北京朝阳区高三一模数学(理)试题

合集下载

北京市朝阳区高三数学第一次综合练习(一模)试题 理(含解析)-人教版高三全册数学试题

北京市朝阳区高三数学第一次综合练习(一模)试题 理(含解析)-人教版高三全册数学试题

北京市朝阳区高三年级第一次综合练习 数学试卷(理工类) 2016.3(考试时间120分钟 满分150分)本试卷分为选择题(共40分)和非选择题(共110分)两部分第一部分(选择题 共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,选出符合题目要求的一项. 1. i 为虚数单位,复数2i 1i+= A .1i - B .1i -- C .1i -+ D .1i + 答案:D解析:分母实数化,即分子与分母同乘以分母的其轭复数:222(1)111i i i i i i -==++-。

2. 已知全集U =R ,函数ln(1)y x =-的定义域为M ,集合{}20N x x x =-<,则下列结论正确的是 A .M N N = B .()UMN =∅C .M N U =D .()U M N ⊆答案:D解析:∵函数 y =ln(x -1)的定义域M ={}|1x x >,N ={}|01x x <<,又U =R ∴{}|1U C N x x =≥≤或x 0,∴MN =∅,故 A ,C 错误,D 显然正确。

3. >e e ab>”的A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件 答案:A解析>0a b >≥,又xy e =是增函数,所以,a b e e >,由a b e e >知a b >,但,a b 取负值时,,a b 无意义, 故选A 。

4. 执行如图所示的程序框图,输出的S 值为 A .42B .19C .8D .3答案:B解析:依次执行结果如下:S =2×1+1=3,i =1+1=2,i <4; S =2×3+2=8,i =2+1=3,i <4; S =2×8+1=19,i =3+1=42,i ≥4; 所以,S =19,选B 。

朝阳区高三一模有答案(数学理)

朝阳区高三一模有答案(数学理)

北京市朝阳区高三年级第一次综合练习数学试卷(理工类) 2012.3(考试时间120分钟 满分150分)本试卷分为选择题(共40分)和非选择题(共110分)两部分第一部分(选择题 共40分)注意事项:考生务必将答案答在答题卡上,在试卷上答无效。

一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,选出符合题目要求的一项. 1. 复数10i12i=- A. 42i -+ B. 42i - C. 24i - D. 24i +2. 已知平面向量,a b 满足()=3a a +b ⋅,且2,1ab ,则向量a 与b 的夹角为A.6π B. 3π C. 32π D. 65π 3.已知数列{}n a 的前n 项和为n S ,且21()n n S a n N *=-∈,则5a =A. 16-B. 16C. 31D. 324. 已知平面α,直线,,a b l ,且,a b αα⊂⊂,则“l a ⊥且l b ⊥”是“l α⊥”的 A .充分不必要条件 B .必要不充分条件C .充分必要条件D .既不充分也不必要条件5. 有10件不同的电子产品,其中有2件产品运行不稳定.技术人员对它们进行一一测试, 直到2件不稳定的产品全部找出后测试结束,则恰好3次就结束测试的方法种数是( )A. 16B. 24C. 32D. 486.已知函数()f x 是定义在R 上的偶函数,且对任意的x ∈R ,都有(2)()f x f x +=.当01x ≤≤时,2()f x x =.若直线y x a =+与函数()y f x =的图象在[0,2]内恰有两个不同的公共点,则实数a 的值是 A.0 B. 0或12-C. 14-或12-D. 0或14- 7. 某工厂生产的A 种产品进入某商场销售,商场为吸引厂家第一年免收管理费,因此第一年A 种产品定价为每件70元,年销售量为11.8万件. 从第二年开始,商场对A 种产品 征收销售额的%x 的管理费(即销售100元要征收x 元),于是该产品定价每件比第一年增加了70%1%x x ⋅-元,预计年销售量减少x 万件,要使第二年商场在A 种产品经营中收取的管理费不少于14万元,则x 的取值范围是A. 2B. 6.5C. 8.8D. 108.已知点集{}22(,)48160A x y x y x y =+--+≤,{}(,)4,B x y y x m m 是常数=≥-+,点集A 所表示的平面区域与点集B 所表示的平面区域的边界的交点为,M N .若点(,4)D m 在点集A 所表示的平面区域内(不在边界上),则△DMN 的面积的最大值是A. 1B. 2C.D. 4第二部分(非选择题 共110分)二、填空题:本大题共6小题,每小题5分,共30分. 把答案填在答题卡上.9. 已知双曲线的方程为2213x y -=,则此双曲线的离心率为 ,其焦点到渐近线的距离为 .10. 已知某几何体的三视图如图所示,则该几何体的体积为 .(第10题图) (第11题图)11. 执行如图所示的程序框图,若输入k 的值是4,则输出S 的值是 .12.在极坐标系中,曲线ρθ=和cos 1ρθ=相交于点,A B ,则线段AB 的中点E 到极点的距离是 .13.已知函数213(),2,()24log ,0 2.x x f x x x ⎧+≥⎪=⎨⎪<<⎩若函数()()g x f x k =-有两个不同的零点,则实数k 的取值范围是 .14.已知△ABC 中, 90,3,4C AC BC ∠=︒==.一个圆心为M ,半径为14的圆在△ABC正视图 侧视图内,沿着△ABC 的边滚动一周回到原位. 在滚动过程中,圆M 至少与△ABC 的一边相切,则点M 到△ABC 顶点的最短距离是 ,点M 的运动轨迹的周长是 .三、解答题:本大题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程.把答案答在答题卡上. 15. (本小题满分13分) 已知函数π()cos()4f x x =-.(Ⅰ)若()10f α=,求sin 2α的值; (II )设()()2g x f x f x π⎛⎫=⋅+⎪⎝⎭,求函数()g x 在区间ππ,63⎡⎤-⎢⎥⎣⎦上的最大值和最小值.16. (本小题满分13分)某次有1000人参加的数学摸底考试,其成绩的频率分布直方图如图所示,规定85分及其以上为优秀.绩进行分析,求其中成绩为优秀的学生人数; (Ⅲ)在(II )中抽取的40名学生中,要随机选取2名学生参 加座谈会,记“其中成绩为优秀的人数”为X ,求X 的分布列与数学期望.17. (本小题满分14分)在如图所示的几何体中,四边形ABCD 为平行四边形,=90ABD ∠︒,EB ⊥平面ABCD ,EF//AB ,=2AB ,==1EB EF ,=BC ,且M 是BD 的中点.(Ⅰ)求证:EM//平面ADF ; (Ⅱ)求二面角D-AF-B 的大小; (Ⅲ)在线段EB 上是否存在一点P, 使得CP 与AF 所成的角为30︒? 若存在,求出BP 的长度;若不 存在,请说明理由.18. (本小题满分13分)设函数2e (),1axf x a x R =∈+. (Ⅰ)当1a =时,求曲线()y f x =在点(0,(0))f 处的切线方程;CA FEBMD(Ⅱ)求函数)(x f 单调区间. 19. (本小题满分14分)已知椭圆2222:1(0)x y C a b a b +=>>的两个焦点分别为1(F ,2F .点(1,0)M 与椭圆短轴的两个端点的连线相互垂直.(Ⅰ)求椭圆C 的方程;(Ⅱ)已知点N 的坐标为(3,2),点P 的坐标为(,)(3)m n m ≠.过点M 任作直线l 与椭圆 C 相交于A ,B 两点,设直线AN ,NP ,BN 的斜率分别为1k ,2k ,3k ,若 1322k k k +=,试求,m n 满足的关系式.20.(本小题满分13分)已知各项均为非负整数的数列001:,,,n A a a a ()n *∈N ,满足00a =,1n a a n ++=.若存在最小的正整数k ,使得(1)k a k k =≥,则可定义变换T ,变换T 将数列0A 变为数列00111():1,1,,1,0,,,k k n T A a a a a a -++++.设1()i i A T A +=,0,1,2i =.(Ⅰ)若数列0:0,1,1,3,0,0A ,试写出数列5A ;若数列4:4,0,0,0,0A ,试写出数列0A ; (Ⅱ)证明存在唯一的数列0A ,经过有限次T 变换,可将数列0A 变为数列,0,0,,0n n 个;(Ⅲ)若数列0A ,经过有限次T 变换,可变为数列,0,0,,0n n 个.设1m m m n S a a a +=+++,1,2,,m n =,求证[](1)1mm m S a S m m =-++,其中[]1m S m +表示不超过1m Sm +的最大整数. 北京市朝阳区高三年级第一次综合练习数学试卷(理工类) 2012.3一、选择题:三、解答题:(15)(本小题满分13分) 解:(Ⅰ)因为π()cos()410f αα=-=, 所以(cos sin )210αα+=, 所以 7cos sin 5αα+=. 平方得,22sin 2sin cos cos αααα++=4925, 所以 24sin 225α=.……………6分 (II )因为()π()2g x f x f x ⎛⎫=⋅+⎪⎝⎭=ππcos()cos()44x x -⋅+ =(cos sin )(cos sin )22x x x x +⋅- =221(cos sin )2x x - =1cos 22x . ……………10分当ππ,63x ⎡⎤∈-⎢⎥⎣⎦时,π2π2,33x ⎡⎤∈-⎢⎥⎣⎦. 所以,当0x =时,()g x 的最大值为12; 当π3x =时,()g x 的最小值为14-. ……………13分 (16)(本小题满分13分)解:(Ⅰ)依题意,0.0451000200,0.025*******a b =⨯⨯==⨯⨯=. ……………4分 (Ⅱ)设其中成绩为优秀的学生人数为x ,则350300100401000x ++=,解得:x =30, 即其中成绩为优秀的学生人数为30名. ……………7分(Ⅲ)依题意,X 的取值为0,1,2,2102403(0)52C P X C ===,1110302405(1)13C C P X C ===,23024029(2)52C P X C ===, 所以X 的分布列为350125213522EX =⨯+⨯+⨯=,所以X 的数学期望为2. ……………13分(17)(本小题满分14分) 证明:(Ⅰ)取AD 的中点N ,连接MN,NF .在△DAB 中,M 是BD 的中点,N 是AD 的中点,所以1=2MN//AB,MN AB , 又因为1=2EF//AB,EF AB ,所以MN//EF 且MN =EF .所以四边形MNFE 为平行四边形,所以EM//FN .又因为FN ⊂平面ADF ,⊄EM 平面ADF ,故EM//平面ADF . …………… 4分 解法二:因为EB ⊥平面ABD ,AB BD ⊥,故以B 为原点,建立如图所示的空间直角坐标系-B xyz . ……………1分 由已知可得 (0,0,0),(0,2,0),(3,0,0),B A D3(3,-2,0),(,0,0)2C E F M (Ⅰ)3=(,0,-3)(3,-2,0)2EM ,AD=, 设平面ADF 的一个法向量是()x,y,z n =. 由0,0,AD AF n n ⎧⋅=⎪⎨⋅=⎪⎩得32x -y =0,=0.⎧⎪⎨⎪⎩令y=3,则n =. 又因为3(=3+0-3=02EM n ⋅=⋅,所以EM n ⊥,又EM ⊄平面ADF ,所以//EM 平面ADF . ……………4分 (Ⅱ)由(Ⅰ)可知平面ADF 的一个法向量是n =. 因为EB ⊥平面ABD ,所以EB BD ⊥.又因为AB BD ⊥,所以BD ⊥平面EBAF . 故(3,0,0)BD =是平面EBAF 的一个法向量. 所以1cos <=2BD BD,BD n n n⋅>=⋅,又二面角D-AF -B 为锐角, 故二面角D-AF -B 的大小为60︒. ……………10分NCA F EBMD(Ⅲ)假设在线段EB 上存在一点P ,使得CP 与AF 所成的角为30︒. 不妨设(0,0,t)P(0t ≤≤,则=(3,-2,-),=PC AF t .所以2cos <2PC AF PC,AF PC AF ⋅>==⋅,=, 化简得35-=, 解得0t =<. 所以在线段EB 上不存在点P ,使得CP 与AF 所成的角为30︒.…………14分 (18)(本小题满分13分)解:因为2e (),1ax f x x =+所以222e (2)()(1)ax ax x a f x x -+'=+.(Ⅰ)当1a =时, 2e ()1xf x x =+,222e (21)()(1)x x x f x x -+'=+,所以(0)1,f = (0)1f '=.所以曲线()y f x =在点(0,(0))f 处的切线方程为10x y -+=. ……………4分(Ⅱ)因为222222e (2)e ()(2)(1)(1)ax axax x a f x ax x a x x -+'==-+++, ……………5分 (1)当0a =时,由()0f x '>得0x <;由()0f x '<得0x >.所以函数()f x 在区间(,0)-∞单调递增, 在区间(0,)+∞单调递减. ……………6分 (2)当0a ≠时, 设2()2g x ax x a =-+,方程2()20g x ax x a =-+=的判别式2444(1)(1),a a a ∆=-=-+ ……………7分①当01a <<时,此时0∆>.由()0fx '>得1x a <,或1x a+>;由()0f x '<x <<.所以函数()f x单调递增区间是(-∞和)+∞,单调递减区间. ……………9分②当1a ≥时,此时0∆≤.所以()0f x '≥,所以函数()f x 单调递增区间是(,)-∞+∞. ……………10分 ③当10a -<<时,此时0∆>.由()0f x '>得11x a a +<<; 由()0f x '<得1x a <,或1x a->.所以当10a -<<时,函数()f x单调递减区间是1(,a +-∞和1()a +∞,单调递增区间. ……………12分④当1a ≤-时, 此时0∆≤,()0f x '≤,所以函数()f x 单调递减区间是(,)-∞+∞. …………13分(19)(本小题满分14分) 解:(Ⅰ)依题意,c =1b =,所以a == 故椭圆C 的方程为2213x y +=. ……………4分 (Ⅱ)①当直线l 的斜率不存在时,由221,13x x y =⎧⎪⎨+=⎪⎩解得1,x y ==.不妨设(1,3A ,(1,)3B -,因为132233222k k +=+=,又1322k k k +=,所以21k =,所以,m n 的关系式为213n m -=-,即10m n --=. ………7分 ②当直线l 的斜率存在时,设直线l 的方程为(1)y k x =-.将(1)y k x =-代入2213x y +=整理化简得,2222(31)6330k x k x k +-+-=. 设11(,)A x y ,22(,)B x y ,则2122631k x x k +=+,21223331k x x k -=+. ………9分又11(1)y k x =-,22(1)y k x =-. 所以12122113121222(2)(3)(2)(3)33(3)(3)y y y x y x k k x x x x ----+--+=+=---- 12211212[2(1)](3)[2(1)](3)3()9k x x k x x x x x x ---+---=-++121212122(42)()6123()9kx x k x x k x x x x -++++=-++222222223362(42)6123131336393131k k k k k k k k kk k -⨯-+⨯++++=--⨯+++ 222(126)2.126k k +==+………12分 所以222k =,所以2213n k m -==-,所以,m n 的关系式为10m n --=.………13分 综上所述,,m n 的关系式为10m n --=. ………14分 (20)(本小题满分13分)解:(Ⅰ)若0:0,1,1,3,0,0A ,则1:1,0,1,3,0,0A ;2:2,1,2,0,0,0A ; 3:3,0,2,0,0,0A ; 4:4,1,0,0,0,0A ; 5:5,0,0,0,0,0A .若4:4,0,0,0,0A ,则 3:3,1,0,0,0A ; 2:2,0,2,0,0A ; 1:1,1,2,0,0A ;0:0,0,1,3,0A . ………4分(Ⅱ)先证存在性,若数列001:,,,n A a a a 满足0k a =及0(01)i a i k >≤≤-,则定义变换1T -,变换1T -将数列0A 变为数列10()T A -:01111,1,,1,,,,k k n a a a k a a -+---.易知1T -和T 是互逆变换. ………5分 对于数列,0,0,,0n 连续实施变换1T -(一直不能再作1T -变换为止)得,0,0,,0n 1T -−−→1,1,0,,0n -1T -−−→2,0,2,0,,0n -1T -−−→3,1,2,0,,0n -1T -−−→1T-−−→01,,,n a a a ,则必有00a =(若00a ≠,则还可作变换1T -).反过来对01,,,n a a a 作有限次变换T ,即可还原为数列,0,0,,0n ,因此存在数列0A 满足条件.下用数学归纳法证唯一性:当1,2n =是显然的,假设唯一性对1n -成立,考虑n 的情形. 假设存在两个数列01,,,n a a a 及01,,,n b b b 均可经过有限次T 变换,变为,0,,0n ,这里000a b ==,1212n n a a a b b b n +++=+++=若0n a n <<,则由变换T 的定义,不能变为,0,,0n ;若n a n =,则120n a a a ====,经过一次T 变换,有0,0,,0,n T−−→1,1,,1,0由于3n ≥,可知1,1,,1,0(至少3个1)不可能变为,0,,0n .所以0n a =,同理0n b =令01,,,n a a a T−−→121,,,,na a a ''',01,,,n b b b T−−→121,,,,nb b b ''',则0n n a b ''==,所以1211n a a a n -'''+++=-,1211nb b b n -'''+++=-. 因为110,,,n a a -''T−−−−→有限次-1,0,,0n ,110,,,n b b -''T−−−−→有限次-1,0,,0n ,故由归纳假设,有i i a b ''=,1,2,,1i n =-.再由T 与1T -互逆,有01,,,n a a a T−−→111,,,,0n a a -'',01,,,n b b b T−−→111,,,,0nb b -'',所以i i a b =,1,2,,i n =,从而唯一性得证. ………9分(Ⅲ)显然i a i ≤(1,2,,)i n =,这是由于若对某个0i ,00i a i >,则由变换的定义可知,0i a 通过变换,不能变为0.由变换T 的定义可知数列0A 每经过一次变换,k S 的值或者不变,或者减少k ,由于数列0A 经有限次变换T ,变为数列,0,,0n 时,有0m S =,1,2,,m n =,所以m m S mt =(m t 为整数),于是1m m m S a S +=+1(1)m m a m t +=++,0m a m ≤≤, 所以m a 为m S 除以1m +后所得的余数,即[](1)1m m m S a S m m =-++.………13分。

朝阳高三一模数学理科19题

朝阳高三一模数学理科19题

北京市朝阳区高三年级第一次综合练习数学理科第19题评分细则19.(本小题满分14分)已知椭圆2222:1(0)x y C a b a b +=>>的一个焦点为(2,0)F ,离心率为63.过焦点F的直线l 与椭圆C 交于,A B 两点,线段AB 中点为D ,O 为坐标原点,过O ,D 的直线 交椭圆于,M N 两点.(Ⅰ)求椭圆C 的方程;(Ⅱ)求四边形AMBN 面积的最大值.(Ⅰ)解:由题意可得2222,6,,c ca abc =⎧⎪⎪=⎨⎪=+⎪⎩…….2分注:2c =与6c a = 各1分,不写“222a b c =+”不扣分,该分数体现在第3分处. 解得6a =,2b =, …….3分故椭圆的方程为22162x y +=. …….4分(Ⅱ)解法一:AMBN ABM ABN S S S ∆∆=+ 及直线l :(2)y k x =- 当直线l 斜率不存在时,A B 的坐标分别为6(2,),6(2,)-,||26MN =, 四边形AMBN 面积为1||||42AMBN S MN AB =⋅=. …….5分 当直线l 斜率存在时,设其方程为(2)y k x =-,点11(,)A x y ,22(,)B x y ,33(,)M x y ,33(,)N x y --,点,M N 到直线l 的距离分别为12,d d ,则四边形AMBN 面积为121||()2AMBN S AB d d =+. …….6分注:此处不写“点,M N 到直线l 的距离分别为12,d d ,四边形AMBN 面积为121||()2AMBN S AB d d =+”不扣分,给分在后面第11分处.由221,62(2),x y y k x ⎧+=⎪⎨⎪=-⎩得2222(13)121260k x k x k +-+-=, 则21221213k x x k +=+,212212613k x x k -=+, …….7分所以||AB=. …….8分因为121224(4)13ky y k x x k -+=+-=+, 注:或()22262221313D D k ky k x k k k⎛⎫-=-=-= ⎪++⎝⎭. 所以AB 中点22262(,)1313k kD k k -++. …….9分当0k ¹时,直线OD 方程为30x ky +=,由2230,1,62x ky x y +=⎧⎪⎨+=⎪⎩ 解得333,x ky =- 232213y k =+. …….10分 设点,M N 到直线l 的距离分别为12,d d , 所以121||()2AMBN S AB d d =+12=33222|13kx y k -=+ …….11分== …………………12分= …………………13分当0k =时,四边形AMBN面积的最大值AMBN S =综上,四边形AMBN面积的最大值为 …………………………14分注:关于解法一中“33|22|kx y -”的另一种处理方法 —— 平方前面过程同解法一, …….9分当0k ¹时,直线OD 方程为30x ky +=,由221,31,62y x k x y ⎧=-⎪⎪⎨⎪+=⎪⎩ 解得22321813k x k =+. …….10分设点,M N 到直线l 的距离分别为12,d d , 所以121||()2AMBN S AB d d =+12=33222|13kx y k -=+…….11分2AMBNS ()()()()()222322333322222412411313y k x k k kx y x k k ⎛⎫+⋅⋅- ⎪+-⎝⎭==++()()()()22222222221812414811633133131313k k k k k k k kkk ⎛⎫+⋅⋅+ ⎪+++⎝⎭===+++ …………………12分221614813k ⎛⎫=+< ⎪+⎝⎭即AMBN S <. …………………13分当0k =时,四边形AMBN面积的最大值AMBN S =综上,四边形AMBN面积的最大值为 …………………………14分AMBN MNA MNB ∆∆前面过程同解法一, ………7分因为121224(4)13ky y k x x k -+=+-=+, 注:或()22262221313D D k ky k x k k k ⎛⎫-=-=-= ⎪++⎝⎭. 所以AB 中点22262(,)1313k kD k k -++. …….8分 当0k ¹时,直线OD 方程为30x ky +=,由221,31,62y x k x y ⎧=-⎪⎪⎨⎪+=⎪⎩ 解得22321813k x k =+. …….9分MN === …….10分设点,A B 到直线MN 的距离分别为34,d d , 所以341||()2AMBN S MN d d =+12=⨯()()()2121212313x x k y y k x x =-+-=+- …………………11分=== (12)分= …………………13分当0k =时,四边形AMBN面积的最大值AMBN S =综上四边形AMBN 面积的最大值为. …………………………14分AMBN ABM ABN ∆∆当直线l 的斜率为零时,四边形AMBN面积的最大值AMBN S =.5分当直线l 的斜率不为零时,设其方程为2x ty =+,点11(,)A x y ,22(,)B x y ,33(,)M x y ,33(,)N x y --. …….6分由221,622,x y x ty ⎧+=⎪⎨⎪=+⎩得()223420t y ty ++-=, 则12243t y y t +=-+,12223y y t =-+ .…….7分所以||AB)2213t t +==+ …….8分因为()121221243x x t y y t +=++=+, 注:或22262233D D t x ty t t t ⎛⎫=+=-+= ⎪++⎝⎭. 所以AB 中点2262(,)33t D t t -++. …….9分 直线OD 方程为30tx y +=,由2230,1,62tx y x y +=⎧⎪⎨+=⎪⎩ 解得33,3t y x =- 232183x t =+. …….10分 设点,M N 到直线l 的距离分别为12,d d , 所以121||()2AMBN S AB d d =+)221123t t +=⨯+=…….11分233222|33x t x t +==+ …………………12分= …………………13分综上,四边形AMBN面积的最大值为 …………………14分(Ⅱ)解法四:AMBN MNA MNB S S S ∆∆=+ 及直线l :2x ty =+(略,参照前面解法相应给分)。

2024年北京市朝阳区高三一模数学试卷

2024年北京市朝阳区高三一模数学试卷

2024年北京市朝阳区高三一模数学试卷本试卷共9页,150分。

考试时长120分钟。

考生务必将答案答在答题卡上,在试卷上作答无效。

考试结束后,将本试卷和答题卡一并交回。

第一部分(选择题 共40分)一、选择题:共10小题,每小题4分,共40分。

在每小题列出的四个选项中,选出符合 题目要求的一项。

1. 已知全集{}1,2,3,4U =,{}2A x U x =∈<,则U C A = A.{}1 B.{}1,2 C.{}3,4 D.{}2,3,42. 复数i3i+在复平面内对应的点位于 A.第一象限B.第二象限C.第三象限D.第四象限3. 在ABC △2sin b A =,则B ∠= A.π6B.π6或5π6C.π3D.π3或2π34. 已知a ∈R ,则“01a <<”是“函数3()(1)f x a x =−在R 上单调递增”的 A.充分而不必要条件 B.必要而不充分条件 C.充要条件D.既不充分也不必要条件5. 已知直线60x +=和圆222x y r +=(0)r >相交于,A B 两点. 若||6AB =,则r =A.2B.C.4D.6. 已知等比数列{}n a 的前n 项和为n S ,且121a a +=,344a a +=,则6S = A.9 B.16 C.21 D.257. 已知双曲线2222: 1 (0,0)x y C a b a b−=>>的右焦点为F ,过点F 作垂直于x 轴的直线l ,,M N 分别是l 与双曲线C 及其渐近线在第一象限内的交点. 若M 是线段FN 的中点,则C 的渐近线方程为A.y x =±B.2y x = C.y x = D.y =8. 在ABC △中,2AB AC ==,BC =,点P 在线段BC 上. 当PA PB ⋅取得最小值时, PA =A.2C.34D.749. 在棱长为1的正方体1111ABCD A B C D −中,,,E F G 分别为棱11,,AA BC CC 的中点,动点H在平面EFG 内,且1DH =. 则下列说法正确的是 A.存在点H ,使得直线DH 与直线FG 相交 B.存在点H ,使得直线DH ⊥平面EFG C.直线1B H 与平面EFG 所成角的大小为π3D.平面EFG 被正方体所截得的截面面积为210. 已知n 个大于2的实数12,,,n x x x ,对任意i x (1,2,,)i n =⋅⋅⋅,存在2i y ≥满足i i y x <,且i i y x i i x y =,则使得12115n n x x x x −+++≤成立的最大正整数n 为A.14B.16C.21D.23第二部分(非选择题 共110分)二、填空题共5小题,每小题5分,共25分。

朝阳高三一模数学卷 理科 有答案

朝阳高三一模数学卷 理科 有答案

北京市朝阳区高三年级第一次综合练习数学(理工类)2015.4(考试时间120分钟 满分150分)本试卷分为选择题(共40分)和非选择题(共110分)两部分第一部分(选择题 共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,选出符合题目要求的一项. 1. 已知集合{}21,2,A m =,{}1,B m =.若B A ⊆,则m =A.0B. 2C. 0 或2D. 1或22.已知点0(1,)A y 0(0)y >为抛物线22y px =()0p >上一点.若点A 到该抛物线焦点的距离为3,则0y =A.B. 2C. D. 43.在ABC ∆中,若π3A =,cos B =6BC =,则AC =A.C.4.“x ∀∈R ,210x ax ++≥成立”是“2a ≤”的 A .充分必要条件 B .必要而不充分条件 C .充分而不必要条件 D.既不充分也不必要条件5.某商场每天上午10点开门,晚上19点停止进入.在如图所示的框图中,t 表示整点时刻,()a t 表示时间段[1,)t t -内进入商场人次,S 表示某天某整点时刻前进入商场人次总和,为了统计某天进入商场的总人次数,则判断框内可以填A. 17?t ≤ B .19?t ≥ C .18?t ≥ D .18?t ≤6.设123,,x x x 均为实数,且1211log (1)3x x ⎛⎫=+ ⎪⎝⎭,2321log 3x x ⎛⎫= ⎪⎝⎭,3231log 3xx ⎛⎫= ⎪⎝⎭则A. 132x x x <<B. 321x x x <<C. 312x x x <<D. 213x x x <<7.在平面直角坐标系中,O 为坐标原点,已知两点(1,0)A ,(1,1)B ,且90BOP ∠=o .设OP OA kOB =+u u u r u u u r u u u r ()k ∈R ,则OP =u u u rA . 12B.2C.D.28. 设集合M ={}22000000(,)20,,x y x y x y +≤∈∈Z Z ,则M 中元素的个数为 A.61 B. 65 C. 69第二部分(非选择题 共110分)二、填空题:本大题共6小题,每小题5分,共30分.把答案填在答题卡上. 9.i 为虚数单位,计算12i1i-=+ ______. 10.设n S 为等差数列{}n a 的前n 项和.若383a a +=,31S =,则通项公式n a =______.11.在极坐标中,设002πρθ>≤<,,曲线2ρ=与曲线sin 2ρθ=交点的极坐标为______. 12.已知有身穿两种不同队服的球迷各有三人,现将这六人排成一排照相,要求身穿同一种队服的球迷均不能相邻,则不同的排法种数为 . (用数字作答)13. 设3z x y =+,实数x ,y 满足20,20,0,x y x y y t +≥⎧⎪-≤⎨⎪≤≤⎩其中0t >.若z 的最大值为5,则实数t 的值为______,此时z 的最小值为______.14.将体积为1的四面体第一次挖去以各棱中点为顶点的构成的多面体,第二次再将剩余的每个四面体均挖去以各棱中点为顶点的构成的多面体,如此下去,共进行了n (n *∈N )次.则第一次挖去的几何体的体积是______;这n 次共挖去的所有几何体的体积和是______.三、解答题:本大题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程. 15.(本小题满分13分)已知函数2()cos cos f x x x x =+,x ∈R . (Ⅰ)求()f x 的最小正周期和单调递减区间;(Ⅱ)设x m =()m ∈R 是函数()y f x =图象的对称轴,求sin4m 的值.16.(本小题满分13分)如图所示,某班一次数学测试成绩的茎叶图和频率分布直方图都受到不同程度的污损,其中,频率分布直方图的分组区间分别为[)50,60,[)60,70,[)70,80,[)80,90,[90,100].据此解答如下问题.(Ⅰ)求全班人数及分数在[80,100]之间的频率;(Ⅱ)现从分数在[80,100]之间的试卷中任取3份分析学生失分情况,设抽取的试卷分数在[90,100]的份数为X ,求X 的分布列和数学期望.17.(本小题满分14分)如图,正方形ADEF 与梯形ABCD 所在平面互相垂直, 已知//,AB CD AD CD ⊥,12AB AD CD ==.(Ⅰ)求证:BF //平面CDE ;(Ⅱ)求平面BDF 与平面CDE 所成锐二面角的余弦值;(Ⅲ)线段EC 上是否存在点M ,使得平面BDM ⊥平面BDF ?若存在,求出EM EC的值;若不存在,说明理由.18.(本小题满分13分)已知函数2()ln (1)2x f x a x a x =+-+,a ∈R .(Ⅰ) 当1a =-时,求函数()f x 的最小值;A B F E D C(Ⅱ) 当1a ≤时,讨论函数()f x 的零点个数.19.(本小题满分14分)已知椭圆2222:1(0)x y C a b a b +=>>的一个焦点为(2,0)F F的直线l 与椭圆C 交于,A B 两点,线段AB 中点为D ,O 为坐标原点,过O ,D 的直线 交椭圆于,M N 两点.(Ⅰ)求椭圆C 的方程;(Ⅱ)求四边形AMBN 面积的最大值.20.(本小题满分13分)若数列{}n a 中不超过()f m 的项数恰为m b ()m ∈*N ,则称数列{}m b 是数列{}n a 的生成数列,称相应的函数()f m 是{}n a 生成{}m b 的控制函数.设2()f m m =. (Ⅰ)若数列{}n a 单调递增,且所有项都是自然数,11=b ,求1a ;(Ⅱ)若数列{}n a 单调递增,且所有项都是自然数,,11b a =求1a ;(Ⅲ)若2(1,2,3)n a n n ==L ,是否存在{}m b 生成{}n a 的控制函数2()g n pn qn r =++(其中常数,,p q r ∈Z )?使得数列{}n a 也是数列{}m b 的生成数列?若存在,求出)(n g ;若不存在,说明理由.北京市朝阳区高三年级第一次综合练习数学答案(理工类) 2015.4一、选择题(满分40分)(注:两空的填空,第一空3分,第二空2分)三、解答题(满分80分) 15.(本小题满分13分)解:(Ⅰ)由已知,函数2()cos cos f x x x x = 1(1cos2)2x =+2x=π1sin(2)62x ++.函数()f x 的最小正周期为πT =.当ππ3π2π22π262k x k +≤+≤+时(k ∈Z ),即π2ππ+π+63k x k ≤≤时,函数()f x 为减函数.即函数()f x 的单调减区间为π2ππ+,π+63k k ⎡⎤⎢⎥⎣⎦,k ∈Z . ………………….9分(Ⅱ)由x m =是函数()y f x =图象的对称轴,则ππ2=π62m k ++(k ∈Z ),即126m k π=π+,k ∈Z .则423m k 2π=π+.则sin 4m ………………….13分16. (本小题满分13分)解:(Ⅰ)由茎叶图可知,分布在[50,60)之间的频数为4,由直方图,频率为0.0125100.125⨯=,所以全班人数为4320.125=人.所以分数在[80,100]之间的人数为32(4810)10-++=人. 分数在[80,100]之间的频率为100.312532= ………………….4分 (Ⅱ)由(Ⅰ)知,分数在[80,100]之间的有10份,分数在[90,100]之间的人数有0.01251032=4创份,由题意,X 的取值可为0,1,2,3.363101(0)6C P X C ===, 12463101(1)2C C P X C ===,21463103(2)10C C P X C ===, 343101(3)30C P X C ===.所以随机变量X 的分布列为随机变量X 的数学期望为1131601236210305EX =⨯+⨯+⨯+⨯=.………………….13分 17.(本小题满分14分)解:(Ⅰ)因为//,AB CD AB ⊄平面,CDE CD ⊂平面CDE ,所以//AB 平面CDE ,同理,//AF 平面CDE , 又,AB AF A =I 所以平面//ABF 平面CDE ,因为BF ⊂平面,ABF 所以//BF 平面CDE . ……………….4分(Ⅱ)因为平面ADEF ^平面ABCD ,平面ADEF I 平面ABCD =AD , CD AD ^,CD Ì平面ABCD ,所以CD ^平面ADEF .又DE Ì平面ADEF ,故CD ED ^. 而四边形ADEF 为正方形,所以AD DE ^又AD CD ^,以D 为原点,DA ,DC ,DE 所在直线分别为x 轴,y 轴,z 轴,建立空间直角坐标系D xyz -.设1AD =,则(0,0,0),(1,1,0),(1,0,1),(0,2,0),(0,0,1)D B F C E ,取平面CDE 的一个法向量(1,0,0)DA =u u u r,设平面BDF 的一个法向量(,,)x y z =n ,则00DB DF ⎧⋅=⎪⎨⋅=⎪⎩u u u r u u u rn n ,即00x y x z +=⎧⎨+=⎩,令1x =,则1y z ==-, 所以(1,1,1)=--n . 设平面BDF 与平面CDE 所成锐二面角的大小为θ,则cos |cos ,|DA θ=<>==u u u r n . ……………….9分 所以平面BDF 与平面CDE. (Ⅲ)若M 与C 重合,则平面()BDM C 的一个法向量0(0,0,1)=m ,由(Ⅱ)知平面BDF 的一个法向量(1,1,1)=--n ,则010??m n =,则此时平面BDF 与平面BDM 不垂直.若M 与C 不重合,如图设EMECλ=()01λ?,则(0,2,1)M λλ-,设平面BDM 的一个法向量000(,,)x y z =m ,则00DB DM ⎧⋅=⎪⎨⋅=⎪⎩u u u r u u u u r m m ,即000002(1)0x y y z λλ+=⎧⎨+-=⎩,令01x =,则0021,1y z λλ=-=-, 所以2(1,1,)1λλ=--m , 若平面BDF ⊥平面BDM 等价于0⋅=m n ,即2110,1λλ+-=-所以[]10,12λ=∈. 所以,EC 上存在点M 使平面BDF ⊥平面BDM ,且12EM EC =.……………….14分 18. (本小题满分13分)解:(Ⅰ)函数()f x 的定义域为{}0x x >.当1a =-时,2()ln 2x f x x =-+.211(1)(1)()x x x f x x x x x -+-'=-+==. 由(1)(1)0x x x +->()0x >解得1x >;由(1)(1)0x x x+-<()0x >解得01x <<.所以()f x 在区间(0,1)单调递减, 在区间(1,)+∞单调递增.所以1x =时,函数()f x 取得最小值1(1)2f =. ……………….5分 (Ⅱ)(1)()()x x a f x x--'=,0x >. (1)当0a ≤时,(0,1)x ∈时,()0f x '<,()f x 为减函数; (1,)x ∈+∞时,()0f x '>,()f x 为增函数.所以()f x 在1x =时取得最小值1(1)2f a =--. (ⅰ)当0a =时,2()2x f x x =-,由于0x >,令()0f x =,2x =,则()f x 在(0,)+∞上有一个零点;(ⅱ)当12a =-时,即(1)0f =时,()f x 有一个零点;(ⅲ)当12a <-时,即(1)0f >时,()f x 无零点.(ⅳ)当102a -<<时,即(1)0f <时,由于0x →(从右侧趋近0)时,()f x →+∞;x →+∞时,()f x →+∞, 所以()f x 有两个零点.(2)当01a <<时,(0,)x a ∈时,()0f x '>,()f x 为增函数; (,1)x a ∈时,()0f x '<,()f x 为减函数; (1,)x ∈+∞时,()0f x '>,()f x 为增函数.所以()f x 在x a =处取极大值,()f x 在1x =处取极小值. 21()ln (1)2f a a a a a a =+-+21ln 2a a a a =--.当01a <<时,()0f a <,即在(0,1)x ∈时,()0f x <.而()f x 在(1,)x ∈+∞时为增函数,且x →+∞时,()f x →+∞,所以此时()f x 有一个零点.(3)当1a =时,2(1)()0x f x x-'=≥在()0,+∞上恒成立,所以()f x 为增函数.且0x →(从右侧趋近0)时,()f x →-∞;x →+∞时,()f x →+∞. 所以()f x 有一个零点.综上所述,01a ≤≤或12a =-时()f x 有一个零点;12a <-时,()f x 无零点;102a -<<()f x 有两个零点.……………….13分19.(本小题满分14分) 解:(Ⅰ)由题意可得2222,,c c a a b c =⎧⎪⎪=⎨⎪=+⎪⎩解得a,b =, 故椭圆的方程为22162x y +=. …….4分(Ⅱ)当直线l 斜率不存在时,A B的坐标分别为,(2,,||MN =,四边形AMBN 面积为1||||42AMBN S MN AB =⋅=. 当直线l 斜率存在时,设其方程为(2)y k x =-,点11(,)A x y ,22(,)B x y ,33(,)M x y ,33(,)N x y --,点,M N 到直线l 的距离分别为12,d d ,则四边形AMBN 面积为121||()2AMBN S AB d d =+. 由221,62(2),x y y k x ⎧+=⎪⎨⎪=-⎩得2222(13)121260k x k x k +-+-=,则21221213k x x k +=+,212212613k x x k-=+,所以||AB==. 因为121224(4)13ky y k x x k -+=+-=+, 所以AB 中点22262(,)1313k kD k k -++.当0k ¹时,直线OD 方程为30x ky +=, 由2230,1,62x ky x y +=⎧⎪⎨+=⎪⎩解得333,x ky =-232213y k =+. 所以121||()2AMBN S AB d d =+12=+33222|13kx y k -=+23323|13k y y k --=+==< 当0k =时,四边形AMBN面积的最大值AMBN S =综上四边形AMBN面积的最大值为 …………………………14分20.(本小题满分13分) 解:(Ⅰ)若11b =,因为数列{}n a 单调递增,所以211a ≤,又1a 是自然数,所以10a =或1. ………2分 (Ⅱ)因为数列{}n a 的每项都是自然数,若2101a =≤,则11b ≥,与11a b =矛盾;若12a ≥,则因{}n a 单调递增,故不存在21n a ≤,即10b =,也与11a b =矛盾.当11=a 时,因{}n a 单调递增,故2≥n 时,1>n a ,所以11b =,符合条件, 所以,11a =. ………6分 (Ⅲ)若2(1,2,)n a n n ==L ,则数列{}n a 单调递增,显然数列{}m b 也单调递增,由2n a m ≤,即22n m ≤,得212n m ≤, 所以,m b 为不超过212m 的最大整数, 当21m k =-()k *ÎN 时,因为222211222222122k k m k k k k -<=-+<-+, 所以222m b k k =-;当2m k =()k *ÎN 时,22122m k =,所以,22m b k =.综上,2222,21(2,2(m k k m k k b k m k k **ìï-=-?ï=íï=?ïîN )N ), 即当0m >且m 为奇数时,212m m b -=;当0m >且m 为偶数时,22m m b =. 若数列{}n a 是数列{}m b 的生成数列,且{}m b 生成{}n a 的控制函数为()g n , 则m b 中不超过()g n 的项数恰为n a ,即m b 中不超过()g n 的项数恰为2n ,所以221()n n b g n b +≤<,即222222n pn qn r n n ≤++<+对一切正整数n 都成立,即22(2)0(2)(2)0p n qn r p n q n r ⎧-++≥⎪⎨-+-->⎪⎩对一切正整数n 都成立, 故得2p =,且0(2)0qn r q n r +≥⎧⎨-->⎩对一切正整数n 都成立,故02q ≤≤,q Z ∈. 又常数r Z ∈,当0q =时,02(1)r n n ≤<≥,所以0r =,或1r =; 当1q =时,(1)n r n n -≤<≥,所以0r =,或1r =-; 当2q =时,20(1)n r n -≤<≥,所以2r =-,或1r =-; 所以2()2g n n =,或221n +,或221n n +-,或22n n +,或2222n n +-,或2221n n +-(n *ÎN ). ………13分。

高三数学第一次综合练习试题理朝阳一模,含解析新人教B版

高三数学第一次综合练习试题理朝阳一模,含解析新人教B版

北京市朝阳区高三年级第一次综合练习数学学科测试(理工类)(考试时间120分钟 满分150分)本试卷分为选择题(共40分)和非选择题(共110分)两部份 第一部份(选择题 共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,选出符合题目要求的一项.(1)i 为虚数单位,复数11i-的虚部是 A .12 B .12- C .1i 2- D . 1i 2【答案】A 【解析】111111(1)(1)222i i i i i i ++===+--+,所以虚部是12,选A. (2)已知集合{}23M x x =-<<,{}lg(2)0N x x =+≥,则MN =A. (2,)-+∞B. (2,3)-C. (2,1]--D. [1,3)- 【答案】D 【解析】,所以{13}MN x x =-≤<,选D.(3)已知向量()()3,4,6,3OA OB =-=-,()2,1OC m m =+.若//AB OC ,则实数m 的值为A .3-B .17-C .35-D .35【答案】A【解析】(3,1)AB OB OA =-=,因为//AB OC ,所以3(1)20m m +-=,解得3m =-,选A.(4)在极坐标系中,直线1cos 2ρθ=与曲线2cos ρθ=相交于,A B 两点, O 为极点,则AOB ∠的大小为A .3πB .2πC .32πD .65π【答案】C【解析】直线1cos 2ρθ=对应的直角方程为12x =,由2cos ρθ=得22cos ρρθ=,即222x y x +=,即22(1)1x y -+=。

所以圆心为(1,0)C ,半径为1,所以3OCA π∠=,所以223AOB OCA π∠=∠=,选C. (5)在下列命题中,①“2απ=”是“sin 1α=”的充要条件; ②341()2x x+的展开式中的常数项为2;③设随机变量ξ~(0,1)N ,若(1)P p ξ≥=,则1(10)2P p ξ-<<=-. 其中所有正确命题的序号是 A .② B .③ C .②③ D .①③ 【答案】C【解析】①由sin 1α=,得2,2k k Z παπ=+∈,所以①错误。

北京市朝阳区高三年级第一次综合练习理数

北京市朝阳区高三年级第一次综合练习理数

北京市朝阳区高三年级第一次综合练习数学学科测试(理工类) 2017.3(考试时间120分钟 满分150分)本试卷分为选择题(共40分)和非选择题(共110分)两部分第一部分(选择题 共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,选出符合题目要求的一项.(1)已知集合{|13}A x x =-≤<,2{|4}Z B x x =∈<,则A B =(A ){0,1}(B ){1,0,1}- (C ){1,0,1,2}-(D ){2,1,0,1,2}--(2)若,x y 满足20,3,0,x y x y x -⎧⎪+⎨⎪⎩≤≤≥ 则2x y +的最大值为(A )0 (B )3 (C )4(D )5(3)执行如图所示的程序框图,若输入4m =,6n =,则输出a =(A )4 (B )8 (C )12(D )16(4)给出如下命题:①若“p ∧q ”为假命题,则p , q 均为假命题;②在△ABC 中,“A B >”是“sin sin A B >”的充要条件; ③8(1)x +的展开式中二项式系数最大的项是第五项. 其中正确的是(A )①② (B )②③ (C )①③ (D )①②③(5)设抛物线28y x =的焦点为F ,准线为l ,P 为抛物线上一点,l PA ⊥,A 为垂足.若直线AF的斜率为=PF(A ) 34 (B ) 6 (C ) 8 (D )16(6)已知函数42log ,04,()1025, 4.x x f x x x x ⎧<≤⎪=⎨-+>⎪⎩若a ,b ,c ,d 是互不相同的正数,且()()()()f a f b f c f d ===,则abcd 的取值范围是(A )(24,25) (B )(18,24) (C ) (21,24) (D )(18,25) (7)某四棱锥的三视图如图所示,则该四棱锥的底面的面积是(A )12(B )32(C )14 (D )34(8)现有10支队伍参加篮球比赛,规定:比赛采取单循环比赛制,即每支队伍与其他9支队伍各比赛一场;每场比赛中,胜方得2分,负方得0分,平局双方各得1分.下面关于这10支队伍得分的叙述正确的是(A )可能有两支队伍得分都是18分 (B )各支队伍得分总和为180分 (C )各支队伍中最高得分不少于10分 (D )得偶数分的队伍必有偶数个第二部分(非选择题 共110分)二、填空题:本大题共6小题,每小题5分,共30分.(9)复数1ii+在复平面内对应的点的坐标是____. (10)在△ABC 中,3A π∠=,3BC =,AB =,则C ∠=____.(11)已知{}n a 为等差数列,n S 为其前n 项和.若651S =,1926a a +=,则数列{}n a 的公差d = ,通项公式n a = .(12) 在极坐标系中,直线C 1的极坐标方程为sin()4ρθπ+=x 轴侧视图俯视图正视图的正半轴建立平面直角坐标系xOy ,则直线C 1的直角坐标方程为_____;曲线C 2的方程为cos ,1sin x t y t=⎧⎨=+⎩(t 为参数),则C 2被 C 1截得的弦长为___. (13) 如图,11ABC ∆,122C B C ∆,233C B C ∆是三个边长为2的等边三角形,且有一条边在同一直线上,边33B C 上有2个不同的 点12,P P ,则212+=AB AP AP ()⋅. (14)在平面直角坐标系xOy 中,动点(,)P x y 到两坐标轴的距离之和等于它到定点(1,1)的距离,记点P 的轨迹为C .给出下面四个结论: ①曲线C 关于原点对称; ②曲线C 关于直线y x =对称; ③点2(,1)()R a a -∈在曲线C 上;④在第一象限内,曲线C 与x 轴的非负半轴、y 轴的非负半轴围成的封闭图形的面积小于12. 其中所有正确结论的序号是 .三、解答题:本大题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程. (15)(本小题满分13分)已知函数()sin (cos )0)f x x x x ωωωω=>的最小正周期为π2.(Ⅰ)求ω的值;(Ⅱ)求函数()f x 的单调递减区间.C 1 C 3C 2(16)(本小题满分13分)某单位共有员工45人,其中男员工27人,女员工18人.上级部门为了对该单位员工的工作业绩进行评估,采用按性别分层抽样的方法抽取5名员工进行考核.(Ⅰ)求抽取的5人中男、女员工的人数分别是多少;(Ⅱ)考核前,评估小组从抽取的5名员工中,随机选出3人进行访谈.设选出的3人中男员工人数为X ,求随机变量X 的分布列和数学期望;(Ⅲ)考核分笔试和答辩两项.5名员工的笔试成绩分别为78,85,89,92,96;结合答辩情况,他们的考核成绩分别为95,88,102,106,99.这5名员工笔试成绩与考核成绩的方差分别记为21s ,22s ,试比较21s 与22s 的大小.(只需写出结论)(17)(本小题满分14分)如图,在四棱锥P ABCD -中,平面PAD ⊥平面ABCD ,E 为AD 的中点,PA AD ⊥,BE CD ,BE AD ⊥, 2,1PA AE BE CD ====.(Ⅰ)求证:平面PAD ⊥平面PCD ; (Ⅱ)求二面角--C PB E 的余弦值; (Ⅲ)在线段PE 上是否存在点M ,使得 DM 平面PBC ?若存在,求出点M 的 位置;若不存在,说明理由.(18)(本小题满分13分)已知函数()ln 1f x x ax =--(R a ∈),21()()22g x xf x x x =++.(Ⅰ)求()f x 的单调区间;(Ⅱ)当1a =时,若函数()g x 在区间(,1)()m m m Z +?内存在唯一的极值点,求m 的值.(19)(本小题满分14分)已知椭圆222:1(1)x C y a a +=>,离心率e =.直线:1l x my =+与x 轴交于点A ,与椭圆C 相交于,E F 两点.自点,E F 分别向直线3x =作垂线,垂足分别为11,E F .(Ⅰ)求椭圆C 的方程及焦点坐标;(Ⅱ)记1AEE ∆,11AE F ∆,1AFF ∆的面积分别为1S ,2S ,3S ,试证明1322S S S 为定值.(20)(本小题满分13分)对于正整数集合12{,,,}n A a a a = (n *∈N ,3n ³),如果去掉其中任意一个元素ia (1,2,,i n = )之后,剩余的所有元素组成的集合都能分为两个交集为空集的集合,且这两个集合的所有元素之和相等,就称集合A 为“和谐集”.(Ⅰ)判断集合{1,2,3,4,5}是否是“和谐集”(不必写过程); (Ⅱ)求证:若集合A 是“和谐集”,则集合A 中元素个数为奇数; (Ⅲ)若集合A 是“和谐集”,求集合A 中元素个数的最小值.北京市朝阳区高三年级第一次综合练习数学学科测试答案(理工类) 2017.3 一、选择题:本大题共8小题,每小题5分,共40分.二、填空题:本大题共6小题,每小题5分,共30分.三、解答题:(15)(本小题满分13分)解:因为()sin (cos )f x x x x ωωω=+2sin cos x x x ωωω=⋅1sin 2222x x ωω=+ πsin(2)3x ω=+, …………5分(Ⅰ) 又因为函数()f x 的最小正周期为π2,所以222ωππ=. 解得2ω=. …………7分 (Ⅱ) 令ππ3π2π42π,232k x k k +≤+≤+∈Z 得, π7π2π42π,66k x k k +≤≤+∈Z ,所以πππ7π,224224k k x k +≤≤+∈Z . 所以函数()f x 的单调递减区间是πππ7π[,],224224k k k ++∈Z . …………13分(16)(本小题满分13分)解:(Ⅰ)抽取的5人中男员工的人数为527345⨯=, 女员工的人数为518245⨯=.…………………………………4分(Ⅱ)由(Ⅰ)可知,抽取的5名员工中,有男员工3人,女员工2人. 所以,随机变量X 的所有可能取值为1, 2, 3.根据题意,1232353(1)10C C P X C ⋅===, 2132356(2)10C C P X C ⋅===, 3032351(3)10C C P X C ⋅===. 随机变量X 的分布列是:数学期望361189123101010105EX =⨯+⨯+⨯==. ………………………………10分 (Ⅲ)2212s s =. ……………………………………………………………13分 (17)(本小题满分14分)(Ⅰ)证明:由已知平面PAD ⊥平面ABCD ,PA AD ⊥, 且平面PAD 平面ABCD AD =, 所以PA ⊥平面ABCD .所以PA CD ⊥.又因为BE AD ⊥,BE CD , 所以CD AD ⊥.所以CD ⊥平面PAD .因为CD ⊂平面PCD ,所以平面PAD ⊥平面PCD . ……4分(Ⅱ)作Ez ⊥AD ,以E 为原点,以,EB ED 的方向分别为x 轴,y 轴的正方向,建立如图所示的空间直角坐标系E -xyz ,则点(0,00),E ,(0,22),-P ,(0,20),-A ,(2,00),B ,(1,20),C ,(0,20),D . 所以(2,22,),=- PB ,(1,20),=- BC ,(0,22),=- EP .设平面PBC 的法向量为n =(x ,y ,z ),所以0,0.n n PB BC ⎧⋅=⎪⎨⋅=⎪⎩即0,20.x y z x y +-=⎧⎨-+=⎩令1=y ,解得(2,1,3)n =.设平面PBE 的法向量为m =(a ,b ,c ),所以0,0.PB EP ⎧⋅=⎪⎨⋅=⎪⎩m m 即0,0.a b c b c +-=⎧⎨-+=⎩ 令1=b ,解得(0,1,1)m =.所以cos ,7n m 〈〉==. 由图可知,二面角--C PB E. …………………………………10分 (Ⅲ)“线段PE 上存在点M ,使得DM 平面PBC ”等价于“0n DM ⋅=”.因为(0,22)PE ,=- ,设(0,22)PM PE ,λλλ==-,(0,1)λ∈, 则(0,2222)M ,λλ--,(0,2422)DM ,λλ=--.由(Ⅱ)知平面PBC 的法向量为(2,1,3)n =,所以24660n DM λλ⋅=-+-=.y解得12λ=. 所以线段PE 上存在点M ,即PE 中点,使得DM 平面PBC . ………14分(18)(本小题满分13分) 解:(Ⅰ)由已知得0x >,11()axf x a x x-'=-=. (ⅰ)当0a ≤时,()0f x '>恒成立,则函数()f x 在(0,)+∞为增函数;(ⅱ)当0a >时,由()0f x '>,得10x a<<; 由()0f x '<,得1x a >; 所以函数()f x 的单调递增区间为1(0,)a ,单调递减区间为1(,)a+∞. ……4分(Ⅱ)因为21()()22g x xf x x x =++21(ln 1)22x x x x x =--++21ln 2x x x x =-+,则()ln 11g x x x '=+-+ln 2()3x x f x =-+=+.由(Ⅰ)可知,函数()g x '在(0,1)上单调递增,在(1,)+∞上单调递减.又因为2211()22e e g '=--+210e =-<,(1)10g '=>, 所以()g x '在(0,1)上有且只有一个零点1x .又在1(0,)x 上()0g x '<,()g x 在1(0,)x 上单调递减; 在1(,1)x 上()0g x '>,()g x 在1(,1)x 上单调递增. 所以1x 为极值点,此时0m =.又(3)ln 310g '=->,(4)2ln 220g '=-<, 所以()g x '在(3,4)上有且只有一个零点2x .又在2(3,)x 上()0g x '>,()g x 在2(3,)x 上单调递增; 在2(,4)x 上()0g x '<,()g x 在2(,4)x 上单调递减.所以2x 为极值点,此时3m =.综上所述,0m =或3m =. ……………………………………………………13分(19)(本小题满分14分)解:(Ⅰ)由题意可知1b =,又c a =,即22123a a -=. 解得23a =.即a =所以c = 所以椭圆C 的方程为2213x y +=,焦点坐标为(. …………………4分 (Ⅱ)由221,330x my x y =+⎧⎨+-=⎩得22(3)220m y my ++-=,显然m ∈R . 设1122(,),(,)E x y F x y ,则12122222,33m y y y y m m --+==++,1112(3,),(3,)E y F y . 因为13112211(3)(3)22S S x y x y =-⋅- 12121(2)(2)4my my y y =--21212121[42()]4m y y m y y y y =-++ 22221222(42)4333m m m m m m ---=-⋅+⋅+++2223(2)(3)m m +=+, 又因为222121[2]2S y y =⨯-21212()4y y y y =+-222248(3)3m m m =+++22224824(3)m m m ++=+2221224(3)m m +=+.所以22213222223(2)1(3)12(2)4(3)m S S m m S m ++==++. ………………………………14分(20)(本小题满分13分)解:(Ⅰ)集合{1,2,3,4,5}不是“和谐集”. …………………………………3分 (Ⅱ)设集合12{,,,}n A a a a =所有元素之和为M .由题可知,i M a -(1,2,,i n = )均为偶数,因此i a (1,2,,i n = )的奇偶性相同.(ⅰ)如果M 为奇数,则i a (1,2,,i n = )也均为奇数,由于12n M a a a =+++ ,所以n 为奇数.(ⅱ)如果M 为偶数,则i a (1,2,,i n = )均为偶数,此时设2i i a b =,则12{,,,}n b b b 也是“和谐集”.重复上述操作有限次,便可得各项均为奇数的“和谐集”.此时各项之和也为奇数,集合A 中元素个数为奇数.综上所述,集合A 中元素个数为奇数. …………………………………8分 (Ⅲ)由(Ⅱ)可知集合A 中元素个数为奇数,当3n =时,显然任意集合123{,,}a a a 不是“和谐集”.当5n =时,不妨设12345a a a a a <<<<,将集合1345{,,,}a a a a 分成两个交集为空集的子集,且两个子集元素之和相等, 则有1534a a a a +=+ ①,或者5134a a a a =++ ②;将集合2345{,,,}a a a a 分成两个交集为空集的子集,且两个子集元素之和相等, 则有2534a a a a +=+ ③,或者5234a a a a =++ ④.由①、③,得12a a =,矛盾;由①、④,得12a a =-,矛盾; 由②、③,得12a a =-,矛盾;由②、④,得12a a =,矛盾. 因此当5n =时,集合A 一定不是“和谐集”. 当7n =时,设{1,3,5,7,9,11,13}A =,因为35791113+++=+,19135711++=++, 91313711+=+++,13511713+++=+,19113513,++=++ 3791513++=++,1359711+++=+, 所以集合{1,3,5,7,9,11,13}A =是“和谐集”.集合A 中元素个数n 的最小值是7. ……………………………………13分。

北京朝阳区届高三年级第一次(3月)综合练习(一模)数学理试卷Word版含答案解析

北京朝阳区届高三年级第一次(3月)综合练习(一模)数学理试卷Word版含答案解析

北京市朝阳区届高三第一次(3月)综合练习(一模)数学理试卷
Word版含解析
北京市朝阳区高三年级第一次综合练习
数学(理)
).3
第一部分(选择题共40分)
一、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.
1.已知集合,集合,则()
A. B. C. D.
【答案】B
【解析】
【分析】
解一元二次不等式求得集合,由此求得两个集合的交集.
【详解】由解得,故,故选B.
【点睛】本小题主要考查集合的交集,考查一元二次不等式的解法,属于基础题.
2.在复平面内,复数对应的点位于()
A. 第一象限
B. 第二象限
C. 第三象限
D. 第四象限
【答案】D
【解析】
【分析】
由题意可得:,据此确定复数所在的象限即可.
【详解】由题意可得:,
则复数z 对应的点为,位于第四象限.
本题选择D选项.
【点睛】本题主要考查复数的运算法则,各个象限内复数的特征等知识,意在考查学生的转化能力和计算求解能力.
1 / 1。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

北京朝阳区高三一模数学(理)试题————————————————————————————————作者:————————————————————————————————日期:北京市朝阳区高三年级第一次综合练习数学测试题(理工类)2011.4一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,选出符合题目要求的一项. 1.若集合2{|, }M y y x x ==∈R ,{|2, }N y y x x ==+∈R ,则M N I 等于(A )[)0,+∞(B )(,)-∞+∞ (C )∅ (D ){(2, 4),(1, 1)-}2.某校高三一班有学生54人,二班有学生42人,现在要用分层抽样的方法从两个班抽出16人参加军训表演,则一班和二班分别被抽取的人数是 (A )8,8 (B )10,6 (C )9,7 (D )12,4 3.极坐标方程4cos ρθ=化为直角坐标方程是(A )22(2)4x y -+=(B )224x y += (C )22(2)4x y +-=(D )22(1)(1)4x y -+-= 4.已知{}n a 是由正数组成的等比数列,n S 表示{}n a 的前n 项的和.若13a =,24144a a =,则10S 的值是(A )511(B ) 1023 (C )1533 (D )30695.函数)2(cos 2π+=x y 的单调增区间是(A )π(π,π)2k k + k ∈Z (B )π(π, ππ)2k k ++ k ∈Z(C )(2π, π2π)k k +k ∈Z (D )(2ππ, 2π2π)k k ++k ∈Z6.已知某个三棱锥的三视图如图所示,其中正视图是等边三角形,侧视图是直角三角形,俯视图是等腰直角三角形, 则此三棱锥的体积等于(A )612 (B )33(C )64 (D )2337.如图,双曲线的中心在坐标原点O ,, A C 分别是双曲线虚轴的上、下顶点,B 是双曲线的左顶点,F 为双曲线的左焦点,直线AB 与FC 相交于点D .若双曲线的离心率为2,则BDF ∠的余弦值是侧视正视1俯视xyO B AF D(A )77 (B )577 (C ) 714(D )57148.定义区间(, )a b ,[, )a b ,(, ]a b ,[, ]a b 的长度均为d b a =-,多个区间并集的长度为各区间长度之和,例如, (1, 2)[3, 5)U 的长度(21)(53)3d =-+-=. 用[]x 表示不超过x 的最大整数,记{}[]x x x =-,其中x ∈R . 设()[]{}f x x x =⋅,()1g x x =-,若用123,,d d d 分别表示不等式()()f x g x >,方程()()f x g x =,不等式()()f x g x <解集区间的长度,则当02011x ≤≤时,有(A )1231, 2, 2008d d d === (B )1231, 1, 2009d d d === (C )1233, 5, 2003d d d === (D )1232, 3, 2006d d d === 二、填空题:本大题共6小题,每小题5分,共30分.把答案填在题中横线上 9.复数13i z =+,21i z =-,则12z z 等于 .10.在二项式6(2)x +的展开式中,第四项的系数是 .11.如右图,在三角形ABC 中,D ,E 分别为BC ,AC 的中点,F 为AB 上的点,且B 4A AF =u u u r u u u r . 若AD x AF y AE =+u u u r u u u r u u u r,则实数x = ,实数y = .12.执行右图所示的程序框图,若输入 5.2x =-,则输出y 的值为 .13.如下图,在圆内接四边形ABCD 中, 对角线, AC BD 相交于A BC D E ·· F 开输|2|y x =-0, 0y i ==1i i =+点E.已知23BC CD==,2AE EC=,30CBD∠=o,则CAB∠=,AC的长是.14.对于各数互不相等的整数数组),,,,(321niiiiΛ (n是不小于3的正整数),对于任意的,{1,2,3,,}p q n∈L,当qp<时有qpii>,则称pi,qi是该数组的一个“逆序”,一个数组中所有“逆序”的个数称为该数组的“逆序数”,则数组(2,4,3,1)中的逆序数等于;若数组123(,,,,)ni i i iL中的逆序数为n,则数组11(,,,)n ni i i-L中的逆序数为 .三、解答题:本大题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程. 15.(本小题满分13分)在锐角ABC∆中,角A,B,C所对的边分别为a,b,c.已知3cos24C=-. (Ⅰ)求sin C;(Ⅱ)当2c a=,且37b=时,求a.16.(本小题满分13分)如图,在四棱锥P ABCD-中,底面ABCD为直角梯形,且//AD BC,90ABC PAD∠=∠=︒,侧面PAD⊥底面ABCD. 若12PA AB BC AD===. (Ⅰ)求证:CD⊥平面PAC;(Ⅱ)侧棱PA上是否存在点E,使得//BE平面PCD?若存在,指出点E的位置并证明,若不存在,请说明理由;(Ⅲ)求二面角A PD C--的余弦值. P17.(本小题满分13分)在某校教师趣味投篮比赛中,比赛规则是: 每场投6个球,至少投进4个球且最后2个球都投进者获奖;否则不获奖. 已知教师甲投进每个球的概率都是23. (Ⅰ)记教师甲在每场的6次投球中投进球的个数为X ,求X 的分布列及数学期望; (Ⅱ)求教师甲在一场比赛中获奖的概率;(Ⅲ)已知教师乙在某场比赛中,6个球中恰好投进了4个球,求教师乙在这场比赛中获奖的概率;教师乙在这场比赛中获奖的概率与教师甲在一场比赛中获奖的概率相等吗?18.(本小题满分13分)已知函数2()ln 20)f x a x a x=+-> (. (Ⅰ)若曲线()y f x =在点(1,(1))P f 处的切线与直线2y x =+垂直,求函数()y f x =的单调区间;(Ⅱ)若对于(0,)x ∀∈+∞都有()2(1)f x a >-成立,试求a 的取值范围;(Ⅲ)记()()()g x f x x b b =+-∈R .当1a =时,函数()g x 在区间1[, ]e e -上有两个零点,求实数b 的取值范围. 19.(本小题满分14分)已知(2, 0)A -,(2, 0)B 为椭圆C 的左、右顶点,F 为其右焦点,P 是椭圆C 上异于A ,B 的动点,且APB ∆面积的最大值为23.(Ⅰ)求椭圆C 的方程及离心率; (Ⅱ)直线AP 与椭圆在点B 处的切线交于点D ,当直线AP 绕点A 转动时,试判断以BD为直径的圆与直线PF 的位置关系,并加以证明. 20.(本小题满分14分)有n 个首项都是1的等差数列,设第m 个数列的第k 项为mk a (,1,2,3,,, 3)m k n n =L ≥,公差为m d ,并且123,,,,n n n nn a a a a L 成等差数列.(Ⅰ)证明1122m d p d p d =+ (3m n ≤≤,12,p p 是m 的多项式),并求12p p +的值; (Ⅱ)当121, 3d d ==时,将数列{}m d 分组如下:123456789(), (,,), (,,,,),d d d d d d d d d L (每组数的个数构成等差数列).设前m 组中所有数之和为4()(0)m m c c >,求数列{2}m cm d 的前n 项和n S .(Ⅲ)设N 是不超过20的正整数,当n N >时,对于(Ⅱ)中的n S ,求使得不等式1(6)50n n S d ->成立的所有N 的值. 北京市朝阳区高三年级第一次综合练习数学测试题理科2011.4 参考答案一、选择题: 题号 (1) (2) (3) (4) (5) (6) (7) (8) 答案ACADABCB二、填空题: 题号 (9) (10) (11) (12) (13) (14) 答案1+2i 160210.830o64232n n-三、解答题:本大题共6小题,共80分. 15.(本小题满分13分)解:(Ⅰ)由已知可得2312sin 4C -=-.所以27sin 8C =. 因为在ABC ∆中,sin 0C >,所以14sin 4C =. …………………6分 (Ⅱ)因为2c a =,所以114sin sin 28A C ==. 因为ABC ∆是锐角三角形,所以2cos 4C =,52cos 8A =. 所以sin sin()B AC =+sin cos cos sin A C A C =+14252148484=⨯+⨯378=. 由正弦定理可得:37sin sin a B A=,所以14a =. …………………………13分16.(本小题满分13分)解法一:(Ⅰ)因为 90PAD ∠=︒,所以PA AD ⊥.又因为侧面PAD ⊥底面ABCD ,且侧面PAD I 底面ABCD AD =, 所以PA ⊥底面ABCD .而CD ⊂底面ABCD ,所以PA ⊥CD . 在底面ABCD 中,因为90ABC BAD ∠=∠=︒,12AB BC AD ==,所以 22AC CD AD ==, 所以AC ⊥CD . 又因为PA AC A =I , 所以CD ⊥平面PAC . ……………………………4分 (Ⅱ)在PA 上存在中点E ,使得//BE 平面PCD ,证明如下:设PD 的中点是F , 连结BE ,EF ,FC ,则//EF AD ,且12EF AD =. 由已知90ABC BAD ∠=∠=︒,所以//BC AD . 又12BC AD =,所以//BC EF ,且BC EF =,所以四边形BEFC 为平行四边形,所以//BE CF .因为BE ⊄平面PCD ,CF ⊂平面PCD ,所以//BE 平面PCD . ……………8分(Ⅲ)设G 为AD 中点,连结CG ,则 CG ⊥AD .又因为平面ABCD ⊥平面PAD , 所以 CG ⊥平面PAD . 过G 作GH PD ⊥于H ,连结CH ,由三垂线定理可知CH PD ⊥. 所以GHC ∠是二面角A PD C --的平面角.设2AD =,则1PA AB CG DG ====, 5DP =. 在PAD ∆中,GH DGPA DP =,所以15GH =. 所以 tan 5CGGHC GH∠==,6cos 6GHC ∠=. 即二面角A PD C --的余弦值为66. ………………………………13分解法二:因为 90PAD ∠=︒, 所以PA AD ⊥.又因为侧面PAD ⊥底面ABCD , 且侧面PAD I 底面ABCD AD =,E FABP C DG HA BP CD z P所以 PA ⊥底面ABCD . 又因为90BAD ∠=︒,所以AB ,AD ,AP 两两垂直. 分别以AB ,AD ,AP 为x 轴, y 轴,z 轴建立空间直角坐标系,如图.设2AD =,则(0,0,0)A ,(1,0,0)B ,(1,1,0)C ,(0,2,0)D ,(0,0,1)P .(Ⅰ)(0,0,1)AP =u u u r ,(1,1,0)AC =u u u r ,(1,1,0)CD =-u u u r,所以 0AP CD ⋅=u u u r u u u r ,0AC CD ⋅=u u u r u u u r,所以AP ⊥CD ,AC ⊥CD .[来源:学科网]又因为AP AC A =I , 所以CD ⊥平面PAC . ………………………………4分(Ⅱ)设侧棱PA 的中点是E , 则1(0, 0, )2E ,1(1, 0, )2BE =-u u u r .设平面PCD 的一个法向量是(,,)x y z =n ,则0,0.CD PD ⎧⋅=⎪⎨⋅=⎪⎩u u u r u u u rn n 因为(1, 1, 0)CD =-u u u r ,(0, 2,1)PD =-u u u r , 所以0,20.x y y z -+=⎧⎨-=⎩取1x =,则(1, 1, 2)=n .所以1(1, 1, 2)(1, 0, )02BE ⋅=⋅-=u u u r n , 所以BE ⊥u u u r n .因为BE ⊄平面PCD ,所以BE P 平面PCD . ………………………………8分(Ⅲ)由已知,AB ⊥平面PAD ,所以(1, 0, 0)AB =u u u r为平面PAD 的一个法向量.由(Ⅱ)知,(1, 1, 2)=n 为平面PCD 的一个法向量. 设二面角A PD C --的大小为θ,由图可知,θ为锐角,所以(1, 1, 2)(1, 0, 0)6cos 661AB ABθ⋅⋅===⨯u u u ru u u r n n . 即二面角A PD C --的余弦值为66. ………………………………13分 17.(本小题满分13分)解:(Ⅰ)X 的所有可能取值为0,1,2,3,4,5,6. 依条件可知X ~B (6,23). 6621()33kkk P X k C -⎛⎫⎛⎫==⋅⋅ ⎪⎪⎝⎭⎝⎭(0, 1, 2, 3, 4, 5, 6k =)X 的分布列为:X 0 1 2 3 4 5 6P172912729 60729 160729 240729[来源:学科网ZXXK]192729 64729所以1(01112260316042405192664)729EX =⨯+⨯+⨯+⨯+⨯+⨯+⨯=29164729=. 或因为X ~B (6,23),所以2643EX =⨯=. 即X 的数学期望为4. ……………5分(Ⅱ)设教师甲在一场比赛中获奖为事件A ,则224156441212232()()()()().3333381P A C C =⨯⨯+⨯⨯+=答:教师甲在一场比赛中获奖的概率为32.81………………………………10分(Ⅲ)设教师乙在这场比赛中获奖为事件B ,则2444662()5A A PB A ==.即教师乙在这场比赛中获奖的概率为25. 显然2323258081=≠,所以教师乙在这场比赛中获奖的概率与教师甲在一场比赛中获奖的概率不相等.…………………13分18.(本小题满分13分)解: (I) 直线2y x =+的斜率为1.函数()f x 的定义域为(0,)+∞,因为22()a f x x x '=-+,所以22(1)111af '=-+=-,所以1a =. 所以2()ln 2f x x x =+-. 22()x f x x-'=.由()0f x '>解得2x >;由()0f x '<解得02x <<.所以()f x 的单调增区间是(2,)+∞,单调减区间是(0,2). ……………………4分 (II) 2222()a ax f x x x x -'=-+=, 由()0f x '>解得2x a >;由()0f x '<解得20x a <<.所以()f x 在区间2(, )a +∞上单调递增,在区间2(0, )a 上单调递减.所以当2x a =时,函数()f x 取得最小值,min 2()y f a=.因为对于(0,)x ∀∈+∞都有()2(1)f x a >-成立,所以2()2(1)f a a>-即可.则22ln 22(1)2a a a a+->-. 由2ln a a a >解得20a e <<. 所以a 的取值范围是2(0, )e. ………………………………8分(III)依题得2()ln 2g x x x b x=++--,则222()x x g x x +-'=. 由()0g x '>解得1x >;由()0g x '<解得01x <<.所以函数()g x 在区间(0, 1)为减函数,在区间(1, )+∞为增函数.又因为函数()g x 在区间1[, ]e e -上有两个零点,所以1()0,()0,(1)0. g e g e g -⎧⎪⎨⎪<⎩≥≥解得211b e e<+-≤. 所以b 的取值范围是2(1, 1]e e+-. ………………………………………13分 19.(本小题满分14分)解:(Ⅰ)由题意可设椭圆C 的方程为22221(0)x y a b a b+=>>,(,0)F c .由题意知解得3b =,1c =.故椭圆C 的方程为22143x y +=,离心率为12.……6分 (Ⅱ)以BD 为直径的圆与直线PF 相切.证明如下:由题意可设直线AP 的方程为(2)y k x =+(0)k ≠.则点D 坐标为(2, 4)k ,BD 中点E 的坐标为(2, 2)k .[来源:学科网]由22(2),143y k x x y =+⎧⎪⎨+=⎪⎩得2222(34)1616120k x k x k +++-=.设点P 的坐标为00(,)x y ,则2021612234k x k --=+.⎧⎪⎨⎪⎩2221223,22, .a b a a b c ⋅⋅===+OF EPD BAy x所以2026834k x k -=+,00212(2)34ky k x k=+=+. ……………………………10分 因为点F 坐标为(1, 0), 当12k =±时,点P 的坐标为3(1, )2±,点D 的坐标为(2, 2)±. 直线PF x ⊥轴,此时以BD 为直径的圆22(2)(1)1x y -+=m 与直线PF 相切. 当12k ≠±时,则直线PF 的斜率0204114PF y k k x k ==--. 所以直线PF 的方程为24(1)14ky x k =--.点E 到直线PF 的距离222228421414161(14)k kk k k d k k ----=+-322228142||14|14|k k k k k k +-==+-. 又因为||4||BD k = ,所以1||2d BD =. 故以BD 为直径的圆与直线PF 相切.综上得,当直线AP 绕点A 转动时,以BD 为直径的圆与直线PF 相切.………14分 20.(本小题满分14分)解:(Ⅰ)由题意知1(1)mn m a n d =+-.212121[1(1)][1(1)](1)()n n a a n d n d n d d -=+--+-=--,同理,3232(1)()n n a a n d d -=--,4343(1)()n n a a n d d -=--,…, (1)1(1)()nn n n n n a a n d d ---=--.又因为123,,,,n n n nn a a a a L 成等差数列,所以2132(1)n n n n nn n n a a a a a a --=-==-L . 故21321n n d d d d d d --=-==-L ,即{}n d 是公差为21d d -的等差数列. 所以,12112(1)()(2)(1)m d d m d d m d m d =+--=-+-.令122,1p m p m =-=-,则1122m d p d p d =+,此时121p p +=. …………4分(Ⅱ)当121, 3d d ==时,*2 1 ()m d m m =-∈N .数列{}m d 分组如下:123456789(), (,,), (,,,,),d d d d d d d d d L .按分组规律,第m 组中有21m -个奇数,所以第1组到第m 组共有2135(21)m m ++++-=L 个奇数. 注意到前k 个奇数的和为2135(21)k k ++++-=L ,所以前2m 个奇数的和为224()m m =.即前m 组中所有数之和为4m ,所以44()m c m =.因为0m c >,所以m c m =,从而 *2(21)2()m cm m d m m =-⋅∈N . 所以 234112325272(23)2(21)2n nn S n n -=⋅+⋅+⋅+⋅++-⋅+-⋅L .23412123252(23)2(21)2n n n S n n +=⋅+⋅+⋅++-⋅+-⋅L .故2341222222222(21)2n n n S n +-=+⋅+⋅+⋅++⋅--⋅L2312(2222)2(21)2n n n +=++++---⋅L12(21)22(21)221n n n +-=⨯---⋅-1(32)26n n +=--.所以 1(23)26n n S n +=-+. …………………………………9分 (Ⅲ)由(Ⅱ)得*2 1 ()n d n n =-∈N ,1(23)26n n S n +=-+*()n ∈N .[来源:Z#xx#]故不等式1(6)50n n S b -> 就是1(23)250(21)n n n +->-. 考虑函数1()(23)250(21)n f n n n +=---1(23)(250)100n n +=---.当1,2,3,4,5n =时,都有()0f n <,即1(23)250(21)n n n +-<-.而(6)9(12850)1006020f =--=>,注意到当6n ≥时,()f n 单调递增,故有()0f n >. 因此当6n ≥时,1(23)250(21)n n n +->-成立,即1(6)50n n S d ->成立. 所以,满足条件的所有正整数5,6,7,,20N =L . …………………………14分。

相关文档
最新文档