2.1.1 不等式的基本性质(含答案)

合集下载

不等式的性质(1)(2)

不等式的性质(1)(2)

2.1不等式的基本性质1(导学案)组卷人:苏卫国审卷人:刘金涛姓名:学号:一、学习目标:1、学会用两个实数差的符号来规定两个实数大小2、掌握不等式的基本性质,并能加以证明;二、复习旧知:1、a>b是a-b>0的条件;a=b是 a-b=0的条件;a<b是a-b<0的条件。

以上是证明不等式性质的基础。

2、在初中我们学习了以下等式的性质:a=b,b=c⇒a=c;a=b,c=d⇒a+c=b+d;a=b⇒ac=bc。

三、新课导学:1.通过类比等式的性质,得到关于以下不等式的三个结论;请你判断它们是否正确,正确的加以证明;错误的举反例。

结论1 如果a>b,b>c,那么a>c。

结论2 如果a>b,c>d,那么a+c>b+d。

结论3 如果a>b,那么ac>bc。

同学们;结论3是否正确如果不正确,你能改变条件,让它成为正确命题吗?试试看:通过以上结论的推敲请同学们根据课本自己归纳不等式的基本性质性质1性质2性质3性质4你能给它们分别起一个名字吗?试试看。

利用以上性质证明下面结论:性质(5)如果a >b >0,c >d >0,那么ac >bd 。

性质(6)如果a >b >0,那么0ba 11<<。

四、课堂探究例1.判断下列命题的真假。

(1)若a >b ,那么ac >2bc 2。

(2)若ac >2bc 2,那么a >b 。

(3)若a >b ,c >d ,那么a-c >b-d 。

(4)若cda b <,那么ad bc <。

例2.提问:判断以下两个命题的真假:如果是真命题,请加以证明;如果是假命题,请举出反例。

(1)如果a >b ,c >d ,那么ac >bd 。

变式:a >b 0>,c >d 0>,那么ac >bd 。

北师大版八年级数学下册第一讲 不等式的基本性质(基础讲解)(含解析)

北师大版八年级数学下册第一讲 不等式的基本性质(基础讲解)(含解析)

第一讲不等式的基本性质【学习目标】1.了解不等式的意义,认识不等式和等式都可以用来刻画现实世界中的数量关系.2. 知道不等式解集的概念并会在数轴上表示解集.3. 理解不等式的三条基本性质,并会简单应用.【知识总结】一、不等式的概念一般地,用“<”、“>”、“≤”或“≥”表示大小关系的式子,叫做不等式.用“≠”表示不等关系的式子也是不等式.(1)不等号“<”或“>”表示不等关系,它们具有方向性,不等号的开口所对的数较大.(2)五种不等号的读法及其意义:(3)有些不等式中不含未知数,如3<4,-1>-2;有些不等式中含有未知数,如2x>5中,x表示未知数,对于含有未知数的不等式,当未知数取某些值时,不等式的左、右两边符合不等号所表示的大小关系,我们说不等式成立,否则,不等式不成立.二、不等式的解及解集1.不等式的解:能使不等式成立的未知数的值,叫做不等式的解.2.不等式的解集:对于一个含有未知数的不等式,它的所有解组成这个不等式的解集.不等式的解是具体的未知数的值,不是一个范围不等式的解集是一个集合,是一个范围.其含义:①解集中的每一个数值都能使不等式成立②能够使不等式成立的所有数值都在解集中3.不等式的解集的表示方法(1)用最简的不等式表示:一般地,一个含有未知数的不等式有无数个解,其解集是一个范围,这个范围可用最简单的不等式来表示.如:不等式x-2≤6的解集为x≤8.(2)用数轴表示:不等式的解集可以在数轴上直观地表示出来,形象地表明不等式的无限个解.如图所示:要点诠释:借助数轴可以将不等式的解集直观地表示出来,在应用数轴表示不等式的解集时,要注意两个“确定”:一是确定“边界点”,二是确定方向.(1)确定“边界点”:若边界点是不等式的解,则用实心圆点,若边界点不是不等式的解,则用空心圆圈;(2)确定“方向”:对边界点a而言,x>a或x≥a向右画;对边界点a而言,x<a或x≤a 向左画.注意:在表示a的点上画空心圆圈,表示不包括这一点.三、不等式的基本性质不等式的基本性质1:不等式两边加(或减)同一个数(或式子),不等号的方向不变.用式子表示:如果a>b,那么a±c>b±c.不等式的基本性质2:不等式两边都乘(或除以)同一个正数,不等号的方向不变.用式子表示:如果a>b,c>0,那么ac>bc(或a bc c >).不等式的基本性质3:不等式两边乘(或除以)同一个负数,不等号的方向改变.用式子表示:如果a>b,c<0,那么ac<bc(或a bc c <).要点诠释:不等式的基本性质的掌握注意以下几点:(1)不等式的基本性质是对不等式变形的重要依据,是学习不等式的基础,它与等式的两条性质既有联系,又有区别,注意总结、比较、体会.(2)运用不等式的性质对不等式进行变形时,要特别注意性质2和性质3的区别,在乘(或除以)同一个数时,必须先弄清这个数是正数还是负数,如果是负数,不等号的方向要改变. 【典型例题】【类型】一、不等式的概念例1.给出下列表达式:①()a b c ab ac +=+;②20-<;③5x ≠;④21a b >+;⑤222x xy y -+;⑥236x ->,其中属于不等式的是______.(填序号) 【答案】②③④⑥【分析】根据不等式的定义判断即可. 解:①a (b+c )=a b+ac 是等式;②-2<0是用不等号连接的式子,故是不等式; ③x≠5是用不等号连接的式子,故是不等式; ④2a >b+1是用不等号连接的式子,故是不等式; ⑤x 2-2xy+y 2是代数式;⑥2x-3>6是用不等号连接的式子,故是不等式, 故答案为:②③④⑥.【点拨】本题考查的是不等式的定义,即用“>”或“<”号表示大小关系的式子,叫做不等式,用“≠”号表示不等关系的式子也是不等式.【训练】下列式子:①-1>2;②3x≥-1;③x -3;④s =vt ;⑤3x -4<2y ;⑥3x -5=2x +2;⑦a 2+2≥0;⑧a 2+b 2≠c 2.其中是不等式的是___________________.(只填序号) 【答案】①②⑤⑦⑧ 【解析】【分析】根据不等式的定义即可得出结论.解:根据不等式的定义:①-1>2,②3x ≥-1,⑤3x -4<2y ,⑦a 2+2≥0,⑧a 2+b 2≠c 2是不等式;③x -3,④s =vt ,⑥3x -5=2x +2不是不等式. 故答案为:①②⑤⑦⑧.【点拨】本题考查了不等式的概念.掌握不等式的概念是解题的基础. 【训练】下列式子属于不等式的是_______________.① 50-< ② 2x 3= ③ 3x 12-> ④4x 2y 0-≤ ⑤ 2x 3x 20-+> ⑥ x 2y - ⑦ 57x ≠ ⑧54< ⑨ x y 0+≥【答案】①③④⑤⑦⑧⑨【解析】【分析】根据不等式的概念即可解题. 解:∵不等式要求用不等号连接 ∴排除②⑥∴不等式的有①③④⑤⑦⑧⑨【点拨】本题考查了不等式的识别,属于简单题,熟悉不等式的概念是解题关键.【类型】二、不等式的解及解集例2.(2018·安徽全国·七年级单元测试)下列数值中哪些是不等式3x-1≥5的解?哪些不是? 100, 98, 51, 12, 2, 0, -1, -3, -5.【答案】100, 98, 51, 12, 2是不等式3x-1≥5的解;0,-1,-3,-5不是不等式3x-1≥5的解. 【解析】试题分析:把上述各数分别代入不等式315x -≥的左边计算出左边的值,看是否大于或等于5即可. 试题解析:∵在不等式315x -≥中,当100x =时,左边=312995x -=>; 当98x =时,左边=312935x -=>; 当51x =时,左边=311525x -=>; 当12x =时,左边=31355x -=>; 当2x =时,左边=315x -=;当0x =时,左边=3115x -=-<; 当1x =-时,左边=3145x -=-<; 当3x =-时,左边=31105x -=-<; 当5x =-时,左边=31165x -=-<;∴上述各数中,100,98,51,12,2是不等式315x -≥的解;0,-1,-3,-5不是不等式315x -≥的解. 例3. 把下列不等式的解集在数轴上表示出来. (1)x≥-3; (2)x >-1; (3)x≤3;(4)x<-32. 【答案】(1)(2) (3)(4)【解析】将上述不等式的解集规范的表示在数轴上即可. 试题解析:(1)将3x ≥-表示在数轴上为:(2)将1x >-表示在数轴上为:(3)将3x ≤表示在数轴上为:(4)将32x <-表示在数轴上为:点拨:将不等式的解集表示在数轴上时,需注意两点:(1)“大于(大于或等于)向右,小于(小于或等于)向左”;(2)“x a >或(x a <)时”,数轴上表示数“a ”的点用“空心圆圈”,“x a ≥(或x a ≤)时”,数轴上表示数“a ”的点用“实心圆点”. 【训练】在数轴上表示不等式﹣3≤x <6的解集和x 的下列值:﹣4,﹣2,0,142,7,并利用数轴说明x 的这些数值中,哪些满足不等式﹣3≤x <6,哪些不满足? 【答案】﹣2,0,142满足不等式;﹣4,7不满足不等式 【分析】根据“大于向右,小于向左,包括端点用实心,不包括端点用空心”的原则将不等式的解集和x 的下列值:﹣4,﹣2,0,142,7在数轴上表示出来,这些值如果在解集范围内则表示满足不等式,否则就是不满足不等式.解:根据图可知:x 的下列值:﹣2,0,142满足不等式;x 的下列值:﹣4,7不满足不等式.【点拨】不等式的解集在数轴上表示的方法:把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.【类型】三、不等式的性质例4.根据不等式的基本性质,把下列不等式化成x a >或x a <的形式.(1)x 15-<. (2)4x 13-≥. (3)1x 142-+≥. (4)4x 10-<-. 【答案】(1)x 6<;(2)x 1≥;(3)x 6≤-;(4)5x 2>.【分析】(1)利用不等式的性质将两边加上1即可求解;(2)利用不等式的性质先将两边加上1,再两边同除以4即可求解; (3)利用不等式的性质先将两边减去1,再两边同除以12-即可求解; (3)利用不等式的性质将两边同除以-4即可求解; 解:(1)x 15-<,两边加上1得:x 1151-+<+, 解得:x 6<; (2)4x 13-≥,两边加上1得:4x 1131-+≥+,即4x 4≥, 两边除以4得:x 1≥; (3)1x 142-+≥, 两边减去1得:1x 11412-+-≥-,即1x 32-≥, 两边除以12-得:x 6≤-; (4)4x 10-<-, 两边除以4-得:5x 2>. 【点拨】本题考查不等式的性质,解题的关键是熟练掌握不等式的性质.【训练】根据不等式的基本性质,把下列不等式化成“x>a”或“x<a”的形式:(1)5x>4x+8 (2)x+2<-1 (3)-23x>-1(4)10-x>0 (5)-15x<-2 (6)3x+5<0【答案】(1)x>8;(2)x<-3;(3)x<32;(4)x<10;(5)x>10;(6)x<-53.【分析】根据不等式的基本性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变;(2)不等式两边乘(或除以)同一个正数,不等号的方向不变;(3)不等式两边乘(或除以)同一个负数,不等号的方向改变;依次分析各小题即可.解:(1)根据不等式性质1,不等式两边都减4x,不等号的方向不变,得5x-4x>4x+8-4x,即x>8;(2)根据不等式性质1,不等式两边都减去2,不等号的方向不变,得x+2-2<-1-2即x<-3;(3)根据不等式性质3,不等式两边同除以-23,不等号的方向改变,得-23x÷(-23)<-1÷(-23)即x<32;(4)根据不等式性质1,不等式两边同减10,不等号的方向不变,得10-x-10>0-10即-x>-10,再根据不等式性质3,不等式两边同除以-1,不等号的方向改变,得x<10;(5)根据不等式性质3,不等式两边同乘以-5,不等号的方向改变,得-15x·(-5)>-2×(-5)即x>10;(6)根据不等式性质1,不等式两边都减去5,不等号的方向不变得3x+5-5<0-5即3x<-5,再根据不等式性质2,不等式两边同除以3,不等号的方向不变,得3x÷3<-5÷3即x<-53.【点拨】本题主要考查了不等式的基本性质,本题重在考查不等式的三条基本性质,特别是性质3,两边同乘以(•或除以)同一个负数时,一定要改变不等号的方向!•这条性质是初学者最易出错也经常出错的地方.。

高中试卷-专题2.1 等式与不等式性质解析版)(含答案)

高中试卷-专题2.1 等式与不等式性质解析版)(含答案)

专题2.1 等式与不等式性质知识点①等式性质1.如果a =b ,那么b =a .2.如果a =b ,b =c ,那么a =c .3.如果a =b ,那么a ±c =b ±c .4.如果a =b ,那么ac =bc .5.如果a =b ,c ≠0,那么a c =bc.知识点②不等式性质性质别名性质内容注意1对称性a >b ⇔b <a ⇔2传递性a >b ,b >c ⇒a >c 不可逆3可加性a >b ⇔a +c >b +c 可逆4可乘性a >b ,c >0⇒ac >bc a >b ,c <0⇒ac <bc c 的符号5同向可加性a >b ,c >d ⇒a +c >b +d 同向6同向同正可乘性a >b >0,c >d >0⇒ac >bd 同向同正7可乘方性a >b >0⇒a n >b n (n ∈N ,n ≥2)同正知识点③两个实数比较大小的方法1.作差法:⎪⎩⎪⎨⎧<⇔<-=⇔=->⇔>-b a b a ba b a b a b a 0002.作商法:()()()⎪⎪⎪⎩⎪⎪⎪⎨⎧>∈<⇔<≠∈=⇔=>∈>⇔>010101b R a b a b ab R a b a b ab R a b a b a,,,知识点④常用结论1.倒数性质的几个必备结论(1)a >b ,ab >0⇒1a <1b ;(2)a <0<b ⇒1a <1b;(3)a >b >0,0<c <d ⇒a c >bd;(4)0<a <x <b 或a <x <b <0⇒1b <1x <1a.2.两个重要不等式若a >b >0,m >0,则:(1)b a <b +m a +m ;b a >b -m a -m (b -m >0);(2)a b >a +m b +m ;a b <a -mb -m(b -m>0).一、单选题1.已知R a b c d ∈、、、,下列命题正确的是( )A .若a b >,则ac bc >B .若,a b c d >>,则ac bd >C .若a b >,则11a b<D .若11||||a b <,则||||a b >【来源】四川省乐山市2021-2022学年高一下学期期末数学试题【答案】D【解析】对于A ,当0c £时不成立;对于B ,当1,2,0,1a b c d ==-==-时,显然不成立;对于C ,当1,2a b ==-时不成立;对于D ,因为110||||<<a b ,所以有||||0a b >>,即||||a b >成立.故选:D .2.下列命题正确的是( )A .22,0a b c ac bc >≠⇒>B .a b <⇒<C .a b >且c d a c b d <⇒+>+D .22a b a b >⇒>【答案】A【解析】对于选项A ,∵0c ≠,∴20c >,又a b >,22ac bc \> 成立,故A 正确;对于选项B ,当0a <,0b >时,结论明显错误,故B 错误对于选项C ,当4,3,1,2a b c d ====时,a c b d +=+,所以结论错误,故C 错误对于选项D ,当1,2a b ==-时,22a b <,所以结论错误,故D 错误故选:A3.下列命题正确的是( )A .若ac bc >,则a b >B .若ac bc =,则a b =C .若a b >,则11a b<D .若22ac bc >,则a b>【答案】D【解析】对于A ,若0c <,由ac bc >可得:a b <,A 错误;对于B ,若0c =,则0ac bc ==,此时a b =未必成立,B 错误;对于C ,当0a b >>时,110a b>>,C 错误;对于D ,当22ac bc >时,由不等式性质知:a b >,D 正确.故选:D.4.已知04x <<,06y <<,则2x y -的取值范围是( )A .(2,0)-B .(0,2)C .(8,6)-D .(6,8)-【来源】第07讲 不等式的基本性质-【暑假自学课】2022年新高一数学暑假精品课(苏教版2019必修第一册)【答案】D【解析】解:因为04x <<,06y <<,所以028x <<,60y -<-<,所以628x y -<-<,所以2x y -的取值范围是(6,8)-,故选:D.5.如果,,a b c ∈R ,且0abc ≠,那么下列命题中正确的是( )A .若11a b<,则a b >B .若ac bc >,则a b >C .若33a b >,则11a b<D .若a b >,则22a b>【来源】山西省运城市2021-2022学年高一上学期期末数学试题【答案】D【解析】对于A ,若1a =-,1b =,满足11a b<,但a b >不成立,错误;对于B ,若0c <,则a b <,错误;对于C ,若2a =,1b =-,满足33a b >,但11a b<不成立,错误;对于D ,由指数函数的单调性知,正确.故选:D.6.若,,a b c ∈R ,则下列说法正确的是( )A .若a b >,则22a b >B .若c a <,则cb ab<C .若0ab ≠且a b <,则11a b>D .若a b >,则a c b c+>+【来源】新疆巴音州轮台县三校2021-2022学年高一上学期期末联考数学试题【答案】D【解析】对A ,取1,2a b ==-,则有22a b <,A 错;对B ,取0b =,则有cb ab =,B 错;对C ,取1,2a b =-=,则有11a b<,C 错;对D ,若a b >,则a c b c +>+正确;故选:D7.设a >b >1,y 12311,,11b b b y y a a a +-===+-,则y 1,y 2,y 3的大小关系是( )A .y 1<y 2<y 3B .y 2<y 1<y 3C .y 3<y 2<y 1D .y 2<y 3<y 1【来源】专题2.1 等式性质与不等式性质(4类必考点)【答案】C【解析】解:由a >b >1,有y 1﹣y 2()()1111b b ab a ab b a ba a a a a a ++---=-==+++>0,即y 1>y 2,由a >b >1,有y 2﹣y 3()()1111b b ab b ab a a ba a a a a a ---+-=-==---0,即y 2>y 3,所以y 1>y 2>y 3,故选:C.8.若,,,R a b c d ∈,则下列说法正确的是( )A .若a b >,c d >,则ac bd >B .若a b >,则22ac bc >C .若a b >,则a c b c->-D .若0a b <<,则1a<1b【来源】四川省成都市金牛区2021-2022学年高一下学期期末考试数学(文科)试题【答案】C【解析】对于A ,若2,1,1,2a b c d ===-=-,则2ac bd ==-,所以A 错误,对于B ,若0c =,则220ac bc ==,所以B 错误,对于C ,因为a b >,所以由不等式的性质可得a c b c ->-,所以C 正确,对于D ,因为0a b <<,所以0ab >,所以a b ab ab<,即11b a <,所以D 错误,故选:C9.若0a b >>,则下列不等式正确的是( )A .ac bc>B .33a b >C .a b->-D .a b ab+<【来源】四川省绵阳市南山中学2021-2022学年高一下学期6月月考数学试题【答案】B【解析】对于A ,若0c =,则ac bc =,所以A 错误,对于B ,因为0a b >>,所以330a b >>,所以B 正确,对于C ,因为0a b >>,所以a b -<-,所以C 错误,对于D ,若2,1a b ==,则32a b ab +=>=,所以D 错误,故选:B10.对任意实数a b c d ,,,,命题:①若,0a b c >≠,则ac bc >;②若a b >,则22ac bc >;③若22ac bc >,则a b >.④若33,0a b ab ><,则11a b>,其中真命题的个数是( )A .0B .1C .2D .3【来源】四川省自贡市2021-2022学年高一下学期期末考试数学(文)试题【答案】C【解析】对于①,若a b >,0c <,则ac bc <,①错;对于②,若0c =,则22ac bc =,②错;对于③,若22ac bc >,则20c >,由不等式的基本性质可得a b >,③对;对于④,若33,0a b ab ><,则0a b >>,则110a b>>,④对故选:C11.若0a b <<,则下列不等式不能成立的是( )A .22a b >B .11a b>C .a b>D .11a b a>-【来源】第05讲 等式性质与不等式性质-【暑假自学课】2022年高一数学暑假精品课(人教版2019必修第一册)【答案】D【解析】因为0a b <<,所以0a b +<,0a b -<,0ab >,0b a ->,又22()()a b a b a b -=-+,所以220a b ->,所以22a b >成立,110b aa b ab --=>,所以11a b>,0a b a b -=-+>,所以a b >,取2,1a b =-=-可得11=121a b =---+,112a =-,11a b a <-,所以11a b a>-不成立,故选:D.12.已知a b <,3x a b =-,2y a b a =-,则,x y 的大小关系为( )A .x y >B .x y <C .x y=D .无法确定【答案】B【解析】()()3221x y a b a b a a b a -=--+=-+,因为a b <,所以0a b -<,又210a +>,所以2()(1)0a b a -+<,即x y <.故选:B13.已知0,0,0a b c d e >><<<,则下述一定正确的是( )A .ae be >B .22c d <C .0e e a c d b+>--D .()ea d c b->【来源】山东省青岛市2021-2022学年高一上学期期末数学试题【答案】C【解析】解:因为0,0,0a b c d e >><<<,所以ae be <,22c d >,故AB 错误;0c d ->->,所以0a c b d ->->,所以11a c b d<--,所以e ea cb d >--,即0e ea c d b+>--,故C 正确;对于D ,若12,1,1,,12a b c d e ===-=-=-时,则()2ead c b-==,故D 错误.故选:C.14.下列说法中,错误的是( )A .若22a b >,0ab >,则11a b <B .若22a b c c >,则a b >C .若0b a >>,0m >,则a m ab m b+>+D .若a b >,c d <,则a c b d->-【来源】广东省广州市越秀区2021-2022学年高一上学期期末数学试题【答案】A【解析】对A ,取3,2a b =-=-,所以11a b>,故错误;对B ,由20c >,22a b c c >,所以a b >,故正确;对C,()()()m b a a m a ab bm ab am b m b b b m b b m -++---==+×+×+,由0b a >>,0m >,所以()()0m b a b b m ->×+,所以a m ab m b+>+,故正确;对D ,由c d <,所以c d ->-,又a b >,所以a c b d ->-故选:A15.已知0a b >>,则( )A .22ac bc >B .22a ab b >>C .11a b>D 的取值范围是[)2,+¥【来源】山西省吕梁市2021-2022学年高一上学期期末数学试题【答案】B【解析】当0c =时,22ac bc >不成立,A 错误.因为0a b >>,所以22a ab b >>,11b a>,B 正确,C 错误.当0a >,0b >时,a b +³a b =时,等号成立,而a b >,D 错误.故选:B16.对于任意实数a ,b ,c ,d ,下列命题中的假命题是( )A .若22ac bc >,则a b >B .若0,0bc ad bd -³>,则a b c db d++£C .若0a b <<,则b aa b>D .若11,a b a b>>,则0,0a b ><【答案】C【解析】对于A :若22ac bc >,则20c >,所以a b >,故A 正确;对于B :若0bc ad -³,0bd >,则0bc ad bd -³,化为c ad b ³,可得a b c d b d++£,故B 正确;对于C :若0a b <<,所以220a b >>,0ab >,则220b a b a a b ab --=<,故b a a b<,故C 错误;对于D :若a b >,11a b>,则110b aa b ab --=>,所以0ab <,所以0a >,0b <,故D正确;故选:C。

2.1 不等式的基本性质课件-2023届广东省高职高考数学第一轮复习第二章不等式

2.1 不等式的基本性质课件-2023届广东省高职高考数学第一轮复习第二章不等式

A.x2>y2
B.ax>ay
C.x+5>y+5
D.x+2y>3y
【解析】 B选项中,当a=0时,ax=ay,故选项B不成立.
2.a、b、c 为实数,且 c≠0,下列命题中正确的是( D ) A.a>b⇒ac>bc B.ac<bc⇒a<b C.a>b⇒1a<1b D.a>b⇒ca2>cb2 【解析】 利用不等式的性质或举反例进行判断,取 a=2、b=-1、c=-1 来检验,对 A 有ac<bc,故 A 错;对 B 有 a>b,故 B 错;对 C 有a1>1b,故 C 错;对 D,∵ c≠0,∴ c12>0,由不等式的性质知,选项 D 正确.
【融会贯通】 比较大小. (1)( 2+ 3)2 与 4+2 6; (2)2x2+5x+6 与(x+3)(x+2),x∈R. 解:(1)∵( 2+ 3)2-(4+2 6)=(5+2 6)-(4+2 6)=1>0,∴( 2+ 3)2 >(4+2 6). (2)∵(2x2+5x+6)-(x+3)(x+2)=(2x2+5x+6)-(x2+5x+6)=x2≥0, ∴(2x2+5x+6)≥(x+3)(x+2).
2.1 不等式的基本性质
知识点1 知识点2 知识点3 知识点4 知识点5
1.不等式的概念 用不等号“≠、>、<、≥、≤”表示不等关系的式子叫做不等 式.如:f(x)>g(x),f(x)≤g(x),等等.
知识点1 知识点2 知识点3 知识点4 知识点5
2.几个恒不等式 任意实数的平方不小于0,即a2≥0. 任意实数的绝对值不小于0,即|a|≥0.
B.必要非充分条件
C.充要条件
D.既非充分也非必要条件
【解析】 根据不等式的性质可知,a>3 且 b>3⇒a+b>6 成立,a>3 且 b

第一讲 不等式的基本性质(基础训练)(解析版)

第一讲 不等式的基本性质(基础训练)(解析版)

第一讲不等式的基本性质一、单选题1.若m>n,下列不等式不一定成立的是()A.m+2>n+2B.2m>2n C.>D.m2>n2【答案】D【解析】试题分析:A、不等式的两边都加2,不等号的方向不变,故A正确;B、不等式的两边都乘以2,不等号的方向不变,故B正确;C、不等式的两条边都除以2,不等号的方向不变,故C正确;D、当0>m>n时,不等式的两边都乘以负数,不等号的方向改变,故D错误;故选D.【考点】不等式的性质.2.下列推理正确的是( )A.因为a<b,所以a+2<b+1 B.因为a<b,所以a-1<b-2C.因为a>b,所以a+c>b+c D.因为a>b,所以a+c>b-d【答案】C【解析】【分析】根据不等式的基本性质逐项分析即可.【详解】A. 因为由a<b,变为a+2<b+1,两边不是加的同一个数,故不正确;B. 因为由a<b,变为a-1<b-2,两边不是减的同一个数,故不正确;C. 因为由a>b,所以a+c>b+c,符合不等式的性质1,故正确;D. 因为由a>b,变为a+c>b-d,两边不是同时加上或减去同一个数,故不正确;故选C.【点睛】本题考查了不等式的基本性质:①把不等式的两边都加(或减去)同一个整式,不等号的方向不变;①不等式两边都乘(或除以)同一个正数,不等号的方向不变;①不等式两边都乘(或除以)同一个负数,不等号的方向改变.3.如果t>0,那么a+t与a的大小关系是( )A.a+t>a B.a+t<a C.a+t≥a D.不能确定【答案】A【解析】试题分析:根据不等式的基本性质即可得到结果.t>0,①a+t>a,故选A.考点:本题考查的是不等式的基本性质点评:解答本题的关键是熟练掌握不等式的基本性质1:不等式两边同时加或减去同一个整式,不等号方向不变.4.把不等式-3x>-6变形为x<2的依据是不等式的( )A .基本性质1B .基本性质2C .基本性质3D .以上都不是【答案】C【解析】【分析】根据不等式的基本性质,结合变形的方法求解即可.【详解】①把不等式-3x >-6的两边都除以-2可变形为x <2,①变形的依据是不等式的基本性质3.故选C.【点睛】本题考查了不等式的基本性质:①把不等式的两边都加(或减去)同一个整式,不等号的方向不变;①不等式两边都乘(或除以)同一个正数,不等号的方向不变;①不等式两边都乘(或除以)同一个负数,不等号的方向改变.5.若-2a <-3a ,则a 一定满足的条件是( ) A .a >0B .a <0C .a≥0D .a≤0 【答案】A【解析】将原不等式两边都乘以﹣6,得:3a >2a ,移项、合并,得:a >0,故选A .6.设“○”、“□”、“①”分别表示三种不同的物体,用天平比较它们质量的大小,两次情况如图所示,那么每个“○”、“□”、“①”这样的物体,按质量从小到大的顺序排列为( )A.○□①B.○①□C.□○①D.①□○【答案】D【解析】由图1可知1个○的质量大于1个□的质量,由图2可知1个□的质量等于2个①的质量,因此1个□质量大于1个①质量.故选D7.a,b,c在数轴上的对应点的位置如图所示,下列式子:①b+c>0;①a+b>a+c;①bc>ac;①ab>ac.其中正确的有( )A.1个B.2个C.3个D.4个【答案】C【分析】根据数轴上右边的数总大于左边的数,原点右边表示正数,左边表示负数,结合有理数运算法则进行判断即可求解.【详解】解:依题意得-2<c<-1<0<b<1<2<a①b+c<0,故说法错误;①a+b>a+c,故说法正确;①bc>ac,故说法正确;①a-b>0,故说法正确;①正确的是①①①,共3个.故选C.【点睛】此题主要考查了利用数轴比较两个负数的大小,绝对值大的反而小.8.2a与3a的大小关系()A.2a<3a B.2a>3a C.2a=3a D.不能确定【答案】D【分析】题目中没有明确a的正负,故要分情况讨论.【详解】当a<0时,2a>3a;当a=0时,2a=3a;当a>0时,2a<3a,故选D.【点睛】本题考查的是不等式的基本性质,解答本题的关键是熟练掌握不等式的基本性质3:不等式两边同时乘以(或除以)同一个小于0的整式,不等号方向改变.9.若x+5>0,则()A.x+1<0B.x﹣1<0C.<﹣1D.﹣2x<12【答案】C【解析】试题分析:根据不等式x+5>0,求得x>﹣5,然后可知:A、根据x+1<0得出x<﹣1,故本选项不符合题意;B、根据x﹣1<0得出x<1,故本选项不符合题意;C、根据<﹣1得出x<5,故本选项符合题意;D、根据﹣2x<12得出x>﹣6,故本选项不符合题意;故选C.考点:不等式的性质10.已知实数a,b满足a+1>b+1,则下列选项错误的为()A.a>b B.a+2>b+2C.﹣a<﹣b D.2a>3b【答案】D【解析】试题分析:由不等式的性质得a>b,a+2>b+2,﹣a<﹣b.故选D.考点:不等式的性质.点睛:根据不等式的性质1:不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变,来判断各选项.11.在平面直角坐标系中,点A ()7,21m --+在第三象限,则m 的取值范围是( )A .12m >B .12m >-C .12m <-D .12m < 【答案】A【分析】点在第三象限的条件是:横坐标是负数,纵坐标是负数,可得-2m+1<0,求不等式的解即可.【详解】解:①点在第三象限,①点的横坐标是负数,纵坐标也是负数,即-2m+1<0,解得m >12. 故选A .【点睛】本题考查了各象限内点的坐标的符号特征以及解不等式,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-). 12.当0<x <1时,x 2、x 、1x的大小顺序是( ) A .21x x x <<B .21x x x <<C .21x x x <<D .21x x x<< 【答案】A【解析】 分析:先在不等式0<x <1的两边都乘上x ,再在不等式0<x <1的两边都除以x ,根据所得结果进行判断即可.详解:当0<x <1时,在不等式0<x<1的两边都乘上x,可得0<x2<x,在不等式0<x<1的两边都除以x,可得0<1<1x,又①x<1,①x2、x、1x的大小顺序是:x2<x<1x.故选A.点睛:本题主要考查了不等式,解决问题的关键是掌握不等式的基本性质.不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变,即:若a>b,且m>0,那么am>bm或a bm m >.二、填空题13.用“>”“=”或“<”填空:(1) 若a>b,且a<0,则a2________ab;(2) 若a+5<b+5,则-a_________-b.【答案】<>【解析】【分析】(1)根据不等式的性质3求解即可(2)先根据不等式的性质1,再根据性质3求解即可.【详解】(1) ①a>b,且a<0,①a2>ab;(2) ①a+5<b+5,①a<b,①-a>-b.故答案为:(1)< , (2)>.【点睛】本题考查了不等式的基本性质:①把不等式的两边都加(或减去)同一个整式,不等号的方向不变;①不等式两边都乘(或除以)同一个正数,不等号的方向不变;①不等式两边都乘(或除以)同一个负数,不等号的方向改变.14.已知a>b ,选择适当的不等号填空:(1)-3a ________-3b ; (2)1-5a__________1-5b ;(3)ax 2_________bx 2;(4)a(-c 2-1)_________b(-c 2-1).【答案】< < ≥ <【解析】【分析】(1)根据不等式的性质3两边都除以-3解答即可;(2)先用不等式的性质3两边都乘以-5,,再用不等式的性质1两边都加1解答;(3)先判断x 2的取值范围,再根据不等式的性质解答;(4)先判断-c 2-1的取值范围,再根据不等式的性质解答.【详解】(1) ① a >b ,①-3a <-3b ; (2) ① a >b ,①-5a <-5b , ①1-5a <1-5b ;(3) ① a >b ,x 2≥0,①ax 2≥bx 2;(4) ①c2≥0,①-c2≤0,①-c2-1<0;① a>b,①a(-c2-1)<b(-c2-1).故答案为:(1)<;(2) <;(3) ≥ ;(4) <.【点睛】本题考查了不等式的基本性质:①把不等式的两边都加(或减去)同一个整式,不等号的方向不变;①不等式两边都乘(或除以)同一个正数,不等号的方向不变;①不等式两边都乘(或除以)同一个负数,不等号的方向改变.15.若7x+2<7y+2,则x_______y,它经历了两步,第一步是将不等式7x+2<7y+2的两边_______________,第二步是将不等式的两边_______________.【答案】<都减去2 都除以7【解析】【分析】先根据不等式的性质1两边都减去2,再根据不等式的性质2两边都除以7.【详解】若7x+2<7y+2,则x<y,它经历了两步,第一步是将不等式7x+2<7y+2的两边都减去2,第二步是将不等式的两边都除以7.故答案为:<;都减去2 ;都除以7.【点睛】本题考查了不等式的基本性质:①把不等式的两边都加(或减去)同一个整式,不等号的方向不变;①不等式两边都乘(或除以)同一个正数,不等号的方向不变;①不等式两边都乘(或除以)同一个负数,不等号的方向改变.16.当x____________时,代数式2x-3的值是正数.【答案】>3 2先由题意列出不等式,再根据不等式的基本性质即可得到结果.【详解】由题意得2x-3>0,解得x>3 2 .考点:本题考查的是不等式的基本性质【点睛】解答本题的关键是熟练掌握不等式的基本性质1:不等式两边同时加或减去同一个整式,不等号方向不变;不等式的基本性质2:不等式两边同时乘以(或除以)同一个大于0的整式,不等号方向不变.三、解答题17.将下列不等式化为“x>a”或“x<a”的形式:(1)2x>3x-4;(2)5x-1<14;(3)-19x<-3;(4) 13x<12x+1.【答案】(1) x<4;(2) x<3;(3) x>27;(4) x>-6.【解析】(1)先根据不等式的性质1两边都减去3x,合并同类项后,再根据不等式的性质3两边都除以-1;(2)先根据不等式的性质1两边都加1,合并同类项后,再根据不等式的性质2两边都除以5;(3)先根据不等式的性质3两边都乘以-9即可;(4)先根据不等式的性质1两边都减去12x,合并同类项后,再根据不等式的性质2两边都除以6.【详解】(1) ①2x>3x-4,①2x-3x>-4,①-x>-4,①x<4;(2) ①5x-1<14,①5x<14+1,①5x<15,①x<3;(3)-19x<-3,①-19x×(-9)>-3×(-9)①x>27;(4) ① 13x<12x+1,①13x-12x<1,①-16x<1,①x>-6.【点睛】本题考查了不等式的基本性质:①把不等式的两边都加(或减去)同一个整式,不等号的方向不变;①不等式两边都乘(或除以)同一个正数,不等号的方向不变;①不等式两边都乘(或除以)同一个负数,不等号的方向改变.18.指出下列各式成立的条件.(1)由a>b,得ac≤bc;(2)由(a-3)x>a-3,得x>1;(3)由a<b,得(m-2)a>(m-2)b.【答案】(1)c≤0;(2)a>3;(3)m<2.【解析】试题分析:根据不等式的性质,又不等式的不等号的变化判断即可.试题解析:(1)由a>b,得ac≤bc,根据不等式的性质3,可知c≤0;(2)由(a-3)x>a-3,得x>1,根据不等式的基本性质2,可得a-3>0,即a>3;(3)由a<b,得(m-2)a>(m-2)b,根据不等式的性质3,可知m-2<0,解得m<2.19.已知x>0,试比较10x2-3x+2与8x2-3x+2的大小【答案】10x2-3x+2>8x2-3x+2.【解析】【分析】先把两个式子相减,并去括号合并同类项,然后由x>0,结合不等式的性质判断差的正负即可.【详解】解:(10x2-3x+2)-(8x2-3x+2)=2x2,①x>0,①2x2>0,①10x2-3x+2>8x2-3x+2.【点睛】本题考查了不等式的性质和利用作差法比较两个代数式的大小.作差法比较大小的方法是:如果a-b>0,那么a>b;如果a-b=0,那么a=b;如果a-b<0,那么a<b;另外本题还用到了不等式的传递性,即如果a>b,b>c,那么a>b>c.20.已知x>y,试比较(m-1)x与(m-1)y的大小【答案】见解析【解析】【分析】分三种情况①m-1>0,①m-1=0,①m-1<0,根据不等式的性质解答即可.【详解】解:当m-1>0,即m>1时,(m-1)x>(m-1)y;当m-1=0,即m=1时,(m-1)x=(m-1)y;当m-1<0,即m<1时,(m-1)x<(m-1)y.【点睛】本题考查了不等式的基本性质及分类讨论的数学思想,分三种情况解答是解答本题的关键.21.小明从一商店买了3个相同的玻璃杯,平均每个a元,又从另一个商店买了2个相同的玻璃杯,平均每个b 元,后来他以每个2a b +元的价格把玻璃杯全部都卖给了乙,结果赔了钱,你能用不等式的知识说明原因吗?【答案】见解析【解析】【分析】 先理解题意知道赔钱是什么意思,进而利用题中数量关系列出不等式2a b +<3a +2b >5,根据不等式的基本性质变形即可得到赔钱的原因.【详解】 解:因为赔了钱,所以×5<3a +2b ,①5a +5b <6a +4b ,①-a +b <0,即b <a ,①赔钱的原因是b <a.【点睛】本题考查了不等式的基本性质的应用,根据题意列出不等式并能根据不等式的基本性质变形是解答本题的关键.。

第08讲 不等式的基本性质(解析版)新高一数学暑假衔接课(苏教版2019必修第一册)

第08讲 不等式的基本性质(解析版)新高一数学暑假衔接课(苏教版2019必修第一册)

第08讲不等式的基本性质知识点一不等式(1)不等式的定义用数学符号“>”“<”“≥”“≤”“≠”连接两个数或代数式,含有这些不等号的式子叫作不等式.(2)关于a≥b和a≤b的含义①不等式a≥b应读作:“a大于或等于b”,其含义是a>b或a=b,等价于“a不小于b”,即若a>b 或a=b中有一个正确,则a≥b正确.②不等式a≤b应读作:“a小于或等于b”,其含义是a<b或a=b,等价于“a不大于b”,即若a<b 或a=b中有一个正确,则a≤b正确.(3)不等式中常用符号语言大于小于大于或等于小于或等于至多至少不少于不多于><≥≤≤≥≥≤知识点二两个实数的大小比较1.文字叙述(1)当a-b为正数时,称a>b;(2)当a-b为零时,称a=b;(3)当a-b为负数时,称a<b.2.符号表示(1)a>b⇔a-b>0;(2)a=b⇔a-b=0;(3)a<b⇔a-b<0.3.p⇔q的含义提示:p⇔q的含义是p可以推出q,q也可以推出p,即p与q可以互推.知识点三不等式的性质不等式的性质性质1(自反性)a>b⇔b<a性质2(传递性)a>b,b>c⇒a>c性质3(加法保号性)a>b⇔a+c>b+c性质4(乘正保号性、乘a>b,c>0⇒ac>bc;a>b,c<0⇒ac<bc负改号性)性质5(同向可加性)a>b,c>d⇒a+c>b+d性质6(全正可乘性)a>b>0,c>d>0⇒ac>bd性质7(拓展)a>b>0⇒a n>b n(n∈N*)考点一:实数比较大小例1(1)已知x <1,比较x 3-1与2x 2-2x 的大小;(2)已知a >0,试比较a 与1a的大小.【解析】(1)(x 3-1)-(2x 2-2x )=(x -1)(x 2+x +1)-2x (x -1)=(x -1)(x 2-x +1)=(x -1)21324x ⎡⎤⎛⎫-+⎢ ⎪⎝⎭⎢⎥⎣⎦.∵x <1,∴x -1<0.x -122+34>0,∴(x -1)21324x ⎡⎤⎛⎫-+⎢⎥ ⎪⎝⎭⎢⎥⎣⎦<0.即x 3-1<2x 2-2x .(2)∵a -1a =a 2-1a =(a -1)(a +1)a,又∵a >0,∴当a >1时,(a -1)(a +1)a >0,有a >1a ;当a =1时,(a -1)(a +1)a=0,有a =1a ;当0<a <1时,(a -1)(a +1)a <0,有a <1a .综上,当a >1时,a >1a ;当a =1时,a =1a ;当0<a <1时,a <1a.【总结】1.利用作差法比较大小的四个步骤(1)作差:对要比较大小的两个式子作差;(2)变形:对差式通过通分、因式分解、配方等手段进行变形;(3)判断符号:对变形后的结果结合题设条件判断出差的符号;(4)得出结论.2.作商法比较大小如果两实数同号,亦可采用作商法来比较大小,即作商后看商是大于1,等于1,还是小于1.方法如下:依据a >0,b >0,ab>1⇔a >b ;ab=1⇔a =b ;ab<1⇔a <b a <0,b <0,ab >1⇔a <b ;ab =1⇔a =b ;ab<1⇔a >b 应用范围两同号实数比较大小或分式、积、幂之间比较大小步骤(1)作商;(2)变形;(3)判断商值与1的大小;(4)下结论变式已知a ≥1,试比较M =a +1-a 和N =a -a -1的大小.【解析】(方法1)因为a ≥1,所以M =a +1-a >0,N =a -a -1>0.所以M N =a +1-a a -a -1=a +a -1a +1+a.因为a +1+a >a +a -1>0,所以MN<1,所以M <N .(方法2)因为a ≥1,所以M =a +1-a >0,N =a -a -1>0.又1M =1a +1-a =a +1+a ,1N =1a -a -1=a +a -1,所以1M >1N>0,所以M <N .考点二:不等式的性质例2(1)下列命题中正确的是()A.若0>a >b ,则a 2>b 2B.若a 2>b 2,则a >b >0C.若a >b ,则b a<1 D.若a >b ,则a 3>b 3(2)若c >a >b >0,求证:a c -a >bc -b.(1)【答案】D【解析】对于A ,由0>a >b 可知,0<-a <-b ,则(-b )2>(-a )2,即b 2>a 2,故错误;对于B ,还可能a <b <0,故错误;对于C ,只有当a >0且a >b 时,ba <1才成立,故错误;对于D ,若a >b >0,则a 3>b 3;若a ≥0>b ,则a 3≥0,b 3<0,所以a 3>b 3;若0>a >b ,则-b >-a >0,所以(-b )3>(-a )3,即-a 3<-b 3,所以a 3>b 3.综上,若a >b ,则a 3>b 3,故正确.(2)【解析】证明:因为a >b >0⇒-a <-b ⇒c -a <c -b .因为c >a ,所以c -a >0,所以0<c -a <c -b .上式两边同乘1(c -a )(c -b ),得1c -a >1c -b>0.又因为a >b >0,所以a c -a >bc -b.变式若a >b >0,c <d <0,e <0,求证:e (a -c )2>e(b -d )2.【解析】证明:∵c <d <0,∴-c >-d >0.又a >b >0,∴a -c >b -d >0,则(a -c )2>(b -d )2>0,即1(a -c )2<1(b -d )2.又e <0,∴e (a -c )2>e(b -d )2.考点三:利用不等式的性质解不等式例3解不等式:x -13-x +26>4+3x2,并用不等式的性质说明理由.【解析】去分母,得2(x -1)-(x +2)>3(4+3x ).(性质4)去括号,得2x -2-x -2>12+9x .移项,得2x -x -9x >2+2+12.(性质3)合并同类项,得-8x >16,即8x <-16.系数化为1,得x <-2.(性质4)【总结】变式已知关于x 的方程3(x -2a )+2=x -a +1的解满足不等式2(x -5)≥8a ,求a 的取值范围.【解析】解方程,得x =5a -12.将其代入不等式,得≥8a .去括号,得5a -1-10≥8a .移项,得5a -8a ≥1+10.合并同类项,得-3a ≥11.系数化为1,得a ≤-113.考点四:利用不等式的性质求代数式的取值范围例4已知1<a <4,2<b <8,试求2a +3b 与a -b 的取值范围.【解析】∵1<a <4,2<b <8,∴2<2a <8,6<3b <24.∴8<2a +3b <32.∵2<b <8,∴-8<-b <-2.又∵1<a <4,∴1+(-8)<a +(-b )<4+(-2),即-7<a -b <2.【总结】变式(1)已知1<a <4,2<b <8,试求ab的取值范围.【解析】∵2<b <8,∴18<1b <12,而1<a <4,∴1×18<a ×1b <4×12,即18<ab<2.(2)已知1≤a +b ≤4,-1≤a -b ≤2,求4a -2b 的取值范围.【解析】(方法1)设u =a +b ,v =a -b 得a =u +v 2,b =u -v2,∴4a -2b =2u +2v -u +v =u +3v .∵1≤u ≤4,-1≤v ≤2,∴-3≤3v ≤6.则-2≤u +3v ≤10,即-2≤4a -2b ≤10.(方法2)令4a -2b =x (a +b )+y (a -b ),∴4a -2b =(x +y )a +(x -y )b .+y =4,-y =-2,=1,=3.≤a +b ≤4,3≤3(a -b )≤6.∴-2≤4a -2b ≤10.1.若abcd <0,且a >0,b >c ,d <0,则()A.b <0,c <0B .b >0,c >0C.b >0,c <0D .0<c <b 或c <b <0【答案】D【解析】由a >0,d <0,且abcd <0,知bc >0,又∵b >c ,∴0<c <b 或c <b <0.2.已知a ,b ,c 为不全相等的实数,P =a 2+b 2+c 2+3,Q =2(a +b +c ),那么P 与Q 的大小关系是()A.P >Q B .P ≥Q C.P <Q D .P ≤Q【答案】A【解析】因为P -Q =a 2+b 2+c 2+3-2(a +b +c )=(a -1)2+(b -1)2+(c -1)2,所以当a ,b ,c 为不全相等的实数时,有P -Q >0,即P >Q .故选A.3.(多选)已知x >y >z ,x +y +z =0,则下列不等式中一定成立的是()A.x +y >y +z B .xz <yz C.xy >xz D .x |y |>z |y |【答案】ABC【解析】因为x >y >z ,x +y +z =0,所以3x >x +y +z =0,3z <x +y +z =0,所以x >0,z <0.>0,>z ,可得xy >xz ,故C 成立;由不等式的性质知A 、B 均成立;当x =1,y =0,z =-1,满足x >y >z ,且x +y +z =0,显然D 不成立.4.若0<x <1,则x ,1x,x ,x 2中最小的是________.【答案】x 2【解析】因为0<x <1,所以1x>1,0<x <1,0<x 2<1.因为x x =x <1,x 2x =x <1,所以x <x ,x 2<x ,即x 2<x <x <1x ,故最小的是x 2.5.已知x >y >0,试比较x 3-2y 3与xy 2-2x 2y 的大小.【解析】由题意,知(x 3-2y 3)-(xy 2-2x 2y )=x 3-xy 2+2x 2y -2y 3=x (x 2-y 2)+2y (x 2-y 2)=(x 2-y 2)·(x +2y )=(x -y )(x +y )(x +2y ),∵x >y >0,∴x -y >0,x +y >0,x +2y >0,∴(x 3-2y 3)-(xy 2-2x 2y )>0,即x 3-2y 3>xy 2-2x 2y .6.已知a ,b ,c ,d ∈R ,则下列命题中必成立的是()A .若a >b ,c >b ,则a >cB .若a >-b ,则c -a <c +bC .若a >b ,c <d ,则a c >bd D .若a 2>b 2,则-a <-b 【答案】B【解析】选项A ,若a =4,b =2,c =5,显然不成立;选项C 不满足倒数不等式的条件,如a >b >0,c <0<d 时,不成立;选项D 只有a >b >0时才可以,否则如a =-1,b =0时不成立,故选B .7.设a =3x 2-x +1,b =2x 2+x ,则()A .a >bB .a <bC .a ≥bD .a ≤b【答案】C【解析】a -b =(3x 2-x +1)-(2x 2+x )=x 2-2x +1=(x -1)2≥0,∴a ≥b .8.若-1<α<β<1,则α-β的取值范围为________.【答案】(-2,0)【解析】由-1<α<1,-1<β<1,得-1<-β<1.所以-2<α-β<2,但α<β,故知-2<α-β<0.9.已知角α,β满足-π2<α-β<π2,0<α+β<π,则3α-β的取值范围是________.【答案】(-π,2π)【解析】结合题意可知3α-β=2(α-β)+(α+β),且2(α-β)∈(-π,π),α+β∈(0,π),利用不等式的性质可知3α-β的取值范围是(-π,2π).10.已知12<a <60,15<b <36,则a -b 的取值范围为________,ab的取值范围为________.【答案】(-24,45)【解析】∵15<b <36,∴-36<-b <-15,又12<a <60,∴12-36<a -b <60-15,即-24<a -b <45,∵136<1b <115,∴1236<a b <6015,∴13<ab<4.1.下列结论成立的是()A.若ac >bc ,则a >bB.若a >b ,则a 2>b 2C.若a >b ,c <d ,则a +c >b +dD.若a >b ,c >d ,则a -d >b -c【答案】D【解析】对于A ,当c <0时,A 不成立;对于B ,取a =-1,b =-2时,B 不成立;对于C ,a >b ,c <d ,取a =2,b =1,c =3,d =4,则a +c =b +d ,因此C 不成立;对于D ,因为c >d ,所以-d >-c ,又a >b ,所以a -d >b -c ,因此D 成立.故选D.2.已知0<a 1<1,0<a 2<1,记M =a 1a 2,N =a 1+a 2-1,则M 与N 的大小关系是()A.M <N B .M >N C.M =N D .M ≥N【答案】B【解析】∵0<a 1<1,0<a 2<1,∴-1<a 1-1<0,-1<a 2-1<0,∴M -N =a 1a 2-(a 1+a 2-1)=a 1a 2-a 1-a 2+1=a 1(a 2-1)-(a 2-1)=(a 1-1)(a 2-1)>0,∴M >N .3.有外表一样,质量不同的四个小球,它们的质量分别是a ,b ,c ,d .已知a +b =c +d ,a +d >b +c ,a +c <b ,则这四个小球的质量由大到小的排列顺序是()A.d >b >a >cB .b >c >d >aC.d >b >c >a D .c >a >d >b【答案】A【解析】因为a +b =c +d ,a +d >b +c ,所以2a >2c ,即a >c ,因此b <d .因为a +c <b ,所以a <b .综上可得d >b >a >c .故选A.4.若-1<α<β<1,则下列各式中恒成立的是()A.-2<α-β<0B.-2<α-β<-1C.-1<α-β<0D.-1<α-β<1【答案】A【解析】由-1<α<1,-1<β<1,得-1<-β<1,∴-2<α-β<2.又∵α<β,故知-2<α-β<0.5.同学们在生活中都有过陪同爸爸妈妈去加油站加油的经历,小明发现一个有趣的现象:爸爸和妈妈加油习惯有所不同.爸爸每次加油都说“师傅,给我加300元的油”,而妈妈则说“师傅帮我把油箱加满”,这个时候小明若有所思,如果爸爸、妈妈加油两次,第一次加油汽油单价为x 元/升,第二次加油汽油单价是y 元/升(x ≠y ),妈妈每次加满油箱,需加油a 升,我们规定谁的平均单价低谁就合算,则爸爸、妈妈更合算的是()A.爸爸B .妈妈C.一样D .不确定【答案】A【解析】由题意,妈妈两次加油共需付款a (x +y )元,爸爸两次能加300x +300y =300(x +y )xy升油,设爸爸两次加油的平均单价为M 元/升,妈妈两次加油的平均单价为N 元/升,则M =600300(x +y )xy =2xy x +y ,N =a (x +y )2a =x +y2,且x ≠y ,∴N -M =x +y 2-2xyx +y =(x -y )22(x +y )>0,∴爸爸的加油方式更合算.故选A.6.(多选)若1a <1b<0,则下列结论正确的是()A.a 2<b 2B .ab <b 2C.a +b <0D .|a |+|b |>|a +b |【答案】ABC 【解析】∵1a <1b<0,∴b <a <0,∴a 2<b 2,ab <b 2,a +b <0,|a |+|b |=|a +b |.故选A 、B 、C.7.(多选)已知a ,b ,c ,m ∈R ,则下列推证中不正确的是()A.a >b ⇒am 2>bm 2B.a c >bc⇒a >b C.ac 2>bc 2⇒a >b D.a 2>b 2,ab >0⇒1a <1b【答案】ABD【解析】A ,m =0时不成立;B ,c <0时不成立;C ,ac 2>bc 2,两边同除以c 2,可得a >b ,正确;D ,由a 2>b 2,ab >0,取a =-2,b =-1,可得1a >1b,不成立.故选A 、B 、D.8.比较大小:a 2+b 2+c 2________2(a +b +c )-4.【答案】>【解析】a 2+b 2+c 2-[2(a +b +c )-4]=a 2+b 2+c 2-2a -2b -2c +4=(a -1)2+(b -1)2+(c -1)2+1≥1>0,故a 2+b 2+c 2>2(a +b +c )-4.9.a 2与a -1的大小关系为________.【答案】a 2>a -1【解析】因为a 2-(a -1)=a 2-a +1=(a -12)2+34>0,所以a 2>a -1.10.下列命题中,正确的是________.①若a >b ,c >d ,则ac 2>bd 2;②若a <b ,则3a <3b ;③若a <b <0,则1a >1b ;④若a >b >0,c >d >0,则a c >bd;⑤若a <b <0,c <d <0,则ac <bd .【答案】②③【解析】对①,举反例,取a =2,b =1,c =-1,d =-2,不成立,错误;对②,开三次方根不改变大小关系,正确;对③,是不等式的性质,正确;对④,取a =4,b =3,c =4,d =3,不成立,错误;对⑤,负数越小绝对值越大,应该是ac >bd ,错误.11.解不等式2-x -13<x +12,并用不等式的性质说明理由.【解析】由2-x -13<x +12,两边同乘以6,得12-2(x -1)<3(x +1),(不等式的性质4)即12-2x +2<3x +3,两边同时加2x -3,得11<5x ,(不等式的性质3)即5x >11,(不等式的性质1)两边同乘以15,得x >115,(不等式的性质4)|x .[素养提升练]12.已知实数a ,b ,则“a +ba -b>0”是“|a |>|b |”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分又不必要条件【答案】C 【解析】a +ba -b>0⇔(a +b )(a -b )>0⇔a 2-b 2>0⇔a 2>b 2⇔|a |>|b |,为充要条件.故选C.13.(多选)已知a ,b ,c ∈R ,下列命题为真命题的是()A.若a <b <0,则a 2<ab <b 2B.若a >b ,则ac 2≥bc 2C.若ac 2>bc 2,则a >bD.若b <a <0,则1a <1b【答案】BCD【解析】对于A ,当a <b <0时,a 2-ab =a (a -b )>0,∴a 2>ab ,A 错误;对于B ,若a >b ,当c =0时,则ac 2=bc 2,若c ≠0,则c 2>0,则有ac 2>bc 2,B 正确;对于C ,若ac 2>bc 2,则c 2≠0,∴a >b ,C 正确;对于D ,当0>a >b 时,1a -1b =b -a ab <0,∴1a <1b ,D 正确.故选B 、C 、D.14.已知-1≤x +y ≤4,且2≤x -y ≤3,则z =2x -3y 的取值范围是________.【答案】[3,8]【解析】∵z =-12(x +y )+52(x -y ),-2≤-12(x +y )≤12,5≤52(x -y )≤152,∴3≤-12(x +y )+52(x -y )≤8,∴z 的取值范围是3≤z ≤8.15.给出下列命题:①a >b ⇒ac 2>bc 2;②a >|b |⇒a 4>b 4;③a >b ⇒a 3>b 3;④|a |>b ⇒a 2>b 2.其中正确命题的序号是________.【答案】②③【解析】①当c 2=0时不成立;②因为a >|b |≥0,所以a 2>|b |2,即a 2>b 2,所以a 4>b 4,所以正确;③当a >b 时,a 3-b 3=(a -b )(a 2+ab +b 2)=(a -b +34b 2>0,成立;④当b <0时,不一定成立.如:|2|>-3,但22<(-3)2.16.已知-1<x <y <0,比较1x ,1y,x 2,y 2的大小关系.【解析】因为-1<x <y <0,根据实数的性质,可得x 2>0,y 2>0,1x <0,1y <0,由x 2-y 2=(x +y )(x -y ),且1x -1y =y -x xy,又由-1<x <y <0,可得x +y <0,x -y <0,xy >0,所以(x +y )(x -y )>0,且y -x xy>0,即x 2>y 2>0且0>1x >1y ,所以x 2>y 2>1x >1y .17.已知三个不等式:①ab >0;②c a >d b;③bc >ad .若以其中两个作为条件,余下的一个作为结论,请写出一个真命题,并写出推理过程.【解析】(1)①②⇒③,即若ab >0且c a >d b ,则bc >ad .因为c a >d b 且ab >0,所以c a ·ab >d b·ab ⇒bc >ad ,则命题成立.(2)①③⇒②,即若ab >0且bc >ad ,则c a >d b.因为ab >0,所以1ab >0,又因为bc >ad ,所以bc ·1ab >ad ·1ab ⇒c a >d b,则命题成立.18.下列关于糖水浓度的问题,能提炼出怎样的不等关系呢?(1)如果向一杯糖水里加糖,糖水变甜了;(2)把原来的糖水(淡)与加糖后的糖水(浓)混合到一起,得到的糖水一定比淡的浓、比浓的淡;(3)如果向一杯糖水里加水,糖水变淡了.【解析】(1)设糖水b 克,含糖a 克,糖水浓度为a b ,加入m 克糖,即证明不等式a +m b +m >a b (其中a ,b ,m 为正实数,且b >a )成立.不妨用作差比较法,证明如下:a +mb +m -a b =b (a +m )-a (b +m )b (b +m )=m (b -a )b (b +m ).∵a ,b ,m 为正实数,且a <b ,∴b +m >0,b -a >0,∴m (b -a )b (b +m )>0,即a +m b +m>a b .(2)设原糖水b 克,含糖a 克,糖水浓度为a b ;另一份糖水d 克,含糖c 克,糖水浓度为c d ,且a b <c d ,求证:a b <a +c b +d<c d (其中b >a >0,d >c >0).证明:∵a b <c d,且b >a >0,d >c >0,∴ad <bc ,即bc -ad >0,a b -a +c b +d =ab +ad -ab -bc b (b +d )=ad -bc b (b +d )<0,即a b <a +c b +d,c d -a +c b +d =cb +cd -ad -cd d (b +d )=cb -ad d (b +d )>0,即a +c b +d <c d .∴a b <a +c b +d<c d .(3)设原糖水b 克,含糖a 克,糖水浓度为a b ,加入m 克水,求证a b >a b +m (其中b >a >0,m >0).证明:a b -a b +m =ab +am -ab b (b +m )=am b (b +m )>0,∴a b >a b +m .。

(完整word版)不等式的基本性质__习题精选(一)

(完整word版)不等式的基本性质__习题精选(一)

不等式的基本性质 习题精选(一)★不等式的基本性质1.不等式的基本性质1:如果a 〉b ,那么 a+c____b+c , a -c____b -c . 不等式的基本性质2:如果a 〉b,并且c 〉0,那么ac_____bc . 不等式的基本性质3:如果a>b ,并且c<0,那么ac_____bc . 2.设a 〈b ,用“〈"或“>”填空.(1)a -1____b -1;(2)a+1_____b+1;(3)2a____2b ;(4)-2a_____-2b ;5)-a 2_____-b 2;(6)a 2____b 2.3.根据不等式的基本性质,用“<"或“〉"填空.(1)若a -1〉b -1,则a____b ;(2)若a+3〉b+3,则a____b ;(3)若2a>2b ,则a____b ; (4)若-2a>-2b ,则a___b .4.若a 〉b ,m<0,n>0,用“〉”或“〈"填空.(1)a+m____b+m;(2)a+n___b+n ;(3)m -a___m -b ;(4)an____bn ;(5)a m ____b m ;(6)a n _____bn ; 5.下列说法不正确的是( )A .若a 〉b,则ac 2>bc 2(c 0)B .若a 〉b ,则b 〈aC .若a>b ,则-a 〉-b D .若a>b ,b 〉c ,则a>c★不等式的简单变形6.根据不等式的基本性质,把下列不等式化为x 〉a 或x>a 的形式: (1)x -3>1;(2)-32x>-1;(3)3x<1+2x ;(4)2x 〉4. [学科综合]7.已知实数a 、b 、c 在数轴上对应的点如图13-2-1所示,则下列式子中正确的是( )A .bc 〉abB .ac>abC .bc 〈abD .c+b 〉a+b8.已知关于x的不等式(1-a)x〉2变形为x<21-a,则1-a是____数.9.已知△ABC中三边为a、b、c,且a>b,那么其周长p应满足的不等关系是( ) A.3b〈p<3a B.a+2b〈p<2a+b C.2b<p<2(a+b) D.2a<p<2(a+b)[创新思维](一)新型题10.若m〉n,且am<an,则a的取值应满足条件( )A.a〉0 B.a<0 C.a=0 D.a≥0(二)课本例题变式题11.(课本p6例题变式题)下列不等式的变形正确的是( )A.由4x-1〉2,得4x>1 B.由5x〉3,得x〉35 C.由x2>0,得x〉2D.由-2x<4,得x<-2(三)易错题12.若a>b,且m为有理数,则am2____bm2.13.同桌甲和同桌乙正在对7a〉6a进行争论,甲说:“7a>6a正确",乙说:“这不可能正确”,你认为谁的观点对?为什么?(四)难题巧解题14.若方程组2x+y=k+1x+2y=-1⎧⎨⎩的解为x,y,且3〈k<6,则x+y的取值范围是______.(五)一题多解题15.根据不等式的基本性质,把不等式2x+5<4x_1变为x>a或x<a的形式.[数学在学校、家庭、社会生活中的应用]16.如图13-2-2所示,一个已倾斜的天平两边放有重物,其质量分别为a和b,如果在天平两边的盘内分别加上相等的砝码c,看一看,盘子仍然像原来那样倾斜吗?[数学在生产、经济、科技中的应用]17.小明用的练习本可以到甲商店购买,也可到乙商店购买,已知两商店的标价都是每本1元,但甲商店的优惠条件是:购买10本以上,从第11本开始按标价的70%卖,乙商店的优惠条件是:从第1本开始就按标价的85%卖.(1)小明要买20本时,到哪个商店购买较省钱?(2)写出甲商店中收款y(元)与购买本数x(本)(x〉10)之间的关系式.(3)小明现有24元钱,最多可买多少本?[自主探究]18.命题:a,b是有理数,若a>b,则a2>b2.(1)若结论保持不变,那么怎样改变条件,命题才能正确?;(2)若条件保持不变,那么怎样改变结论,命题才能正确?[潜能开发]19.甲同学与乙同学讨论一个不等式的问题,甲说:每个苹果的大小一样时,5个苹果的重量大于4个苹果的重量,设每个苹果的重量为x则有5x〉4x.乙说:这肯定是正确的.甲接着说:设a为一个实数,那么5a一定大于4a,这对吗?乙说:这与5x〉4x不是一回事吗?当然也是正确的.请问:乙同学的回答正确吗?试说明理由.[信息处理]20.根据不等式的基本性质,把下列不等变为x〉a或x<a的形式:(1)1x2〉-3;(2)-2x〈6.解:(1)不等式的两边都乘以2,不等式的方向不变,所以1x2>-322⨯⨯,得x>-6.(2)不等式两边都除以-2,不等式方向改变,所以-2x6>-2-2,得x>-3.上面两小题中不等式的变形与方程的什么变形相类似?有什么不同的? [开放实践]21.比较a+b与a-b的大小.[经典名题,提升自我][中考链接]22.(2004·山东淄博)如果m〈n<0,那么下列结论中错误的是()A.m-9〈n-9 B.-m>-n C.11>n m D.mn>123.(2004·北京海淀)若a-b<0,则下列各题中一定成立的是()A.a〉b B.ab>0 C.ab〉0 D.-a〉-b[奥赛赏析]24.要使不等式…〈753246a<a<a<a<a<a<a〈…成立,有理数a的取值范围是()A.0〈a〈1 B.a〈-1 C.-1<a<0 D.a〉1[趣味数学]25.(1)A、B、C三人去公园玩跷跷板,如图13-2-3①中,试判断这三人的轻重.(2)P、Q、R、S四人去公园玩跷跷板,如图13-2-3②,试判断这四人的轻重.答案1.> > > <2.(1)<(2)<(3)<(4)>(5)>(6)〈3.(1)>(2)>(3)〉(4)<4.(1)>(2)〉(3)<(4)〉(5)〈(6)>5.C 点拨:a>b,不等式的两边同时乘以-1,根据不等式的基本性质3,得-a<-b,所以C选项不正确.6.解:(1)x-3>1,x-3+3〉1+3,(根据不等式的基本性质1)x>4;(2)-23x>-1,-23x·(-32)<-1·(-32),(根据不等式的基本性质3)x〈32;(3)3x<1+2x,3x-2x〈1+2x-2x,(根据不等式的基本性质1)x<1;(4)2x〉4,2x4>22,(根据不等式的基本性质2)x>2.7.A 8.负 9.D 10.B 11.B 12.错解:am2〉bm2错因分析:m2应为大于或等于0的数,忽略了m等于0的情况正解::am2≥bm213.错解1:甲对,因为7>6,两边同乘以一个数a,由不等式的基本性质2,可得7a>6a.错解2:乙对,因为a为负数或零时,原不等式不成立.错因分析:本题没有加以分析,只片面的认为a为正数或负数,实际a为任意数,有三种情况:a为负数,a 为正数,a为0,应全面考察各种.正解:两人的观点都不对,因为a的符号没有确定:①当a>0时,由性质2得7a〉6a,②当a〈0时,由性质3得7a<6a,③当a=0时,得7a=6a=0.14.1〈x+y〈2点拨:两方程两边相加得3(x+y)=k.3<k〈6,即3<3(x+y)<6,∴1〈x+y<2.15.解法1:2x+5<4x-1,2x+5-5<4x-1-5,2x〈4x-6,2x-4x<4x-6-4x,-2x〈-6,-2x-6>-2-2,x〉3.解法2:2x+5〈4x-1,2x+5-2x〈4x-1-2x,5+1〈2x-1+1,6<2x,62x<22,3〈x,即x>3.16.解:从图中可看出a>b,存在这样一个不等式,两边都加上c,根据不等式的基本性质1,则a+c〉b+c,所以,盘子仍然像原来那样倾斜.17.解:(1)若到甲商店购买,买20本共需10+1⨯70%⨯10=17(元),到乙商店购买20本,共需1⨯0.85⨯220=17元,因为到甲、乙两个商店买20本都需花17元,故到两个商店中的任一个购买都一样.(2)甲商店中,收款y(元)与购买本数x(本)(x>10)之间的关系式为y=10+0.7(x-10),即y=0.7x+3(其中x〉10).(3)小明现有24元钱,若到甲商店购买,可以得到方程24=0.7x+3,解得x=30(本).若到乙商店购买,则可买24÷(1⨯0.85)≈28(本).30>28,故小明最多哥买30本.18.解:(1)a,b是有理数,若a〉b>0,则22a>b(2)a,b是有理数,若a>b,则a+1>b+1.19.解:乙同学的回答不正确,5a不一定大于4a.当a〉0时,5a>4a〉0;当a=0时,5a=4a=0;当a<0时,5a〈4a〈0.20.解:这里的变形与方程中的“将未知数的系数化为1"相类似,但是也有所不同;不等式的两边都乘以(或除以)同一个正数,不等号的方向不变,不等式的两边都乘以(或除以)同一个负数,不等号的方向改变.21.解:a+b-(a-b)=2b,当b>0时,a+b>a-b;当b=0时,a+b=a-b;当b〈0时,a+b<a-b.22.C 23.D24.B 点拨:a的奇数次方一定小于a的偶数次方,则a是负数,且246a<a<a<0…,则这个负数一定小于-1,故应选B.25.解:(1)三人由轻到重排列顺序是B、A、C.(2)四人由轻到重排列顺序是Q、P、S、R.。

专题2.1 不等式的性质及常见不等式解法(精讲)(解析版)

专题2.1 不等式的性质及常见不等式解法(精讲)(解析版)

专题2.1 不等式的性质及常见不等式解法【考纲要求】1.不等关系:了解现实世界和日常生活中的不等关系,了解不等式(组)的实际背景.2.一元二次不等式:(1)会从实际情境中抽象出一元二次不等式模型.(2)通过函数图像了解一元二次不等式与相应的二次函数、一元二次方程的联系.(3)会解一元二次不等式.3.会解|x+b|≤c,|x+b|≥c,|x-a|+|x-b|≥c,|x-a|+|x-b|≤c 型不等式.4.掌握不等式||a|-|b||≤|a+b|≤|a|+|b|及其应用.5.培养学生的数学抽象、数学运算、数学建模、逻辑推理等核心数学素养.【知识清单】1.实数的大小(1)数轴上的任意两点中,右边点对应的实数比左边点对应的实数大.(2)对于任意两个实数a和b,如果a-b是正数,那么a>b;如果a-b是负数,那么a<b;如果a-b等于零,那么a=b.2.不等关系与不等式我们用数学符号“≠”、“>”、“<”、“≥”、“≤”连接两个数或代数式,以表示它们之间的不等关系,含有这些符号的式子,叫做不等式.3.不等式的性质(1)性质1:如果a>b,那么b<a;如果b<a,那么a>b.即a>b⇔b<a.(2)性质2:如果a>b,b>c,那么a>c.即a>b,b>c⇒a>c.(3)性质3:如果a>b,那么a+c>b+c.(4)性质4:①如果a>b,c>0那么ac>bc.②如果a>b,c<0,那么ac<bc.(5)性质5:如果a>b,c>d,那么a+c>b+d.(6)性质6:如果a >b >0,c >d >0,那么ac >bd . (7)性质7:如果a >b >0,那么a n >b n ,(n ∈N ,n ≥2). (8)性质8:如果a >b >0,那么n a >nb ,(n ∈N ,n ≥2). 4.一元二次不等式的概念及形式(1)概念:我们把只含有一个未知数,并且知数的最高次数是2的不等式,称为一元二次不等式. (2)形式:①ax 2+bx +c >0(a ≠0); ②ax 2+bx +c ≥0(a ≠0); ③ax 2+bx +c <0(a ≠0); ④ax 2+bx +c ≤0(a ≠0).(3)一元二次不等式的解集的概念:一般地,使某个一元二次不等式成立的x 的值叫做这个不等式的解,一元二次不等式的所有解组成的集合叫做这个一元二次不等式的解集. 5.分式不等式的解法定义:分母中含有未知数,且分子、分母都是关于x 的多项式的不等式称为__分式不等式__. f (x )g (x )>0⇔f (x )g (x )__>__0,f (x )g (x )<0⇔f (x )·g (x )__<__0. f (x )g (x )≥0⇔⎩⎪⎨⎪⎧f (x )g (x ) ≥ 0,g (x )≠0. ⇔f (x )·g (x )__>__0或⎩⎪⎨⎪⎧ f (x )=0g (x )≠0.f (x )g (x )≤0⇔⎩⎪⎨⎪⎧f (x )·g (x ) ≤ 0,g (x )≠0⇔f (x )·g (x )__<__0或⎩⎪⎨⎪⎧f (x )=0g (x )≠0. 6.简单的高次不等式的解法高次不等式:不等式最高次项的次数高于2,这样的不等式称为高次不等式. 解法:穿根法①将f (x )最高次项系数化为正数;②将f (x )分解为若干个一次因式的积或二次不可分因式的积;③将每一个一次因式的根标在数轴上,自上而下,从右向左依次通过每一点画曲线(注意重根情况,偶次方根穿而不过,奇次方根穿过);④观察曲线显现出的f (x )的值的符号变化规律,写出不等式的解集. 7.不等式恒成立问题 1.一元二次不等式恒成立问题(1)ax 2+bx +c >0(a ≠0)恒成立(或解集为R )时,满足⎩⎨⎧ a >0Δ<0;(2)ax 2+bx +c ≥0(a ≠0)恒成立(或解集为R )时,满足⎩⎪⎨⎪⎧ a >0Δ≤0;(3)ax 2+bx +c <0(a ≠0)恒成立(或解集为R )时,满足⎩⎨⎧a <0Δ<0;(4)ax 2+bx +c ≤0(a ≠0)恒成立(或解集为R )时,满足⎩⎪⎨⎪⎧a <0Δ≤0.2.含参数的一元二次不等式恒成立.若能够分离参数成k <f (x )或k >f (x )形式.则可以转化为函数值域求解. 设f (x )的最大值为M ,最小值为m .(1)k <f (x )恒成立⇔k <m ,k ≤f (x )恒成立⇔k ≤m . (2)k >f (x )恒成立⇔k >M ,k ≥f (x )恒成立⇔k ≥M . 8.绝对值不等式的解法1.形如|ax +b|≥|cx+d|的不等式,可以利用两边平方的形式转化为二次不等式求解. 2.形如|ax +b|≤c(c>0)和|ax +b|≥c(c>0)型不等式 (1)绝对值不等式|x|>a 与|x|<a 的解集(2)|ax +b|≤c(c>0)和|ax +b|≥c(c>0)型不等式的解法|ax +b|≤c ⇔-c≤ax +b≤c (c>0),|ax +b|≥c ⇔ax +b≥c 或ax +b≤-c(c>0). 9.绝对值不等式的应用如果a ,b 是实数,那么|a +b|≤|a|+|b|,当且仅当ab≥0时,等号成立.【考点梳理】考点一 :用不等式表示不等关系【典例1】某种杂志原以每本2.5元的价格销售,可以售出8万本.根据市场调查,若单价每提高0.1元,销售量就可能相应减少2 000本,若把提价后杂志的定价设为x 元,怎样用不等式表示销售的总收入仍不低于20万元? 【答案】见解析【解析】提价后杂志的定价为x 元,则销售的总收入为(8-x -2.50.1×0.2)x 万元,那么不等关系“销售的收入不低于20万元”用不等式可以表示为:(8-x -2.50.1×0.2)x ≥20.【规律总结】用不等式(组)表示实际问题中不等关系的步骤:①审题.通读题目,分清楚已知量和待求量,设出待求量.找出体现不等关系的关键词:“至少”“至多”“不少于”“不多于”“超过”“不超过”等.②列不等式组:分析题意,找出已知量和待求量之间的约束条件,将各约束条件用不等式表示.【变式探究】某钢铁厂要把长度为4 000 mm 的钢管截成500 mm 和600 mm 两种,按照生产的要求,600 mm 钢管的数量不能超过500 mm 钢管的3倍.试写出满足上述所有不等关系的不等式. 【答案】见解析 【解析】分析:应先设出相应变量,找出其中的不等关系,即①两种钢管的总长度不能超过4 000 mm ;②截得600 mm 钢管的数量不能超过500 mm 钢管数量的3倍;③两种钢管的数量都不能为负.于是可列不等式组表示上述不等关系.详解:设截得500 mm 的钢管x 根,截得600 mm 的钢管y 根,依题意,可得不等式组:⎩⎪⎨⎪⎧500x +600y ≤4 0003x ≥yx ≥0y ≥0,即⎩⎪⎨⎪⎧5x +6y ≤403x ≥y x ≥0y ≥0考点二:比较数或式子的大小【典例2】(1)比较x 2+y 2+1与2(x +y -1)的大小; (2)设a ∈R 且a ≠0,比较a 与1a 的大小.【答案】见解析【解析】 (1)x 2+y 2+1-2(x +y -1)=x 2-2x +1+y 2-2y +2=(x -1)2+(y -1)2+1>0, ∴x 2+y 2+1>2(x +y -1). (2)由a -1a =(a -1)(a +1)a当a =±1时,a =1a;当-1<a <0或a >1时,a >1a ;当a <-1或0<a <1时,a <1a.【领悟技法】 1.比较大小的常用方法 (1)作差法一般步骤:①作差;②变形;③定号;④结论.其中关键是变形,常采用配方、因式分解、通分、有理化等方法把差式变成积式或者完全平方式.当两个式子都为正数时,有时也可以先平方再作差. (2)作商法一般步骤:①作商;②变形;③判断商与1的大小关系;④结论. (3)函数的单调性法将要比较的两个数作为一个函数的两个函数值,根据函数的单调性得出大小关系. 【变式探究】已知x <y <0,比较(x 2+y 2)(x -y )与(x 2-y 2)(x +y )的大小. 【答案】见解析【解析】∵x <y <0,xy >0,x -y <0,∴(x 2+y 2)(x -y )-(x 2-y 2)(x +y )=-2xy (x -y )>0, ∴(x 2+y 2)(x -y )>(x 2-y 2)(x +y ). 考点三:不等式性质的应用【典例3】(2020·黑龙江省佳木斯一中高一期中(理))对于任意实数a b c d ,,,,下列正确的结论为( ) A .若,0a b c >≠,则ac bc >; B .若a b >,则22ac bc >; C .若a b >,则11a b <; D .若0a b <<,则b a a b<. 【答案】D 【解析】A :根据不等式的基本性质可知:只有当0c >时,才能由a b >推出ac bc >,故本选项结论不正确;B :若0c时,由a b >推出22ac bc =,故本选项结论不正确;C :若3,0a b ==时,显然满足a b >,但是1b没有意义,故本选项结论不正确; D :22()()b a b a b a b a a b ab ab-+--==,因为0a b <<,所以0,0,0b a ab a b ->>+<, 因此0b a b aa b a b-<⇒<,所以本选项结论正确. 故选:D【典例4】 若a =ln33,b =ln44,c =ln55,则( )A .a <b <cB .c <b <aC .c <a <bD .b <a <c 【答案】B【解析】方法一 易知a ,b ,c 都是正数, b a =3ln44ln3=log 8164<1,所以a >b ; b c =5ln44ln5=log 6251 024>1,所以b >c .即c <b <a . 方法二 对于函数y =f (x )=ln xx ,y ′=1-ln x x2, 易知当x >e 时,函数f (x )单调递减. 因为e <3<4<5,所以f (3)>f (4)>f (5), 即c <b <a .【典例5】设f (x )=ax 2+bx ,若1≤f (-1)≤2,2≤f (1)≤4”,则f (-2)的取值范围是 . 【答案】[5,10]【解析】方法一(待定系数法)设f (-2)=mf (-1)+nf (1)(m ,n 为待定系数), 则4a -2b =m (a -b )+n (a +b ), 即4a -2b =(m +n )a +(n -m )b ,于是得⎩⎪⎨⎪⎧ m +n =4,n -m =-2,解得⎩⎪⎨⎪⎧m =3,n =1.所以f (-2)=3f (-1)+f (1). 又因为1≤f (-1)≤2,2≤f (1)≤4,所以5≤3f (-1)+f (1)≤10,即5≤f (-2)≤10. 方法二(解方程组法)由⎩⎪⎨⎪⎧f (-1)=a -b ,f (1)=a +b , ⎩⎨⎧a =12[f (-1)+f (1)],b =12[f (1)-f (-1)].所以f (-2)=4a -2b =3f (-1)+f (1). 又因为1≤f (-1)≤2,2≤f (1)≤4,所以5≤3f (-1)+f (1)≤10,故5≤f (-2)≤10.【规律总结】1.判断不等式的真假.(1)首先要注意不等式成立的条件,不要弱化条件.(2)解决有关不等式选择题时,也可采用特值法进行排除,注意取值要遵循以下原则:一是满足题设条件;二是取值要简单,便于验证计算.(3)若要判断某结论正确,应说明理由或进行证明,推理过程应紧扣有关定理、性质等,若要说明某结论错误,只需举一反例. 2.证明不等式(1)要在理解的基础上,记准、记熟不等式的性质并注意在解题中灵活准确地加以应用.(2)应用不等式的性质进行推证时,应注意紧扣不等式的性质成立的条件,且不可省略条件或跳步推导,更不能随意构造性质与法则. 3.求取值范围(1)建立待求范围的代数式与已知范围的代数式的关系,利用不等式的性质进行运算,求得待求的范围. (2)同向(异向)不等式的两边可以相加(相减),这种转化不是等价变形,如果在解题过程中多次使用这种转化,就有可能扩大其取值范围.4.掌握各性质的条件和结论.在各性质中,乘法性质的应用最易出错,即在不等式的两边同时乘(除)以一个数时,必须能确定该数是正数、负数或零,否则结论不确定. 【变式探究】1.(2020·陕西省西安中学高二期中(文))已知0a b <<,则下列不等式成立的是 ( ) A .22a b < B .2a ab <C .11a b< D .1ba< 【答案】D 【解析】22a b -=22)()0,,a b a b a b +->∴>(所以A 选项是错误的. 2a ab -=2()0,.a a b a ab ->∴>所以B 选项是错误的.11a b -=110,.b a ab a b ->∴>所以C 选项是错误的. 1b a -=0, 1.b a b a a -<∴<所以D 选项是正确的. D 故选:.2. (2020·江西省崇义中学高一开学考试(文))下列结论正确的是( ) A .若ac bc >,则a b >B .若88a b >,则a b >C .若a b >,0c <,则ac bc <D <a b >【答案】C 【解析】对于A 选项,若0c <,由ac bc >,可得a b <,A 选项错误;对于B 选项,取2a =-,1b =,则88a b >满足,但a b <,B 选项错误; 对于C 选项,若a b >,0c <,由不等式的性质可得ac bc <,C 选项正确;对于D a b >,D 选项错误.故选:C. 3.已知12<a <60,15<b <36,求a -b 及ab的取值范围.【错解】∵12<a <60,15<b <36,∴12-15<a -b <60-36,1215<a b <6036,∴-3<a -b <24,45<a b <53.【辨析】错解中直接将12<a <60,15<b <36相减得a -b 的取值范围,相除得ab 的取值范围而致错.【正解】∵15<b <36,∴-36<-b <-15.∴12-36<a -b <60-15, 即-24<a -b <45.又15<b <36,∴136<1b <115.又12<a <60,∴1236<a b <6015,即13<a b <4.综上,-24<a -b <45,13<ab <4.【易错警示】错用不等式的性质致错. 考点四:一元二次不等式的解法【典例6】(2020·全国高考真题(文))已知集合2{|340},{4,1,3,5}A x x x B =--<=-,则A B =( )A .{4,1}-B .{1,5}C .{3,5}D .{1,3}【答案】D 【解析】由2340x x --<解得14x -<<, 所以{}|14A x x =-<<, 又因为{}4,1,3,5B =-,所以{}1,3A B =,故选:D. 【规律方法】1.解一元二次不等式的一般步骤(1)化:把不等式变形为二次项系数大于零的标准形式. (2)判:计算对应方程的判别式.(3)求:求出对应的一元二次方程的根,或根据判别式说明方程有没有实根. (4)写:利用“大于取两边,小于取中间”写出不等式的解集. 2.含有参数的不等式的求解,往往需要对参数进行分类讨论.(1)若二次项系数为常数,首先确定二次项系数是否为正数,再考虑分解因式,对参数进行分类讨论,若不易分解因式,则可依据判别式符号进行分类讨论.(2)若二次项系数为参数,则应先考虑二次项系数是否为零,确定不等式是不是二次不等式,然后再讨论二次项系数不为零的情形,以便确定解集的形式. (3)对方程的根进行讨论,比较大小,以便写出解集. 【易错警示】忽视二次项系数的符号致误 【变式探究】1.(2019·全国高考真题(理))已知集合{}}242{60M x x N x x x =-<<=--<,,则M N ⋂=( )A .}{43x x -<<B .}{42x x -<<-C .}{22x x -<<D .}{23x x <<【答案】C 【解析】由题意得,{}{}42,23M x x N x x =-<<=-<<,则{}22M N x x ⋂=-<<.故选C .2. (2020·黑龙江省大庆实验中学高三一模(文))已知集合1|03x A x x -⎧⎫=≥⎨⎬-⎩⎭,集合{|15}B x N x =∈-≤≤,则A B =( )A .{0,1,4,5}B .{0,1,3,4,5}C .{1,0,1,4,5}-D .{1,3,4,5}【答案】A 【解析】 因为集合{1|033x A x x x x -⎧⎫=≥=⎨⎬-⎩⎭或}1x ≤, 集合{|15}{0,1,2,3,4,5}B x N x =∈-≤≤=,所以A B ={0,1,4,5}.故选:A考点五:绝对值不等式的解法【典例7】(2020·江苏省高考真题)设x ∈R ,解不等式2|1|||4x x ++<. 【答案】2(2,)3- 【解析】1224x x x <-⎧⎨---<⎩或10224x x x -≤≤⎧⎨+-<⎩或0224x x x >⎧⎨++<⎩21x ∴-<<-或10x -≤≤或203x <<所以解集为:2(2,)3-【典例8】(2020·周口市中英文学校高二月考(文))(1)求不等式|x -1|+|x +2|≥5的解集;(2)若关于x 的不等式|ax -2|<3的解集为51|33x x ⎧⎫-<<⎨⎬⎩⎭,求a 的值.【答案】(1) {x |x ≤-3或x ≥2} (2) a =-3 【解析】(1)当x <-2时,不等式等价于-(x -1)-(x +2)≥5,解得x ≤-3; 当-2≤x <1时,不等式等价于-(x -1)+(x +2)≥5,即3≥5,无解; 当x ≥1时,不等式等价于x -1+x +2≥5,解得x ≥2. 综上,不等式的解集为{x |x ≤-3或x ≥2}. (2)∵|ax -2|<3,∴-1<ax <5. 当a >0时,15x a a -<< , 153a -=-,且513a =无解; 当a =0时,x ∈R ,与已知条件不符; 当a <0时,51x a a <<-,553a =-,且113a -=, 解得a =-3. 【规律方法】形如|x -a|+|x -b|≥c(或≤c)型的不等式主要有三种解法:(1)分段讨论法:利用绝对值号内式子对应方程的根,将数轴分为(-∞,a],(a ,b],(b ,+∞)(此处设a<b)三个部分,在每个部分上去掉绝对值号分别列出对应的不等式求解,然后取各个不等式解集的并集. (2)几何法:利用|x -a|+|x -b|>c(c>0)的几何意义:数轴上到点x 1=a 和x 2=b 的距离之和大于c 的全体,|x -a|+|x -b|≥|x-a -(x -b)|=|a -b|.(3)图象法:作出函数y 1=|x -a|+|x -b|和y 2=c 的图象,结合图象求解. 【变式探究】1.(2017天津,文2)设x ∈R ,则“20x -≥”是“|1|1x -≤”的( ) (A )充分而不必要条件 (B )必要而不充分条件 (C )充要条件 (D )既不充分也不必要条件 【答案】B【解析】20x -≥,则2x ≤,11x -≤,则111,02x x -≤-≤≤≤,{}{}022x x x x ≤≤⊂≤ ,据此可知:“20x -≥”是“11x -≤”的的必要的必要不充分条件,本题选择B 选项. 2.(2014·广东高考真题(理))不等式的解集为 .【答案】(][),32,-∞-⋃+∞. 【解析】令()12f x x x =-++,则()21,2{3,2121,1x x f x x x x --<-=-≤≤+>,(1)当2x <-时,由()5f x ≥得215x --≥,解得3x ≤-,此时有3x ≤-; (2)当21x -≤≤时,()3f x =,此时不等式无解;(3)当1x >时,由()5f x ≥得215x +≥,解得2x ≥,此时有2x ≥; 综上所述,不等式的解集为(][),32,-∞-⋃+∞.考点六:绝对值不等式的应用如果a ,b 是实数,那么|a +b|≤|a|+|b|,当且仅当ab ≥0时,等号成立.【典例9】(2020·陕西省西安中学高二期中(理))已知不等式53m x x ≤-+-对一切x ∈R 恒成立,则实数m 的取值范围为( ) A .2m ≤B .2m ≥C .8m ≤-D .8m ≥-【答案】A【解析】()()-+-≥---=,∴根据题意可得2x x x x53532m≤.故选:A【典例10】(2018年理新课标I卷)已知.(1)当时,求不等式的解集;(2)若时不等式成立,求的取值范围.【答案】(1).(2).【解析】分析:(1)将代入函数解析式,求得,利用零点分段将解析式化为,然后利用分段函数,分情况讨论求得不等式的解集为;(2)根据题中所给的,其中一个绝对值符号可以去掉,不等式可以化为时,分情况讨论即可求得结果.(2)当时成立等价于当时成立.若,则当时;若,的解集为,所以,故.综上,的取值范围为.【总结提升】1.两类含绝对值不等式的证明问题一类是比较简单的不等式,往往可通过平方法、换元法去掉绝对值符号转化为常见的不等式证明题,或利用绝对值三角不等式性质定理:||a|-|b||≤|a±b|≤|a|+|b|,通过适当的添、拆项证明;另一类是综合性较强的函数型含绝对值的不等式,往往可考虑利用一般情况成立,则特殊情况也成立的思想,或利用一元二次方程的根的分布等方法来证明.2.含绝对值不等式的应用中的数学思想(1)利用“零点分段法”求解,体现了分类讨论的思想;(2)利用函数的图象求解,体现了数形结合的思想.3.求f(x)=|x+a|+|x+b|和f(x)=|x+a|-|x+b|的最值的三种方法(1)转化法:转化为分段函数进而利用分段函数的性质求解.(2)利用绝对值三角不等式进行“求解”,但要注意两数的“差”还是“和”的绝对值为定值. (3)利用绝对值的几何意义. 【变式探究】1.(2020·宁夏回族自治区高三其他(理))已知函数()|21||2|f x x x =-+-. (1)若()4f x <,求实数x 的取值范围;(2)若对于任意实数x ,不等式()|21|f x a >-恒成立,求实数a 的值范围.【答案】(1) 17,33⎛⎫- ⎪⎝⎭;(2) 15,44⎛⎫- ⎪⎝⎭【解析】(1)由题,()133,211,2233,2x x f x x x x x ⎧-+≤⎪⎪⎪=+<<⎨⎪-≥⎪⎪⎩;当12x ≤时,334x -+<,解得1132x -<≤;当122x <<时,14x +<恒成立,解得122x <<; 当2x ≥时,334x -<,解得723x ≤<.综上有3137x -<<.故实数x 的取值范围为17,33⎛⎫- ⎪⎝⎭(2)因为()133,211,2233,2x x f x x x x x ⎧-+≤⎪⎪⎪=+<<⎨⎪-≥⎪⎪⎩,当12x ≤时,()1322f x f ⎛⎫≥= ⎪⎝⎭;当122x <<时,()332f x <<;当2x ≥时,()()23f x f ≥=. 故()f x 的最小值为32.故3212a -<,即332122a -<-<,解得1544a -<<.故实数a 的值范围为15,44⎛⎫-⎪⎝⎭2.已知函数f(x)=|x−1|.(1)解不等式f(x)+f(x+4)≥8;(2)若|a|<1,|b|<1,且a≠0,求证:f(ab)>|a|f(ba).【答案】(1) {x|x≤−5或x≥3} (2)见解析【解析】(1)f(x)+f(x+4)=|x−1|+|x+3|={−2x−2,x<−3, 4,−3≤x≤1, 2x+2,x>1,当x<−3时,由−2x−2≥8,解得x≤−5;当−3≤x≤1时,f(x)≥8不成立;当x>1时,由2x+2≥8,解得x≥3.所以不等式f(x)+f(x+4)≥8的解集为{x|x≤−5或x≥3}.(2)f(ab)>|a|f(ba),即|ab−1|>|a−b|.因为|a|<1,|b|<1,所以|ab−1|2−|a−b|2=(a2b2−2ab+1)−(a2−2ab+b2)=(a2−1)(b2−1)>0,所以|ab−1|>|a−b|,故所证不等式成立.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【课堂例题】
例1.利用性质1和性质2证明:
(1)如果a b c +>,那么a c b >-;
(2)如果,a b c d >>,那么a c b d +>+
例2.利用性质3证明:
如果0,0a b c d >>>>,那么ac bd >.
(选用)例3.利用不等式的性质证明:
如果0a b >>,那么110a b
<
<.
【知识再现】
1.不等式性质的基础:
a b >⇔ ;a b =⇔ ;a b <⇔ .
2.三条基本性质:
性质1.(传递性) 若,a b b c >>,则 ;
性质2.(加法性质) 若a b >,则 ;
性质3.(乘法性质) 若,0a b c >>,则 ; 若,0a b c ><,则 .
3.几条比较有用的推论:
性质4.(同向可加性) 若,a b c d >>,则 ;
性质5.(正数同向可乘性) 若0,0a b c d >>>>,则 ; 性质6.(正数的倒数性质) 若0a b >>,则 ;
性质7.(正数的乘方性质) 若0a b >>,则 *()n N ∈; 性质8.(正数的开方性质) 若0a b >>,则 *(,1)n N n ∈>.
【基础训练】
1.请用不等号表示下列关系:
(1)a 是非负实数, ;
(2)实数a 小于3,但不小于2-, ;
(3)a 和b 的差的绝对值大于2,且小于等于9, .
2.判断下列语句是否正确,并在相应的括号内填入“√”或“×”.
(1)若a b >,则a
b
c c >;( ) (2)若ac bc <,则a b <;( )
(3)若a b <,则1
1
a b <; ( ) (4)若22ac bc >,则a b >;( )
(5)若a b >,则n n a b >;( ) (6)若0,0a b c d >>>>,则a b
c d >;(
) 3.用“>”或“<”号填空:
(1)若a b >,则a - b -; (2)若0,0a b >>,则b a 1b
a +;
(3)若,0a b c >>,则d ac + d bc +;
(4)若,0a b c ><,则()c d a - ()c d b -;
(5)若,,0a b d e c >><,则d ac - e b c -.
4.(1)如果a b >,那么下列不等式中必定成立的是( ) (A) 1
1
a b <; (B) 22a b >; (C)22ac bc >; (D)2211
a b c c >++.
(2)如果0a b >>,那么下列不等式不一定成立的是( ) (A) 1
1
a b <; (B) 2ab b >; (C)22ac bc >; (D) 22a b >.
5.已知,x y R ∈,使1
1
,x y x y >>同时成立的一组,x y 的值可以是 .
6.已知,0423
πππαβ<<<<,试求下列各式的取值范围:
(1) 2αβ+; (2) αβ-.
7.利用不等式的性质,证明下列不等式:(在关键步骤注明所使用的 性质的序号,以【知识再现】中的性质序号为准).
(1)已知,a b c d ><,求证:2323a c b d ->-;
(2)已知0,0a b c d <<<<>
【巩固提高】
8.已知03a b <<<,求2a b
-的取值范围.
9.利用不等式的性质,证明下列不等式:(仅要求书写过程,理由可略)
(1)已知0a b <<,求证:110a b >
>;
(2)如果0,0a b c d >>>>>
(3)如果0,0,0a b c d f >><<<,那么
f f a c b d >--.
(选做)10.已知123a b <<<<, 求,,2,,a a b a b a b ab b
+--各自的取值范围.
【温故知新】
11.命题“如果,0a b b ≥>,那么0a ≥”是真命题还是假命题? .
【课堂例题答案】
例1.证明略
例2.证明略
例3.证明略
【知识再现答案】
1.0,0,0a b a b a b ->-=-<
2.,,,a c a c b c ac bc ac bc >+>+><
3.11,,0,n n a c b d ac bd a b a b
+>+><<>>【习题答案】
1.(1) 0a ≥;(2) 23a -≤<;(3) 2||9a b <-≤
2.×,×,×,√,×,×.
3.,,,,<>>>>
4.(1)D ;(2)C .
5.1,1x y ==-,答案不唯一,只要满足0x y >>
6.(1)4223π
παβ<+<;(2)122
ππαβ-<-< 7.证明略 8.3022
a b --<< 9.证明略 10.135,20,522,26,
13a a b a b a b ab b <+<-<-<-<-<-<<<< 11.真命题。

相关文档
最新文档