七年级下册不等式及其基本性质讲义
《不等式的基本性质》 讲义

《不等式的基本性质》讲义一、不等式的定义在数学中,不等式是表示两个数或者表达式之间大小关系的一种数学表达式。
用不等号(如“>”大于、“<”小于、“≥”大于等于、“≤”小于等于)连接两个数或表达式所组成的式子,就叫做不等式。
例如:3 <5,x + 2 > 5 等等。
二、不等式的基本性质1、对称性如果 a > b,那么 b < a ;如果 a < b,那么 b > a 。
这就好像两个人比身高,如果甲比乙高,那么反过来乙就比甲矮,道理是很直观易懂的。
2、传递性如果 a > b 且 b > c,那么 a > c ;如果 a < b 且 b < c,那么 a <c 。
比如说,甲比乙高,乙又比丙高,那自然甲就比丙高;反过来,如果甲比乙矮,乙又比丙矮,那甲肯定比丙矮。
3、加法性质如果 a > b,那么 a + c > b + c 。
这意味着,当不等式两边同时加上同一个数,不等号的方向不变。
就好比甲和乙有身高差,两人同时穿上一样厚的增高鞋,身高差依然不变。
4、减法性质如果 a > b,那么 a c > b c 。
跟加法性质类似,不等式两边同时减去同一个数,不等号方向也不变。
5、乘法性质(1)如果 a > b 且 c > 0,那么 ac > bc 。
当不等式两边同时乘以一个正数,不等号方向不变。
可以想象成把两个长度不同的线段同时按相同的比例放大,它们的长度差还是保持原来的大小关系。
(2)如果 a > b 且 c < 0,那么 ac < bc 。
但如果乘以一个负数,不等号方向就要改变。
这有点像在镜子里看东西,左右方向会反过来。
6、除法性质(1)如果 a > b 且 c > 0,那么 a/c > b/c 。
不等式两边同时除以一个正数,不等号方向不变。
(2)如果 a > b 且 c < 0,那么 a/c < b/c 。
除以一个负数时,不等号方向改变。
7、乘方性质如果 a > b > 0,那么 a^n > b^n(n 为正整数,n ≥ 1)。
人教版初一下数学-不等式的定义及性质 ]讲义(学生版)
![人教版初一下数学-不等式的定义及性质 ]讲义(学生版)](https://img.taocdn.com/s3/m/ba607f2b55270722192ef7a7.png)
1.了解不等式的意义,理解不等式解集的含义,会在数轴上表示解集;2.理解不等式的三条基本性质,并会用它们解简单的一元一次不等式重点:不等式的定义、列不等式和不等式的性质;难点:不等式的解、解集的表示方法以及不等式性质的运用.第12讲不等式定义及其性质不等式的定义1.不等式:用不等号表示不相等关系的式子,叫做不等式.例如:2-<-+>-+++>≠≤≥等都是不等式.52,314,10,10,0,35a x a x a a2.常见的不等号有5种:“≠”、“>”、“<”、“≥”、“≤”.注意:不等式32≥成立.=成立,所以不等式33≥成立;而不等式33≥也成立,因为333.不等号“>”和“<”称为互为相反方向的符号,所谓不等号的方向改变,就是指原来的不等号的方向改变成与其相反的方向,如:“>”改变方向后,就变成了“<”.例1.下列式子<y+5; 1>2; 3m﹣1≤4;a+2≠a﹣2中,不等式有()个. A.2 B.3 C.4 D.1练习1.下列数学表达式中,①﹣8<0;②4a+3b>0;③a=3;④a+2>b+3,不等式有() A.1个 B. 2个 C.3个 D.4个练习2.在式子﹣3<0,x≥2,x=a,x2﹣2x,x≠3,x+1>y中,是不等式的有()A.2个 B.3个 C.4个 D.5个利用不等式的定义,表示不等关系的式子叫不等式.列不等式1.根据已知条件列不等式,实际上就是用不等式表示代数式间的不等关系,重点是抓住关键词,弄清不等关系.2.步骤:①正确列出代数式;②正确使用不等号3.掌握有关概念的含义,并能翻译成式子.(1)和、差、积、商、幂、倍、分等运算.(2)“至少”、“最多”、“不超过”、“不少于”等词语.如:某人至少有10元钱,是说这个人的钱数多于或等于10元.(3)正数、负数、非负数、非正数等概念.如:a是非正数,应写成:a≤0.例1.用不等式表示:(1)x的23与5的差小于1;(2)8与y的2倍的和是正数;(3)x与5的和不小于0;(4)x的14小于等于2;(5)x的4倍大于x的3倍与7的差;(6)x与8的差的23不超过0.练习1.用适当的符号表示下列关系:(1)x的与x的2倍的和是非正数;(2)一枚炮弹的杀伤半径不小于300米;(3)三件上衣与四条长裤的总价钱不高于268元;(4)明天下雨的可能性不小于70%;(5)小明的身体不比小刚轻.练习2.用适当的不等式表示下列关系:(1)a是非负数;(2)x 与2差不足15 ; (3)x+3与y ﹣5的和是负数.一般根据所描述的语句,列出不等关系.注意非正数、非负数、不大于、不小于等符号表示.例2.用“<”或“>”填空:⑴4______-6; (2)-3______0; (3)-5______-1; (4)6+2______5+2; (5)6+(-2)______5+(-2); (6)6×(-2)______5×(-2).练习1.下列不等式中,正确的是( ). A.4385-<-B.5172< C.(-6.4)2<(-6.4)3D.-|-27|<-(-3)3练习2.用“<”或“>”填空:⑴-2.5______-5.2; (2);125______114--(3)|-3|______-(-2.3); (4)a 2+1______0; (5)0______|x |+4; (6)a +2______a .给出已知数,可直接判断它们的大小关系;含字母的可带特殊值法进行比较.例3.金坛市2月份某天的最高气温是15°C ,最低气温是﹣2°C ,则该天气温t (°C )的变化范围是 .练习1.在数轴上有A ,B 两点,其中点A 所对应的数是a ,点B 所对应的数是1.已知A ,B 两点的距离小于3,请你利用数轴. (1)写出a 所满足的不等式;(2)数﹣3,0,4所对应的点到点B 的距离小于3吗?练习2.若a 是有理数,比较2a 和3a 的大小.利用不等关系解决实际问题,另注意分类讨论的思想.例4.如果a 、b 表示两个负数,且a <b ,则( ).A. B. C. D.ab <1练习1.|a |+a 的值一定是( ). A.大于零 B.小于零 C.不大于零 D.不小于零练习2. a 、b 是有理数,下列各式中成立的是( ). A.若a >b ,则a 2>b 2B.若a 2>b 2,则a >bC.若a ≠b ,则|a |≠|b |D.若|a |≠|b |,则a ≠b给出字母的不等关系,在这个基础上去判断其他的不等式的关系:可采用设数法、分类讨论法等.不等式的解、解集及解集的表示方法1.相关概念:①不等式的解:使不等式成立的未知数的值叫做不等式的解;②不等式的解集:使不等式成立的未知数的取值范围叫做不等式的解的集合,简称解集;1>b a 1<b a ba 11<③解不等式:求不等式的解集的过程叫做解不等式; 2.不等式的解和解集的区别与联系:区别:不等式的解是一些具体数值,有无数个,用符号表示;不等式的解集是一个范围,用不等号表示.联系:不等式的每一个解都在它的解集的范围内. 3.用数轴表示不等式的解集: ①x ≥-2表示为: ②x ≤-2表示为:③x ﹤2表示为:④x >2表示为:特别提示:用数轴表示不等式的解集要注意两点:①定界点:一般在数轴上只标出原点和界点即可,定边界点时要注意点是实心还是空心,若边界点含于集合为实心点,不含于解集为空心点;②定方向:“小于向左,大于向右”.例1.下列说法不正确的是( )A .不等式﹣x ≤1的解集是x ≥1B .不等式﹣x >﹣2的解集是x <4C .不等式2(x ﹣1)≤3的解集是x ≤2.5D .不等式1≤x 的解集是x ≥1练习1.下列说法中错误的是( )A.不等式的解集是;B.是不等式的一个解C.不等式的正整数解有无数多个D.不等式正数解有无限个练习2.下列不等式的解集不正确的是( )A .不等式2x >4的解集是x >2B .不等式x ﹣3<5的解集是x <8C .不等式x ﹣2≥1的解集是x ≥3D .不等式<3的解集是x >﹣3根据不等式的解和解集的概念去判断或选择是不是不等式的解或解集例2.当x=3时,下列不等式成立的是( )A .x+2<6B .x ﹣1<2C .2x ﹣1<OD .2﹣x >028x -<4x >-40-28x <-6x <6x<练习1.在、、、、、、中,能使不等式成立的有( )A.个B.个C.个D.个练习2.下列不等式>50的解的个数有( )①x=80;②x=75;③x=78;④x=10. A .1个 B .2个C .3个D .4个考查了不等式的解集,熟练掌握不等式解集的意义是解本题的关键例3. 在数轴上表示x <﹣3的解集,下图中表示正确的是( )A .B .C .D .练习1.如图在数轴上表示的是下列哪个不等式( )A .x >﹣2B .x <﹣2C .x ≥﹣2D .x ≤﹣2 练习2.把下列不等式的解集表示在数轴上 (1)x ≥﹣5 (2) x <6在数轴上表示不等式的解集,熟知实心原点与空心原点的区别是解答此题的关键.不等式的性质1.基本性质1:不等式两边都加上(或减去)同一个数(或式子),不等号方向不变.如果a b >,那么a c b c ±>± 如果a b <,那么a c b c ±<±2.基本性质2:不等式两边都乘以(或除以)同一个正数,不等号的方向不变.如果a b >,并且0c >,那么ac bc >(或a bc c>) 如果a b <,并且0c >,那么ac bc <(或a b c c<) 12-1-2-03-1232-32x +<43213.基本性质3:不等式两边都乘以(或除以)同一个负数,不等号的方向改变.如果a b >,并且0c <,那么ac bc <(或a b c c<) 如果a b <,并且0c <,那么ac bc >(或a b c c>) 补充:不等式的互逆性:如果,那么;如果,那么. 不等式的传递性:如果,,那么.易错点:①不等式两边都乘(或除以)同一个负数,不等号的方向改变.②在计算的时候符号方向容易忘记改变.例1. 填空:⑴ 如果,则,是根据 ; ⑵ 如果,则,是根据 ;⑶ 如果,则,是根据 ; ⑷ 如果,则,是根据 ; ⑸ 如果,则,是根据 .练习1.利用不等式的基本性质,用“<”或“>”号填空.⑴ 若,则_______; ⑵ 若,则______; ⑶ 若,则______; ⑷ 若,,则______;⑸ 若,,,则_______.练习2.若,用“”或“”填空 ⑴; ⑵⑶; ⑷利用不等式的三个基本性质,去判断新的不等式之间的关系.a b >b a <b a <a b >a b >b c >a c >a b >2a a b >+a b >33a b >a b >a b -<-1a >2a a >1a <-2a a >-a b <2a 2b a b >4a -4b -362x ->x 4-a b >0c >ac bc 0x <0y >0z <()x y z -0a b <><2_____2a b ++2_____2a b --11______33a b ____a b --例2.如果ax >b 的解集为则a ______0.练习1.如果关于的不等式的解集为,那么的取值范围是( ) A. B. C. D.练习2.根据,则下面哪个不等式不一定成立( )A. B . C. D.利用不等式的性质,解决未知数系数是含参数的不等式.例3.设“▲”、“●”、“■”分别表示三种不同的物体,现用天平秤两次,情况如图所示,那么▲、●、■这三种物体按质量从大到小排列应为( ).A .■、●、▲B .▲、■、●C .■、▲、●D .●、▲、■练习1.设a 、b 、c 表示三种不同物体的质量,用天枰称两次,情况如图所示,则这三个物体的质量从小到大排序正确的是( ).A .c <b <aB .b <c <aC .c <a <bD .b <a <c,abx >x (1)1a x a +>+1x <a 0a >0a <1a >-1a <-a b >22a c b c +>+22a c b c ->-22ac bc >2211a bc c >++练习2.若实数a,b,c在数轴上对应位置如图所示,则下列不等式成立的是().A.ac>bc B.ab>cb C.a+c>b+c D.a+b>b+c作差法比较大小应用有理数(式子)的减法运算可以比较两个有理数(式子)的大小,这就是“作差法”,即要比较两个有理数(式子)A与B的大小,可先求出A与B的差A-B,再通过其结果进行判断.如果A-B>0,则A>B;如果A-B=0, 则A=B;如果A-B<0,则A<B.例1.用等号或不等号填空:(1)比较4m与m2+4的大小当m=3时,4m m2+4当m=2时,4m m2+4当m=﹣3时,4m m2+4(2)无论取什么值,4m与m2+4总有这样的大小关系吗?试说明理由.练习1.比较2x2+4x+2与2x2+4x-6的大小关系,并说明理由练习2.比较2x+3与﹣3x﹣7的大小关系利用作差法,不能直接判断出关系时,采用分类讨论.例2.试判断a2﹣3a+7与﹣3a+2的大小.练习1.通过计算比较下列各组数中两个数的大小:1221;2332;3443;4554;5665;…由以上结果可以猜想n n+1与(n+1)n的大小关系是.根据以上猜想,你能判断20032004与20042003的大小吗?练习2.比较与的大小.利用作差法,比较较复杂的两个式子的大小,结果与0做比较,再判断原式的大小关系即可.本讲内容主要讲解了不等式的定义、不等式的解与解集,会用数轴表示不等式的解集,以及不等式的三个性质,要学会利用不等式的性质去判断不等关系,以及进行不等变换;学会用数轴标数法比较大小、以及会用作差法比较两个代数式的大小等.。
七年级l下册数学不等式知识点

七年级l下册数学不等式知识点七年级下册数学不等式知识点在初中数学中,不等式是一个重要的数学概念,也是数学竞赛和数学考试的重要内容之一。
在七年级下册数学课程中,学生们将开始学习不等式的基本概念、性质及应用。
本文将针对七年级下册数学不等式知识点进行详细讲解。
不等式的定义不等式是一种数学关系,它表示两个数的大小关系不同于相等。
以数学符号来表示,我们可以用“<”(小于)、“>”(大于)、“≤”(小于等于)、“≥”(大于等于)等符号。
例如,对于两个实数a和b,如果a小于b,则我们可以用a<b表示。
同理,如果a小于等于b,则我们可以用a≤b表示。
不等式的基本性质不等式有许多基本性质,其中最基本的是不等式的传递性。
也就是说,如果a<b且b<c,则a<c。
这可以通过图像进行理解,如下图所示:除了传递性外,还有许多其他的不等式性质,比如以下几点:1. 两个不等式的加法或减法可以得到一个新的不等式。
例如,如果a<b且c<d,则a+c<b+d。
2. 两个不等式的乘法可以得到一个新的不等式,但要注意乘法时需要将不等式的符号进行变化。
例如,如果a<b且c>d,则a·c<b·d,且a·d<b·c。
3. 不等式的两侧都可以加上或减去同一个数,而不改变不等式的符号。
例如,如果a<b,则a+c<b+c。
4. 不等式的两侧都可以乘以或除以同一个正数,而不改变不等式的符号。
例如,如果a<b,则a·c<b·c,且a/c<b/c。
不等式的应用场景在实际生活和数学问题中,不等式得到广泛的应用。
以下是几个简单的例子:1. 购物打折:假设一件衣服原价100元,现在打7折,那么衣服的价格就是70元以下。
2. 不等式的求解:如果给你一个不等式a+b>5,你需要根据这个不等式找到a和b的取值范围。
《不等式及其基本性质》课件

这个课件介绍了不等式的定义、运算性质、解集表示,还包括一元一次不等 式、多元一次不等式的求解方法,以及不等式组的求解方法和在实际问题中 的应用。
不等式的定义
1 概念解释
不等式是用不等号连接的两个数或两个式子,表示大小关系。
2 种类
常见的不等式类型有大于、小于、不大于、不小于等。
不等式在实际问题中的应用
1 金融领域
利用不等式来决材料强度、承重能力等问题。
3 生活领域
通过不等式来优化日常生活,如控制饮食、调整作息等。
图像法
将多元不等式的解集表示在平面直角坐标系上,求出解集的范围。
线性规划法
利用线性规划方法求解多元不等式问题,找到最优解。
不等式组的求解方法
1
代入法
2
通过代入变量的方式,逐个求解不等式
组的每个不等式。
3
图形解法
将不等式组在平面直角坐标系上展示, 找出满足所有不等式的交集。
矩阵解法
利用矩阵运算和线性方程组的方法求解 不等式组。
可以用数轴上的点或线段来表示解集的范围。
3
区间表示
可以用开区间、闭区间或半开半闭区间来表示解集的范围。
一元一次不等式的求解方法
图形法
将不等式在数轴上表示成线段或阴影部分,求出解 集。
代数法
使用代数方法进行计算和推导,求出解集。
多元一次不等式的求解方法
子代数法
将多元不等式化简为含有一个变量的式子,再进行求解。
3 示例
例如:2x + 3 > 7 是一个不等式。
不等式的运算性质
加减法性质
• 对不等式两边同时加减一个相同的数,不等 式方向不变。
不等式-基本不等式辅导讲义(含详细解答)

例题1证明 ∵x >0,y >0,z >0,∴y x +z x ≥2 yz x >0,x y +z y ≥2 xzy >0, x z +y z ≥2 xyz >0, ∴⎝ ⎛⎭⎪⎫y x +z x ⎝ ⎛⎭⎪⎫x y +z y ⎝ ⎛⎭⎪⎫x z +y z ≥ 8 yz ·xz ·xyxyz=8.当且仅当x =y =z 时等号成立.训练1解:∵x ,y 都是正数 ∴yx >0,x y >0,x 2>0,y 2>0,x 3>0,y 3>0(1)xyy x x y y x ⋅≥+2=2即x y y x +≥2.(2)x +y ≥2xy >0 x 2+y 2≥222y x >0 x 3+y 3≥233y x >0∴(x +y )(x 2+y 2)(x 3+y 3)≥2xy ·222y x ·233y x =8x 3y 3即(x +y )(x 2+y 2)(x 3+y 3)≥8x 3y 3.例题2解析 (1)由x 2-3xy +4y 2-z =0,得z =x 2-3xy +4y 2, ∴xy z =xy x 2-3xy +4y 2=1x y +4yx -3. 又x ,y ,z 为正实数,∴x y +4yx ≥4, 当且仅当x =2y 时取等号,此时z =2y 2. ∴2x +1y -2z =22y +1y -22y 2=-⎝ ⎛⎭⎪⎫1y 2+2y=-⎝ ⎛⎭⎪⎫1y -12+1,当1y =1,即y =1时,上式有最大值1.(2)∵x >0,y >0,∴x +y =(x +y )·⎝ ⎛⎭⎪⎫2x +2y = 4+2⎝ ⎛⎭⎪⎫x y +y x ≥4+4x y ·yx =8.当且仅当x y =yx ,即x =y =4时取等号. 答案 (1)B (2)D训练2解析 (1)由x +3y =5xy 可得15y +35x =1,∴3x +4y =(3x +4y )⎝ ⎛⎭⎪⎫15y +35x =95+45+3x 5y +12y 5x ≥135+125=5(当且仅当3x 5y =12y 5x ,即x=1,y=12时,等号成立),∴3x+4y的最小值是5.(2)由x>0,y>0,得4x2+9y2+3xy≥2×(2x)×(3y)+3xy(当且仅当2x=3y时等号成立),∴12xy+3xy≤30,即xy≤2,∴xy的最大值为2.答案(1)C(2)C解析由32+x+32+y=1可化为xy=8+x+y,∵x,y均为正实数,∴xy=8+x+y≥8+2xy(当且仅当x=y时等号成立),即xy-2xy-8≥0,解得xy≥4,即xy≥16,故xy的最小值为16.答案 D课堂练习1、解析因为ab>0,即ba>0,ab>0,所以ba+ab≥2ba×ab=2.答案 C2、解析由题意1a+1b=a+ba+a+bb=2+ba+ab≥2+2ba×ab=4,当且仅当ba=ab,即a=b=12时,取等号,所以最小值为4.答案 C3、解析y=x-4+9x+1=x+1+9x+1-5,由x>-1,得x+1>0,9x+1>0,所以由基本不等式得y=x+1+9x+1-5≥2(x+1)×9x+1-5=1,当且仅当x+1=9x+1,即(x+1)2=9,所以x+1=3,即x=2时取等号,所以a=2,b=1,a+b=3.答案 C4、解析(1+2a)(1+b)=5+2a+b≥5+22ab=9.当且仅当2a=b,即a=1,b =2时取等号.答案9解析 ∵x >0,y >0且1=x 3+y4≥2xy 12,∴xy ≤3.当且仅当x 3=y 4,即当x =32,y=2时取等号. 答案 3解析 ∵y =a 1-x 恒过点A (1,1),又∵A 在直线上,∴m +n =1.而1m +1n =m +n m +m +n n =2+n m +m n ≥2+2=4,当且仅当m =n =12时,取“=”,∴1m +1n 的最小值为4. 答案 4课后作业1、答案 C2、答案 A解析 由题意知,a <0,b a =-56,-1a =16,∴a =-6,b =5.∴x 2-5x +6<0的解是(2,3).3、答案 C解析 作出可行域如图所示 .由于2x +y =40、x +2y =50的斜率分别为-2、-12,而3x +2y =0的斜率为-32,故线性目标函数的倾斜角大于2x +y =40的倾斜角而小于x +2y =50的倾斜角,由图知,3x +2y =z 经过点A (10,20)时,z 有最大值,z 的最大值为70.4、答案 A解析 x -1x ≥2⇔x -1x -2≥0⇔-x -1x≥0⇔x +1x ≤0⇔⎩⎪⎨⎪⎧x (x +1)≤0x ≠0⇔-1≤x <0. 5、答案 A解析 ∵ab -(a +b )=1,ab ≤(a +b 2)2,∴(a +b 2)2-(a +b )≥1,它是关于a +b 的一元二次不等式,解得a +b ≥2(2+1)或a +b ≤2(1-2)(舍去). ∴a +b 有最小值2(2+1).又∵ab -(a +b )=1,a +b ≥2ab ,∴ab -2ab ≥1,它是关于ab 的一元二次不等式, 解得ab ≥2+1,或ab ≤1-2(舍去), ∴ab ≥3+22,即ab 有最小值3+2 2.6、答案 A 解析不等式表示的平面区域如图所示阴影部分,当直线ax +by =z (a >0,b >0)过直线x -y +2=0与直线3x -y -6=0的交点(4,6)时,目标函数z =ax +by (a >0,b >0)取得最大值12,即4a +6b =12,即2a +3b =6,而2a +3b =(2a +3b )·2a +3b 6=136+(b a +a b )≥136+2=256(a =b=65时取等号).7、答案 [-1,0]解析 由f (x )=2x 2-2ax -a -1的定义域为R .可知2x 2-2ax -a ≥1恒成立,即x 2-2ax -a ≥0恒成立,则Δ=4a 2+4a ≤0,解得-1≤a ≤0.8答案 3解析 由x -2y +3z =0,得y =x +3z 2,将其代入y 2xz,得x 2+9z 2+6xz 4xz ≥6xz +6xz 4xz =3,当且仅当x =3z 时取“=”,∴y 2xz的最小值为3.。
不等式七年级下册知识点

不等式七年级下册知识点七年级下册数学课程重点知识点之一是不等式。
本文将介绍不等式的基本概念、性质和解不等式的方法。
一、基本概念1. 不等式的定义不等式是用于表示两个数之间大小关系的数学式子。
例如:a > b,a < b,a ≥ b,a ≤ b等均为不等式。
2. 不等式的符号不等式中常见的符号有“<” (小于),“>” (大于),“≤” (小于等于),“≥” (大于等于)。
例如:a < b,表示 a 小于 b;a > b 表示 a 大于 b;a ≤b 表示 a 小于或等于 b;a ≥ b 表示 a 大于或等于 b。
3. 不等式的解解不等式指确定不等式中未知数的取值范围,使不等式成立。
解不等式时需要注意不等式符号的反向变换。
二、基本性质1. 等价性质如果在一个不等式的两边同时加(减)同一个数,不等式的方向不变。
例如:若 a > b,则 a + c > b + c,a - c > b - c。
2. 反比例性质如果在一个不等式的两边同时乘(除)同一个正数(负数),不等式的方向不变。
例如:若 a > b,则 ac > bc 当 c > 0,ac < bc 当 c < 0。
3. 基本不等式a²≥0。
三、解不等式的方法1. 用加减法解不等式例如:3x + 5 > 8,把不等式两边同时减 5,得到 3x > 3。
再把不等式两边同时除以 3,得到 x > 1。
2. 用乘法解不等式例如:-2x + 5 < 11,把不等式两边同时减 5,得到 -2x < 6。
再把不等式两边同时乘以 -1,且要注意不等式方向变化,得到 2x > -6。
再将方程两边同时除以 2,得到 x > -3。
3. 用不等式的性质解不等式例如:-2x + 5 < 11,把不等式两边同时减 5,得到 -2x < 6。
七年级数学拓展第五讲不等式与不等式组讲义

例 16.(2010 江苏)近期以来,大蒜和绿豆的市场价格离奇攀升,网民戏称为“蒜你狠”、“豆 你玩”.以绿豆为例,5 月上旬某市绿豆的市场价已达 16 元/千克。市政府决定采取价格临时 干预措施,调进绿豆以平抑市场价格。经市场调硏预测,该市每调进 100 吨绿豆,市场价格 就下降 1 元/千克。为了即能平抑绿豆的市场价格,又要保护豆农的生产积极性,绿豆的市 场价格控制在 8 元汘千克到 10 元/汘克之间(含 8 元/千克和 10 元/千克)。问调进绿豆的吨 数应在什么范围内为宜?
例 17.某工厂现有甲种原料 36 千克,乙种原料 20 千克,计划用这两种原料生产 A、B 两种 产品共 12 件。已知生产一件 A 种产品需甲种原料 3 千克,乙种原料 1 千克;生 B 种产品需 甲种原料 2 千克乙种原料 5 千克 (1)设生产 x 件 A 种产品,写出 x 应满足的不等式组 (2)请你设计出符合题意的几种生产方案
第五讲 不等式与不等式组
不等式的概念
1.不等式的概念
用不等号表示不相等关系的式子,叫做不等式,例如:
5 2, a 3 4 1, x 1 0,| x | 0,3a 4a
等都是不等式
常见的不等号有 5 种: " "," "," "," "," "
2.不等式的性质
(1)基本性质 1:不等式两边都加上(或减去)同一个数或是同一个整式,不等号方向不 变
其中空心点用来表示“>”和“<”,实心点用来表示“≥”和“≤”
七年级不等式知识点讲解

七年级不等式知识点讲解不等式是数学中的一种运算符号,它是“大于”、“小于”、“大于等于”、“小于等于”的简称。
在数学中,不等式和等式一样重要,经常出现在数学题中。
在初中的学习中,我们将涉及到一些基础的不等式知识。
今天,我们将学习七年级不等式知识点的讲解。
一、不等式的概念不等式是一种比较两个数大小关系的符号表示。
如“1<2”,表示“1小于2”,“4≥3”,表示“4大于等于3”。
二、不等式的性质1、不等式两边同时乘以一个正数时,不等式的方向不变。
例如:3x > 6,两边同时乘以2,得到6x > 12,x > 2。
再例如:5y < 10,两边同时乘以1/2,得到2.5y < 5,y < 2。
2、不等式两边同时乘以一个负数时,不等式的方向改变。
例如:6a > 24,两边同时乘以-1,得到-6a < -24,a < -4。
再例如:9b < -18,两边同时乘以-1/9,得到-b > 2,b < -2。
3、不等式两边同时加上一个数时,不等式的方向不变。
例如:2x > 10,两边同时加上-4,得到2x-4 > 6,x > 3。
再例如:5y < -3,两边同时加上2,得到5y+2 < -1,y < -0.6。
4、不等式两边同时减去一个数时,不等式的方向不变。
例如:3a < 9,两边同时减去2,得到3a-2 < 7,a < 3。
再例如:4b > 8,两边同时减去3,得到4b-3 > 5,b > 2。
三、一元一次不等式的解法一元一次不等式的解法与一元一次方程的解法类似,实质上是将含有未知数的项移项相等,但要注意要根据不等式的方向确定正负性。
例如:4x-5 > 7,首先将-5移到右边:4x > 12,然后将4移到左边:x > 3。
再例如:7y+2 ≤ 23,首先将2移到右边:7y ≤ 21,然后将7移到左边:y ≤ 3。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
环球雅思教育学科教师讲义年级:上课次数:学员姓名:辅导科目:学科教师:课题课型□预习课□同步课□复习课□习题课授课日期及时段教学内容【基础知识网络总结与新课讲解】知识点一、不等式的有关概念:1.不等式的概念:用不等号把两个代数式连接起来,表示不等关系的式子,叫做不等式。
注意:常见的不等号有五种:“≠”、“>”、“<”、“≥”、“≤”.例1.请指出下列各式哪些是不等式:①x+y=y+x②4+x>5③-3<0④a+b≤c+b⑤a≠0⑥2x-7=5x+4例2.列出表示下列各数量关系的不等式:(1)a是正数;(2)y与2的差是非负数;(3)a与6的和大于7;(4)y的一半不小于3;(5)8与x的3倍的和不大于1。
提示:注意一个数的"和","差","倍","分"的表示法以及"大于","不小于","不大于"应该用哪一个不等号来表示,另外。
正数都大于0,负数都小于0,所以"是正数"可表示为">0","是负数"可表示为"<0","非负数"可表示为"≥0"。
参考答案:(1)a >0 (2)y-2≥0 (3)a+6>7 (4) ≥3 (5)8+3x ≤1 注意:列不等式时应注意两点:①"是正数"表示为>0","是负数"表示为<0";"非正数"表示为"≥0"。
②"不大于"用"≤"表示,"不小于"用"≥"表示。
2.不等式的基本性质(1)不等式的基本性质1:不等式的两边都加上(或减去)同一个数或同一个整式,不等号的方向不变。
用式子表示:如果a>b ,那a+c>b+c (或a –c>b –c )(2)不等式的基本性质2:不等式两边都乘以(或除以)同一个正数,不等号的方向不变。
用式子表示:如果a>b ,且c>0,那么ac>bc ,c b c a >。
(3)不等式的基本性质3:不等式两边都乘以(或除以)同一个负数,不等号的方向改变。
用式子表示:如果a>b ,且c<0,那么ac<bc ,cb c a <。
(4)对称性:如果a>b ,那么b<a 。
(5)同向传递性:a>b ,b>c 那么a>c 。
注意:不等式的基本性质是对不等式变形的重要依据。
不等式的性质与等式的性质类似,但等式的结论是“仍是等式”,而不等式的结论则是“不等号方向不变或改变”。
在运用性质(2)和性质(3)时,要特别注意不等式的两边乘以或除以同一个数,首先认清这个数的性质符号,从而确定不等号的方向是否改变。
说明:常见不等式所表示的基本语言与含义还有:①若a -b >0,则a 大于b ; ②若a -b <0,则a 小于b ; ③若a -b ≥0,则a 不小于b ; ④若a -b ≤0,则a 不大于b ;⑤若ab >0或0a b >,则a 、b 同号;⑥若ab <0或0ab<,则a 、b 异号。
任意两个实数a 、b 的大小关系:①a-b>O ⇔a>b ; ②a-b=O ⇔a=b ; ③a-b<O ⇔a<b . 不等号具有方向性,其左右两边不能随意交换;但a <b 可转换为b >a ,c ≥d 可转换为d ≤c 。
例3.对于不等式x+2<6,字母x表示未知数,当x取某一个数值a(例如3)时,x+2的值小于6,我们就说当x=a时,不等式x+2<6成立,当x取某一个数值b(例如5)时,x+2的值不小于6,我们就说当x=b时,不等式x+2<6不成立,说明当x取下列数值时,不等式2x+1<5是否成立?-1,0,3,-2.5,+4,-4,4.5提示:把下列各值分别代入不等式的左边计算2x+1的值,若小于5则不等式成立;若不小于5则不等式不成立。
参考答案:当x=-1,0,-2.5,-4时,不等式2x+1<5成立。
说明:因为当x=1,0,-2.5,-4时,不等式2x+1<5成立,当x=2,+4,4.5时,不等式2x+1<5不成立,所以同方程类似,我们可以说-1,0,-2.5-4是不等式2x+1<5的解,而2,+4,4.5不是不等式2x+1<5的解。
例4.指出下面变形是根据不等式的哪一条基本性质。
(1)由2a>5,得a>(2)由a-7>,得a>7(3)由- a>0,得a<0 (4)由3a>2a-1,得a>-1。
例5.设a>b;用">"或"<"号填空:(1)(2)a-5 b-5 (3)- a - b(4)6a 6b (5)-(6)-a -b参考答案:(1)>(2)>(3)<(4)>(5)<(6)<例5.试比较下列两个代数式值的大小:(1)5a+2与4a+2 (2)x3+3x2-7与x3+2x2-7提示:我们知道,若a-b>0,则a>b;若a-b=0,则a=b;若a-b<0,则a<b,所以要比较a与b的大小,可以先求出a与b的差,再看这个差是正数、负数还是零。
参考答案:(1)(5a+2)-(4a+2)=5a+2-4a-2=a∵a可取正数,负数或零,∴5a+2和4a+2间的大小关系有三种可能:①当a>0时,5a+2>4a+2 ②当a=0时,5a+2=4a+2③当a<0时,5a+2<4a+2。
(2)(x3+3x2-7)-(x3+2x2-7)=x3+3x2-2x2+7=x2∵x2≥0(对任意x) ∴x3+3x2-7≥x3+2x2-7例6.已知二数a>2,b>2,试比较a+b与ab的大小。
提示:此题可用作商比较法来比较a+b与ab 的大小。
参考答案:a+b<ab。
说明:∵a>b,b>2∴ab>0且∵又ab>0 ∴a+b<ab。
课内练习:1.(1)用“>”号或“<”号填空,并简说理由。
① 6+2 -3+2;② 6×(-2) -3×(-2);③ 6÷2 -3÷2;④ 6÷(-2) -3÷(-2)(2)如果a>b,则2.利用不等式的基本性质,填“>”或“<”:(1)若a>b,则2a+1 2b+1;(2)若<10,则y -8;(3)若a<b,且c>0,则ac+c bc+c;(4)若a>0,b<0, c<0,(a-b)c 0。
3. 按照下列条件,写出仍能成立的不等式,并说明根据。
(1)a>b两边都加上-4;(2)-3a<b两边都除以-3;(3)a≥3b两边都乘以2;(4)a≤2b两边都加上c;4. 根据不等式的性质,把下列不等式化为x>a或x<a的形式(a为常数):5.比较下列各题两式的大小:6.【探索与创新】 (1)用适当的符号填空①∣3∣+∣4∣ ∣3+4∣; ②∣3∣+∣-4∣ 3+(-4)∣; ③∣-3∣+∣4∣ ∣-3+4∣; ④∣-3∣+∣-4∣ ∣ -3+(-4)∣; ⑤∣0∣+∣4∣ ∣0+4∣;(2)观察后你能比较∣a ∣+∣b ∣和∣a +b ∣的大小吗? 课后习题:1.当x 取何值时,不等式3x <5x+1成立( )A.-B.-1C.0D.-3.5 2.下列不等式的变形中,正确的是( )A.若2x <-3,则x <- ,B.若- x <0,则x >0C.若-,则x >y 。
D.若-,则x <-63.若关于x 的不等式ax >b (a ≠0),有x <,那么a 一定是( )A.正数B.负数C.非正数D.任何数 4.若a >b 且a ≠0,b ≠0,则( ) A.B.C.a >b >0时,b <a <0时, ,D.ab 同号时, ,a 、b 异号时,5.已知a >b ,用“>”或“<”号填空.(1)a -2 b -2; (2)3a 3b ;(3)41a 41b ; (4)-32a -32b ; (5)-10a -10b ; (6)ac 2 b c 2.6.若x >y ,则ax >ay ,那么a 一定为 ( ). (A )a ≥0 (B )a ≤0 (C )a >0 (D )a <07.若m <n ,则下列各式中正确的是 ( ).(A )m -3>n -3 (B )3m >3n (C )-3m >-3n (D )13-m >13-n8.下列各题中,结论正确的是 ( ).(A )若a >0,b <0,则ab>0 (B )若a >b ,则a -b >0 (C )若a <0,b <0,则ab <0 (D )若a >b ,a <0,则ab<09.下列变形不正确的是 ( ). (A )若a >b ,则b <a (B )若-a >-b ,则b >a (C )由-2x >a ,得x >a 21-(D )由21x >-y ,得x >-2y 10.下列不等式一定能成立的是 ( ). (A )a +c >a -c (B )a 2+c >c (C )a >-a (D )10a<a11、在下列空格中填上不等号,并注明理由:(1)若5+x >8,则x 3,根据是 。
(2)若6x >3,则x ,根据是 。
(3)若>1,则x -3,根据是 。
(4)若x >y ,则- -,根据是 。
12、如果a <b ,用"<"或">"填空。
(1)a-1 b-1 (2)-2a -2b (3)(4)1-a 1-b13、若-,则c 0(填">"或"<"号)14、列出表示下列各数量关系的不等式: (1)m 的2倍与3的和大于7; (2)x 的 与4的差是负数;(3)a 的一半与b 的3倍的和不大于1; (4)y 的立方是非负数。
15.将下列不等式化成“x >a ”或“x <a ”的形式: (1)x -17<-5; (2)x 21->-3;(3)x 327->11; (4)351+x >354--x .16.a 一定大于-a 吗?为什么?17.已知将不等式mx >m 的两边都除以m ,得x <1,则m 应满足什么条件?18.设 a >b ,用“>”或“<”号填空:(1)a+3 ______ b+3; (2)5a ______ 5b ;(5)ma______ mb(m ≠0).30分钟检测一、选择题(每题4分,共32分)1、如果m <n <0,那么下列结论中错误的是( ) A 、m -9<n -9 B 、-m >-n C 、11n m > D 、1mn > 2、若a -b <0,则下列各式中一定正确的是( ) A 、a >b B 、ab >0 C 、0ab< D 、-a >-b 3、由不等式ax >b 可以推出x <ba,那么a 的取值范围是( ) A 、a ≤0 B 、a <0 C 、a ≥0 D 、a >0 4、如果t >0,那么a +t 与a 的大小关系是( )A 、a +t >aB 、a +t <aC 、a +t ≥aD 、不能确定 5、如果34a a <--,则a 必须满足( ) A 、a ≠0 B 、a <0 C 、a >0 D 、a 为任意数6、已知有理数a 、b 、c 在数轴上的位置如图所示,则下列式子正确的是( )ab cA 、cb >abB 、ac >abC 、cb <abD 、c +b >a +b 7、有下列说法:(1)若a <b ,则-a >-b ; (2)若xy <0,则x <0,y <0;[来源:学科网](3)若x <0,y <0,则xy <0; (4)若a <b ,则2a <a +b ; (5)若a <b ,则11a b >; (6)若1122x y--<,则x >y 。