超声检测,且液压试验合格后还得进行气密性试验。而制造毒性程度为中度或轻度的容器,其要求要低得多。毒性程度对法兰的选用影响也甚大,主要体现在法兰的公称压力等级上,如内部介质为中度毒性危害,选用的管法兰的公称压力应不小于 1.0MPa ;内部介质为高度或极度毒性危害,选用的管法兰的公称压力应不小于 1.6MPa ,且还应尽量选用带颈对焊法兰等。易燃介质对压力容器的选材、设计、制造和管理等提出了较高的要求。如Q235-A ·F 不得用于易燃介质容器;Q235-A 不得用于制造液化石油气容器;易燃介质压力容器的所有焊缝(包括角焊缝)均应采用全焊透结构等。 3. 《压力容器安全技术监察规程》在确定压力容器类别时,为什么不仅要根据压力高低,还要视压力与容积的乘积pV 大小进行分类?答:因为pV 乘积值越大,则容器破裂时爆炸能量愈大,危害性也愈大,对容器的设计、制造、检验、使用和管理的要求愈高。 1. 一壳体成为回转薄壳轴对称问题的条件是什么?几何形状承受载荷边界支承材料性质均对旋转轴对称 2. 推导无力矩理论的基本方程时,在微元截取时,能否采用两个相邻的垂直于轴线的横截面代替教材中与经线垂直、同壳体正交的圆锥面?为什么?答:不能。如果采用两个相邻的垂直于轴线的横截面代替教材中与经线垂直、同壳体正交的圆锥面,这两截面与壳体的两表面相交后得到的两壳体表面间的距离大于实际壳体厚度,不是实际壳体厚度。建立的平衡方程的内力与这两截面正交,而不是与正交壳体两表面的平面正交,在该截面上存在正应力和剪应力,而不是只有正应力,使问题复杂化。 3. 试分析标准椭圆形封头采用长短轴之比a/b=2的原因。答:a/b=2时,椭圆形封头中的最大压应力和最大拉应力相 等,使椭圆形封头在同样壁厚的情况下承受的内压力最大,因此GB150称这种椭圆形封头为标准椭圆形封头 4. 何谓回转壳的不连续效应?不连续应力有哪些特征,其中β与 两个参数的物理意义是什么? 答:回转壳的不连续效应:附加力和力矩产生的变形在组合壳连接处附近较大,很快变小,对应的边缘应力也由较高值很快衰减下来,称为“不连续效应”或“边缘效应”。 不连续应力有两个特征:局部性和自限性。局部性:从边缘内力引起的应力的表达式可见,这些应力是 的函数随着距连接处距离的增大,很快衰减至0。不自限性:连续应力是由于毗邻壳体,在连接处的薄膜变形不相等,两壳体连接边缘的变形受到弹性约束所致,对于用塑性材料制造的壳体,当连接边缘的局部产生塑性变形,弹性约束开始缓解,变形不会连续发展,不连续应力也自动限制,这种性质称为不连续应力的自限性。β的物理意义:()Rt 4 2 13μβ-=反 映了材料性能和壳体几何尺寸对边缘效应影响范围。该值越大,边缘效应影响范围越小。Rt 的物理意义:该值与边缘效应影响范围的大小成正比。反映边缘效应影响范围的大小。 5. 单层厚壁圆筒承受内压时,其应力分布有哪些特征?当承受内压很高时,能否仅用增加壁厚来提高承载能力,为 什么?答:应力分布的特征:○1周向应力σθ及轴向应力σz 均为拉应力(正值),径向应力σr 为压应力(负值)。在数 值上有如下规律:内壁周向应力σ θ有最大值,其值为:1122max -+=K K p i θσ,而在外壁处减至最小,其值为122min -=K p i θσ,内外壁σθ之差为p i ;径向应力内壁处为-p i ,随着r 增加,径向应力绝对值逐渐减小,在外壁处 σr =0。○2轴向应力为一常量,沿壁厚均匀分布,且为周向应力与径向应力和的一半,即2 θσσσ+=r z 。○3除σz 外,其他应力沿厚度的不均匀程度与径比K 值有关。 x e β-

过程设备设计终极版思考题答案

第1章压力容器导言 思考题介质的毒性程度和易燃特性对压力容器的设计、制造、使用和管理有何影响? 答:我国《压力容器安全技术监察规程》根据整体危害水平对压力容器进行分类。压力容器破裂爆炸时产生的危害愈大,对压力容器的设计、制造、检验、使用和管理的要求也愈高。 设计压力容器时,依据化学介质的最高容许浓度,我国将化学介质分为极度危害(Ⅰ级)、高度危害(Ⅱ级)、中度危害(Ⅲ级)、轻度危害(Ⅳ级)等四个级别。介质毒性程度愈高,压力容器爆炸或泄漏所造成的危害愈严重。压力容器盛装的易燃介质主要指易燃气体或液化气体,盛装易燃介质的压力容器发生泄漏或爆炸时,往往会引起火灾或二次爆炸,造成更为严重的财产损失和人员伤亡。 因此,品种相同、压力与乘积大小相等的压力容器,其盛装介质的易燃特性和毒性程度愈高,则其潜在的危害也愈大,相应地,对其设计、制造、使用和管理也提出了更加严格的要求。例如,Q235-B钢板不得用于制造毒性程度为极度或高度危害介质的压力容器;盛装毒性程度为极度或高度危害介质的压力容器制造时,碳素钢和低合金板应逐张进行超声检测,整体必须进行焊后热处理,容器上的A、B类焊接接头还应进行100%射线或超声检测,且液压试验合格后还应进行气密性试验。而制造毒性程度为中度或轻度的容器,其要求要低得多。又如,易燃介质压力容器的所有焊缝均应采用全熔透结构 思考题压力容器主要由哪几部分组成?分别起什么作用? 答: 筒体:压力容器用以储存物料或完成化学反应所需要的主要压力空间,是压力容器的最主要的受压元件之一; 封头:有效保证密封,节省材料和减少加工制造的工作量; 密封装置:密封装置的可靠性很大程度上决定了压力容器能否正常、安全地运行; 开孔与接管:在压力容器的筒体或者封头上开设各种大小的孔或者安装接管,以及安装压力表、液面计、安全阀、测温仪等接管开孔,是为了工艺要求和

精馏塔及其主要附属设备设计论文

一、前言 精馏是利用液体混合物中各组分挥发度的不同并借助于多次部分汽化和部分冷凝达到轻重组分分离的方法,是工业上应用最广的液体混合物分离操作,广泛用于石油、化工、轻工、食品、冶金等部门。为此,掌握气液相平衡关系,熟悉各种塔型的操作特性,对选择、设计和分析分离过程中的各种参数是非常重要的。 本设计包括设计方案的选取,主要设备的工艺设计计算——物料衡算、操作线方程、设备的结构设计和工艺尺寸的设计计算,辅助设备的选型,工艺流程图,主要设备的工艺条件图等内容。通过对精馏塔的运算,调试塔的工艺流程、生产操作条件及物性参数是否合理,换热器和泵及各种接管尺寸的选用是否正确,以保证精馏过程的顺利进行并使效率尽可能的提高。 二.设计任务书 1.设计题目 精馏塔及其主要附属设备设计 2.工艺条件 生产能力:25吨/小时(料液) 年工作日:300工作日 原料组成:34%的二硫化碳和66%的四氯化碳(摩尔分率,下同) 产品组成:馏出液 97%的二硫化碳,釜液5%的二硫化碳 操作压力:塔顶压强为常压 进料温度:58℃ 进料状况:饱和液体泡点进料 加热方式:直接蒸汽加热 塔型:板式塔 3.设计内容 1.确定精馏装置流程; 2.工艺参数的确定; 基础数据的查取及估算,工艺过程的物料衡算及热量衡算,理论塔板效率,实际塔板数等。 3.主要设备的工艺尺寸计算; 板间距,塔径,塔高,溢流装置,塔盘布置等。 4.流体力学计算; 流体力学验算,操作负荷性能图及操作弹性。 5.主要附属设备设计计算及选型.

4.设计结果总汇 将精馏塔的工艺设计计算的结果列在精馏塔的工艺设计计算结果总 5.参考文献 列出在本次设计过程中所用到的文献名称、作者、出版社、出版日期。 三.精馏塔的设计计算 【主要基础数据】:

精馏塔设备简介

精馏塔的简要概述 精馏塔是用液体混合物中各组分挥发度的不同来分离其各液体组分的操作称为蒸馏,反复多次的蒸馏过程称为精馏,实现精馏操作的塔设备称为精馏塔,如常减压装置中的常压塔、减压塔等,可将原油分离为汽油、煤油、柴油及润滑油等;铂重整装置中的各种精馏塔,可以分离出苯、甲苯、二甲苯等。 化工生产对精馏塔设备的基本要求: 1、生产能力大,在较大的气、液负荷或波动时,仍能维持较高的传质速率。 2、流体阻力小,运转费用低。 3、能提供足够大的相间接触面积,使气、液两相在充分接触的情况下进行传质,达 到高分离效率。 4、结构合理,安全可靠,金属消耗量少,制造费用低。 5、不易堵塞,容易操作,便于安装、调节、检修。 精馏塔设备的工作过程: 1、溶液的沸腾。不同性质的液体在同一压力条件下沸点是不同的,所以两种以上相互溶解 的液体组成的溶液,在同一压力下各组分的沸点自然也是不相同的。沸点低的组分挥发度高,因此同一压力温度下,其在溶液中所形成的分子比例大于它在溶液中的分子比例,而沸点高的组分由于挥发度底,故在溶液蒸汽中的比例小于其在溶液中的比例,利用溶液的这一特性,通过在一定压力下加热的方式,可将溶液中各组分相互分离。 2、溶液的相平衡,在气液系统中,单位时间内液相汽化的分子数与气相冷凝的分子数相当 时,气、液两相达到一种动态平衡,这种状态称为气液的相平衡状态。这时候其系统内各状态参数,如温度、压力及组成等都是一定的,不随时间的改变而改变。 3、传质。在炼油、化工生产中,将物质借助于分子扩散的作用从一相转为另一相的过程称 为传质过程。液体混合物的蒸馏分离,利用液体溶剂的选择作用吸收气体混合物的某一组分,利用萃取等方法分离液体混合物的过程等,都属于传质过程。 4、蒸馏。通过加热、汽化、冷凝、冷却等过程使得液体混合物中不同沸点的组分相互分离 的方法称为蒸馏,若液体混合物中各组分沸点相差较大,加热时低沸点的组分优于高沸点的组分而大量汽化,则易于分离。精馏就是多次汽化与冷凝的一种复杂的蒸馏过程,也可以看成是蒸馏的串联使用。 5、原油的馏程。原油是烃类和非烃类组成的复杂的混合物,每一种成分都有其自身的特性, 但许多成分有沸点、密度等物理特性都很相近,若要将其逐一分离出来是很困难的,也是没有必要的。在实际生产中是将原油分为几个不同的沸点范围,加以利用,,如原油中沸点在40-205度之间的组分称为汽油;180-300度之间的组分称为煤油;250-350度之间的组分称为柴油,350-520度之间的组分称为润滑油,520度以上的组分为重质燃料油。这些温度范围称为馏程。 在化工生产中,无论是精馏还是吸收、解析或萃取,其目的都是为了使得混合液中不同馏程的组分得以分离。 精馏塔中板式塔的塔盘形式及特点: 目前板式塔的形式已有一百多种,在化工生产中最广泛应用的是泡罩塔、浮阀塔及筛板塔。 泡罩塔盘 泡罩塔盘是工业上应用最早的一种塔盘,它在塔盘板上开许多圆孔,每个孔上焊接一个短管,称为升气管,管上再罩一个帽子,称为泡罩,泡罩周围开有许多条形孔。工作时,液体从上层塔盘经过降液管流入本层塔盘,然后横向流过塔盘板,流入下一层塔盘。气体从下层塔盘上升进入升气管,通过环形通道再经过泡罩的条形孔流散的泡罩间的液层中。

过程设备设计 计算题

1. 试应用无力矩理论的基本方程,求解圆柱壳中的应力(壳体承受气体内压p ,壳体中面半径为R ,壳体厚度为t )。若壳体材料由20R ( MPa MPa s b 245,400==σσ)改为16MnR (MPa MPa s b 345,510==σσ)时, 圆柱壳中的应力如何变化?为什么? 解:○ 1求解圆柱壳中的应力 应力分量表示的微体和区域平衡方程式: δ σσθ φ z p R R - =+ 2 1 φσππ φs i n 220 t r dr rp F k r z k =-=? 圆筒壳体:R 1=∞,R 2=R ,p z =-p ,r k =R ,φ=π/2 t pR pr t pR k 2sin 2= = = φδσσφθ ○ 2壳体材料由20R 改为16MnR ,圆柱壳中的应力不变化。因为无力矩理论是力学上的静定问题,其基本方程是平衡方程,而且仅通过求解平衡方程就能得到应力解,不受材料性能常数的影响,所以圆柱壳中的应力分布和大小不受材料变化的影响。 2. 对一标准椭圆形封头(如图所示)进行应力测试。该封头中面处的长轴D=1000mm ,厚度t=10mm ,测得E 点(x=0)处的周向应力为50MPa 。此时,压力表A 指示数为1MPa ,压力表B 的指示数为2MPa ,试问哪一个压力表已失灵,为什么? 解:○ 1根据标准椭圆形封头的应力计算式计算E 的内压力: 标准椭圆形封头的长轴与短轴半径之比为2,即a/b=2,a=D/2=500mm 。在x=0处的应力式为: MPa a bt p bt pa 1500250 102222 2 =???== = θθσσ ○ 2从上面计算结果可见,容器内压力与压力表A 的一致,压力表B 已失灵。 3. 有一锥形底的圆筒形密闭容器,如图所示,试用无力矩理论求出锥形底壳中的最大薄膜应力σθ与σφ的值及相应位置。已知圆筒形容器中面半径R ,厚度t ;锥形底的半锥角α,厚度t ,内装有密度为ρ的液体,液面高度为H ,液面上承受气体压力p c 。 解:圆锥壳体:R 1=∞,R 2=r/cos α(α半锥顶角),p z =-[p c +ρg(H+x)],φ=π/2-α, ()() ()() ()()α αρααραρρσα σπρπ ρπφφcos 23cos 231 cos 23 2222 222222t xtg R g tg x xRtg R x g H p R rt g Rr r R x g H p R t r g Rr r R x g H p R F c c c -???? ??+-++= ++++= =+++ +=αxtg R r -=

甲醇合成塔设计说明书

甲醇合成塔设 计说明书 目录 第一章:设计方案的确定与说明- 3 一、设计方案的确定 (3) 二、方案说明 (3)

第二章:设计计算与校核 (4) 一、工艺计算 (4) 二、主要接管尺寸计算 (6) 三、合成塔的总体结构 (7) 第三章:设计计算结果 (9)

第一章:设计方案的确定与说明- 一、设计方案的确定 传统的甲醇合成塔主要有一下几种:①三管并流合成塔②单管并流合成塔③I.C.I四段冷激式合成塔④三菱瓦斯的四段冷激式合成塔⑤多段径向甲醇合成塔⑥Lurgi式甲醇合成⑦轴径向甲醇合成塔 三管并流合成塔,内件结构简单、操作稳定,但从气体并流换热的特点出发,能起到冷管作用的仅是外管,而内管只是担负了输送气体的任务。 单管并流合成塔,冷管的输气管和冷管的端部都连接在环管上,而冷管与输气管的气量和传热情况都不相同,前者的温度要高得多,如不考虑膨胀,当受热后,冷管与环管的连接部位会因热应力而断裂,使合成塔操作恶化甚至无法生产。 Lurgi式合成塔,合成塔既是反应器也是废热锅炉,合成甲醇所产生的反应热由管外的沸腾水带走,管外沸腾水与汽包维持自然循环,汽包是那个装有压力的控制器,以维持恒定的压力,因此管外沸腾水的温度是恒定的,于是管内催化剂的温度也几乎是恒定的,因此当操作条件发生变化时(如循环机故障等),催化剂也没有超温的危险,仍然可以安全运转。 综合以上各甲醇合成塔的优缺点,选择Lurgi式合成塔作为甲醇合成的设备。 二、方案说明 Lurgi式合成塔,合成塔既是反应器也是废热锅炉,列管中装填C306型催化剂,合成气在列管中反应,合成甲醇所产生的反应热由管外的215℃,25 bar 的沸腾水带走。冷却水的流量通过流量调节阀进行调整,以精确控制反应器的温度,使其符合工艺要求。

过程设备设计课后习题答案

习题 1. 一内压容器,设计(计算)压力为0.85MPa ,设计温度为50℃;圆筒内径D i =1200mm ,对接焊缝采用双面全熔透焊接接头,并进行局部无损检测;工作介质列毒性,非易燃,但对碳素钢、低合金钢有轻微腐蚀,腐蚀速率K ≤0.1mm/a ,设计寿命B=20年。试在Q2305-A ·F 、Q235-A 、16MnR 三种材料中选用两种作为圆筒材料,并分别计算圆筒厚度。 解:p c =1.85MPa ,D i =1000mm ,φ=0.85,C 2=0.1×20=2mm ;钢板为4.5~16mm 时,Q235-A 的[σ]t =113 MPa ,查表4-2,C 1=0.8mm ;钢板为6~16mm 时,16MnR 的[σ]t = 170 MPa ,查表4-2,C 1=0.8mm 。 材料为Q235-A 时: []mm C C p pD t 1412.524mm 28.0724.99.724mm 85 .185.011321000 85.12n 21n ==++=++≥=-???= -= δδδφσδ取 材料为16MnR 时: []mm C C p pD t 109.243mm 28.0443.6mm 443.685 .185.017021000 85.12n 21n ==++=++≥=-???= -= δδδφσδ取 2. 一顶部装有安全阀的卧式圆筒形储存容器,两端采用标准椭圆形封头,没有保冷措施;内装混合液化石油气,经测试其在50℃时的最大饱和蒸气压小于1.62 MPa (即50℃时丙烷饱和蒸气压);圆筒内径D i =2600mm ,筒长L=8000mm ;材料为16MnR ,腐蚀裕量C 2=2mm ,焊接接头系数φ=1.0,装量系数为0.9。试确定:○1各设计参数;○2该容器属第几类压力容器;○3圆筒和封头的厚度(不考虑支座的影响);○4水压试验时的压力,并进行应力校核。 解:○1p=p c =1.1×1.62=1.782MPa ,D i =2600mm ,C 2=2mm ,φ=1.0,钢板为6~16mm 时,16MnR 的[σ]t = 170 MPa ,σs =345 MPa ,查表4-2,C 1=0.8mm 。容积 3322m .689MPa 57474.42782.1,42.474m 86.24 4 ?=?==??= = pV L D V i π π ○ 2中压储存容器,储存易燃介质,且pV=75.689MPa ·m 3>10MPa ·m 3,属三类压力容器。 ○ 3圆筒的厚度 []mm C C p pD t 18mm 493.6128.0693.1313.693mm 62 .1117022600 782.12n 21n ==++=++≥=-???= -= δδδφσδ取 标准椭圆形封头的厚度 []mm C C p pD t 18mm 528.6128.0728.1313.728mm 62 .15.0117022600 782.15.02n 21n ==++=++≥=?-???= -= δδδφσδ取

关于塔设备各结构的详细介绍

关于塔设备各结构的详细介绍 根据塔类设备在炼油工艺及化工生产过程中作用的不同,.采用结构的不同,操作压力的不同,塔设备可分为: (1)按用途及在工艺过程中的作用可分为:分馏塔、吸收塔、解收塔、抽提塔、汽提塔、稳定塔、水洗塔和于燥塔等; (2)按内件结构可分为:板式塔、填料塔和转盘塔等;. (3)按压力可分为:常压塔、减压塔和加压塔等。 塔设备包括塔体、端盖、支座、接管、人孔或手孔、物料进出口、塔内附件、塔外附件等。 塔体是塔设备的外壳,用钢板卷焊制成,其直径随处理量及操作条件而定。常见的塔休多为等直径.、等壁厚的圆筒。随着生产装置的大型化,由于工艺需要和节约原材料,也有各种用途的不等直径,不等壁厚的大型塔设备用于炼油化工生产中。塔的高度主要取决于对分馏产品的要求,炼油厂的分馏塔一般为十几米到几十米高。.塔体壳壁的厚度除满足工艺条件下的强度要求外,还应校核风力、地震、偏心载荷所引起的强度和刚度,以及水压试验、吊装、运输、开停工的悄况下塔体的强度及稳定性。另外.对塔体安装的垂直度和弯曲度都有一定的要求。 端盖是由钢板压制焊接而成,一般塔设备多采用标准椭圆形端盖。减压塔多为半球形端盖,以有利承受外部较高的压强,而且可利用端盖自身做为破沫空间,以节省金属。 塔体支座是支承塔体并与基础连接的部件,一般采用裙座.。其高度根据工艺要求及管线布置要求所决定。由于炼油厂的塔设备重量较大,高度也较高,露

天安置经常受到风力以及地震等载荷作用,因此,它应具有足够的强度和刚度。 接管是用以连接工艺管线,使之与相关设备连成封闭的系统,有物料进、出口接管、进气、排气接管,侧线进、出口管,安装检修用人孔、手孔接管,各种化工仪表接管等。人孔和手孔是为了安装检修的需要而设置的。 板式塔内件由塔盘、降液管、溢流堰、紧固件,支承件及涂沫网装置等组成。 填料塔内件由喷淋装置,填料,栅板,液休再分配器等组成。 塔体内件是完成工艺过程,保证产品质量的主要部件之一。 塔设备外部附件主要包括吊柱、支承保温材料的支承圈以及平台扶梯等。

相关文档
最新文档