正弦与余弦

合集下载

正弦与余弦知识点总结

正弦与余弦知识点总结

正弦与余弦知识点总结正弦与余弦的定义在直角三角形中,如果一个锐角的对边和斜边的比值为正弦值,邻边和斜边的比值为余弦值。

假设在直角三角形ABC中,∠C为90°,AB为斜边,BC为对边,AC为邻边,那么正弦与余弦的定义如下:正弦值:sin∠A=对边/斜边=BC/AB余弦值:cos∠A=邻边/斜边=AC/AB在直角三角形中,正弦与余弦的值可以用来描述角度和三角形边长的关系。

在不同的三角形中,正弦与余弦的值并不相同,但其性质和图像是相似的。

正弦与余弦的性质1. 周期性:正弦与余弦函数都具有周期性,其周期为2π。

这意味着在一个周期内,函数值将重复出现。

在[-π, π]或[0, 2π]范围内,正弦与余弦的函数图像将呈现出周期性的特点。

2. 奇偶性:正弦函数是奇函数,余弦函数是偶函数。

奇函数具有对称中心原点,即f(-x)=-f(x),在图像上关于原点对称。

而偶函数则具有对称中心y轴,即f(-x)=f(x),在图像上关于y轴对称。

3. 交替性:正弦与余弦函数在图像上呈现出交替变化的特点。

在一个周期内,正弦函数的最大值为1,最小值为-1;余弦函数的最大值为1,最小值为-1。

两个函数的图像像是上下振荡的波形。

4. 相关性:正弦与余弦函数是相互关联的。

在直角三角形中,三角函数的相互关系可以由勾股定理推导出来。

sin²x + cos²x = 1是三角函数基本关系式,也称为三角恒等式。

正弦与余弦的图像正弦与余弦函数的图像是学习三角函数的重要内容之一。

它们的图像形状、周期性、奇偶性等特点对于理解三角函数的性质至关重要。

正弦函数的图像是一条连续的波纹状曲线,具有周期性、奇函数特点。

其图像在[-π, π]或[0, 2π]范围内呈现出从最小值-1到最大值1的振荡变化。

正弦函数的图像具有对称性,关于原点对称。

余弦函数的图像也是一条连续的波纹状曲线,具有周期性、偶函数特点。

其图像在[-π, π]或[0, 2π]范围内同样呈现出从最大值1到最小值-1的振荡变化。

三角函数的正弦和余弦关系

三角函数的正弦和余弦关系

三角函数的正弦和余弦关系三角函数是数学中重要的概念之一,它在几何、物理、工程等领域中都具有广泛的应用。

其中,正弦函数和余弦函数是最常见和基础的三角函数,它们之间存在着紧密的关系。

一、正弦和余弦的定义和性质正弦函数和余弦函数是定义在单位圆上的函数。

在单位圆上,以原点为中心作一个半径为1的圆,对于任意一点P(x,y),该点到x轴的距离为x,到y轴的距离为y,这时角OPx的弧度就是点P的角度。

定义:对于单位圆上的任意一个点P(x, y),它的角度为θ,则点P的正弦和余弦值分别定义为:sinθ = ycosθ = x性质:1. 在单位圆上,正弦值的取值范围在[-1, 1]之间,而余弦值的取值范围也在[-1, 1]之间。

2. 当角θ为0或2π的整数倍时,正弦值为0,余弦值为1。

当角θ为π的奇数倍时,正弦值为-1,余弦值为0。

3. 对于任意的角θ,有sin^2θ + cos^2θ = 1,这一关系被称为三角恒等式。

二、正弦和余弦的图像特点正弦函数和余弦函数的图像是周期性的波形图,其周期为2π。

正弦函数的图像是一条上下振荡的曲线,而余弦函数的图像则是一条左右偏移的曲线。

1. 正弦函数图像特点:正弦函数图像在θ = 0, π, 2π 等处过零点,即sin(0) = 0, sin(π) = 0, sin(2π) = 0。

在θ = π/2, 3π/2 等处达到最大值1,即sin(π/2) = 1, sin(3π/2) = 1。

在θ = π, 2π 等处达到最小值-1,即sin(π) = -1, sin(2π) = -1。

2. 余弦函数图像特点:余弦函数图像在θ = 0, 2π 等处达到最大值1,即cos(0) = 1, cos(2π) = 1。

在θ = π/2, 3π/2 等处过零点,即cos(π/2) = 0, cos(3π/2) = 0。

在θ = π, 2π 等处达到最小值-1,即cos(π) = -1, cos(2π) = -1。

高中数学正弦余弦公式大全

高中数学正弦余弦公式大全

正弦定理和余弦定理一:基础知识理解1 .正弦定理分类内容定理===2 R ( R 是△ ABC 外接圆的半径 )变形公式① a = 2 R sin _ A , b = 2 R sin _ B , c = 2 R sin _ C ,② sin A ∶ sin B ∶ sin C =a ∶ b ∶ c ,③ sin A =,sin B =,sin C =解决的问题① 已知两角和任一边,求其他两边和另一角,② 已知两边和其中一边的对角,求另一边的对角2 .余弦定理分类内容定理在△ ABC 中,有 a 2 = b 2 + c 2 -2 bc cos _ A ;b 2 = a 2 +c 2 -2 ac cos _ B ; c 2 = a 2 + b 2 -2 ab cos _ C 变形公式cos A =;cos B =;cos C =解决的问题① 已知三边,求各角;② 已知两边和它们的夹角,求第三边和其他两个角3 .三角形中常用的面积公式( 1 ) S = ah ( h 表示边 a 上的高 );( 2 ) S = bc sin A = ac sin B = ab sin C ;( 3 ) S = r ( a + b + c )( r 为三角形的内切圆半径 ).二:基础知识应用演练1 .( 2012·广东高考 ) 在△ ABC 中,若∠ A = 60°,∠ B = 45°, BC = 3 ,则 AC =()A . 4B . 22 .在△ ABC 中, a =, b = 1 , c = 2 ,则 A 等于 ()A . 30°B . 45°C . 60°D . 75°3 .( 教材习题改编 ) 在△ ABC 中,若 a = 18 , b = 24 , A = 45°,则此三角形有 ()A .无解B .两解C .一解D .解的个数不确定4 .( 2012·陕西高考 ) 在△ ABC 中,角 A , B , C 所对边的长分别为 a , b , c .若 a = 2 , B =, c = 2 ,则 b = ________.5 .△ ABC 中, B = 120°, AC = 7 , AB = 5 ,则△ ABC 的面积为________ .解析:1 选B 由正弦定理得:=,即=,所以 AC = × =2 .2 选C ∵ cos A ===,又∵ 0°< A <180°,∴ A =60°.3 选B ∵ =,∴ sin B = sin A = sin 45°,∴ sinB = .又∵ a < b ,∴ B 有两个.4 由余弦定理得 b 2 = a 2 + c 2 -2 ac cos B =4+12-2×2×2 × =4,所以 b =2.答案:25、解析:设 BC = x ,由余弦定理得49=25+ x 2 -10 x cos 120°,整理得 x 2+5 x -24=0,即 x =3.因此 S △ ABC = AB × BC ×sin B = ×3×5× = . 答案:小结: ( 1 ) 在三角形中,大角对大边,大边对大角;大角的正弦值也较大,正弦值较大的角也较大,即在△ ABC 中,A > B ⇔ a > b ⇔ sin A >sin B .( 2 ) 在△ ABC 中,已知 a 、 b 和 A 时,解的情况如下:A 为锐角 A 为钝角或直角图形关系式 a = b sin A b sin A < a < b a ≥ b a > b解的个数一解两解一解一解三、典型题型精讲(1)利用正弦、余弦定理解三角形[例1] ( 2012·浙江高考 ) 在△ ABC 中,内角 A , B , C 的对边分别为 a , b ,c ,且 b sin A = a cos B .( 1 ) 求角 B 的大小; ( 2 ) 若 b = 3 , sin C = 2sin A ,求 a , c 的值.解析: ( 1 ) 由 b sin A = a cos B 及正弦定理=,得sinB = cos B ,所以tan B =,所以 B = .(2) 由 sin C =2sin A 及=,得 c = 2 a . 由 b =3 及余弦定理 b 2 = a 2 + c 2 -2 ac cos B ,得 9= a 2 + c 2 - ac . 所以 a =, c =2 .思考一下:在本例 ( 2 ) 的条件下,试求角 A 的大小.方法小结:1 .应熟练掌握正、余弦定理及其变形.解三角形时,有时可用正弦定理,有时也可用余弦定理,应注意用哪一个定理更方便、简捷.2 .已知两角和一边,该三角形是确定的,其解是唯一的;已知两边和一边的对角,该三角形具有不唯一性,通常根据三角函数值的有界性和大边对大角定理进行判断.试题变式演练 1 .△ ABC 的三个内角 A , B , C 所对的边分别为 a , b , c , a sin A sin B + b cos 2 A = a .( 1 ) 求;( 2 ) 若 c 2 = b 2 + a 2 ,求 B .解: ( 1 ) 由正弦定理得,sin 2 A sin B +sin B cos 2 A = sin A ,即 sin B ( sin 2 A +cos 2 A ) = sin A .故 sin B = sin A ,所以= .( 2 ) 由余弦定理和 c 2 = b 2 + a 2 ,得 cos B = .由 (1) 知 b 2 = 2 a 2 ,故 c 2 =(2+ ) a 2 . 可得 cos 2 B =,又 cos B >0,故 cos B =,所以 B =45°.(2)利用正弦、余弦定理判定三角形的形状[例2] 在△ ABC 中 a , b , c 分别为内角 A , B , C 的对边,且2 a sin A =( 2 b + c ) sin B +( 2 c + b ) sin C .( 1 ) 求 A 的大小;( 2 ) 若sin B + sin C = 1 ,试判断△ ABC 的形状.[ 解析 ] ( 1 ) 由已知,根据正弦定理得 2 a 2 = ( 2 b + c ) · b + ( 2 c + b ) c ,即a 2 = b 2 + c 2 + bc .由余弦定理得 a 2 = b 2 + c 2 -2 bc cos A ,故 cos A =-,∵ 0< A <180°,∴ A =120°.(2) 由 (1) 得 sin 2 A =sin 2 B +sin 2 C +sin B sin C =又 sin B +sin C =1,解得 sin B =sin C = .∵ 0°< B <60°,0°< C <60°,故 B = C ,∴△ ABC 是等腰的钝角三角形.方法小结:依据已知条件中的边角关系判断三角形的形状时,主要有如下两种方法:( 1 ) 利用正、余弦定理把已知条件转化为边边关系,通过因式分解、配方等得出边的相应关系,从而判断三角形的形状;( 2 ) 利用正、余弦定理把已知条件转化为内角的三角函数间的关系,通过三角函数恒等变形,得出内角的关系,从而判断出三角形的形状,此时要注意应用 A + B + C =π这个结论.[注意] 在上述两种方法的等式变形中,一般两边不要约去公因式,应移项提取公因式,以免漏解.试题变式演练 ( 2012·安徽名校模拟 ) 已知△ ABC 的三个内角 A , B , C 所对的边分别为 a , b , c ,向量 m =( 4 ,- 1 ), n =,且m · n = .( 1 ) 求角 A 的大小;( 2 ) 若 b + c = 2 a = 2 ,试判断△ ABC 的形状.解:( 1 ) ∵ m = ( 4,-1 ) , n =,∴ m · n =4cos 2 -cos 2 A =4·- ( 2cos 2 A -1 ) =-2cos 2 A +2cos A +3.又∵ m · n =,∴ -2cos 2 A +2cos A +3=,解得 cos A =. ∵ 0< A < π ,∴ A = .(2) 在△ ABC 中, a 2 = b 2 + c 2 -2 bc cos A ,且 a =,∴ ( ) 2 =b 2 +c 2 -2 bc ·= b 2 + c 2 -bc . ①又∵ b + c =2 ,∴ b =2 - c ,代入① 式整理得 c 2 - 2 c +3=0,解得 c =,∴ b =,于是 a = b = c =,即△ ABC 为等边三角形.(3)与三角形面积有关的问题[例3] ( 2012·新课标全国卷 ) 已知 a , b , c 分别为△ ABC 三个内角 A , B ,C 的对边, a cos C + a sin C - b - c = 0.( 1 ) 求 A ;( 2 ) 若 a = 2 ,△ ABC 的面积为,求 b , c .[ 解 ] ( 1 ) 由 a cos C + a sin C - b - c =0及正弦定理得sin A cos C + sin A sin C -sin B -sin C =0.因为 B =π- A - C ,所以 sin A sin C -cos A sin C -sin C =0.由于sin C ≠0,所以sin = . 又0< A <π,故 A = .( 2 ) △ ABC 的面积 S = bc sin A =,故 bc =4.而 a 2 = b 2 + c 2 -2 bc cos A ,故 b 2 + c 2 =8. 解得 b = c =2.方法小结:1 .正弦定理和余弦定理并不是孤立的.解题时要根据具体题目合理选用,有时还需要交替使用.2 .在解决三角形问题中,面积公式 S = ab sin C = bc sin A = ac sin B 最常用,因为公式中既有边也有角,容易和正弦定理、余弦定理结合应用.试题变式演练 ( 2012·江西重点中学联考 ) 在△ ABC 中, cos 2 A = cos 2 A -cos A .( 1 ) 求角 A 的大小;( 2 ) 若 a = 3 , sin B = 2sin C ,求 S △ ABC .解: ( 1 ) 由已知得 ( 2cos 2 A -1 ) =cos 2 A -cos A ,则cos A = .因为0< A <π,所以 A = .( 2 ) 由=,可得==2,即 b = 2 c .所以cos A ===,解得 c =, b =2 ,所以 S △ ABC = bc sin A = ×2 × × = .课后强化与提高练习(基础篇-必会题)1 .在△ ABC 中, a 、 b 分别是角 A 、 B 所对的边,条件“ a < b ”是使“cosA >cosB ”成立的 ()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件2 .( 2012·泉州模拟 ) 在△ ABC 中, a , b , c 分别是角 A , B , C 所对的边.若 A =, b = 1 ,△ ABC 的面积为,则 a 的值为 ()A . 1B . 23 .( 2013·“江南十校”联考 ) 在△ ABC 中,角 A , B , C 所对的边分别为 a , b ,c ,已知 a = 2 , c = 2 , 1 +=,则 C =()A . 30°B . 45°C . 45°或135°D . 60°4 .( 2012·陕西高考 ) 在△ ABC 中,角 A , B , C 所对边的长分别为 a , b , c ,若 a 2 + b 2 = 2 c 2 ,则cos C 的最小值为 ()D .-5 .( 2012·上海高考 ) 在△ ABC 中,若sin 2 A + sin 2 B <sin 2 C ,则△ ABC 的形状是 ()A .锐角三角形B .直角三角形C .钝角三角形D .不能确定6 .在△ ABC 中,角 A 、 B 、 C 所对的边分别是 a 、 b 、 c .若 b = 2 a sin B ,则角 A 的大小为________ .解析:由正弦定理得sin B =2sin A sin B ,∵ sin B ≠0,7 .在△ ABC 中,若 a = 3 , b =, A =,则 C 的大小为________ .8 .( 2012·北京西城期末 ) 在△ ABC 中,三个内角 A , B , C 的对边分别为 a ,b ,c .若 b = 2 , B =, sin C =,则 c = ________ ; a = ________.9 .( 2012·北京高考 ) 在△ ABC 中,若 a = 2 , b + c = 7 , cos B =-,则 b = ________.10 .△ ABC 的内角 A , B , C 的对边分别为 a , b , c , a sin A + c sin C -a sin C =b sin B .( 1 ) 求 B ;( 2 ) 若 A = 75°, b = 2 ,求 a , c .11 .( 2013·北京朝阳统考 ) 在锐角三角形 ABC 中, a , b , c 分别为内角 A , B ,C 所对的边,且满足 a - 2 b sin A = 0.( 1 ) 求角 B 的大小;( 2 ) 若 a + c = 5 ,且 a > c , b =,求 ·的值.12 .( 2012·山东高考 ) 在△ ABC 中,内角 A , B , C 所对的边分别为 a , b ,c ,已知sin B ( tan A + tan C )= tan A tan C .( 1 ) 求证: a , b , c 成等比数列;( 2 ) 若 a = 1 , c = 2 ,求△ ABC 的面积 S .课后强化与提高练习(提高篇-选做题)1 .( 2012·湖北高考 ) 设△ ABC 的内角 A , B , C 所对的边分别为 a , b , c .若三边的长为连续的三个正整数,且 A > B > C , 3 b = 20 a cos A ,则sin A ∶ sin B ∶ sin C 为 ()A .4 ∶ 3 ∶ 2B .5 ∶ 6 ∶ 7C .5 ∶ 4 ∶ 3D .6 ∶ 5 ∶ 42 .( 2012·长春调研 ) 在△ ABC 中,角 A , B , C 的对边分别为 a , b , c ,已知4sin 2 - cos 2 C =,且 a + b = 5 , c =,则△ ABC 的面积为________ .3 .在△ ABC 中,角 A , B , C 的对边分别为 a , b , c ,且满足 ( 2 b - c ) cos A - a cos C = 0.( 1 ) 求角 A 的大小;( 2 ) 若 a =, S △ ABC =,试判断△ ABC 的形状,并说明理由.选做题1 .已知 a , b , c 分别是△ ABC 的三个内角 A , B , C 所对的边.若 a = 1 ,b =, A + C = 2 B ,则sin C = ________.2 .在△ ABC 中, a = 2 b cos C ,则这个三角形一定是 ()A .等腰三角形B .直角三角形C .等腰直角三角形D .等腰或直角三角形3 .在△ ABC 中,角 A , B , C 所对的边分别为 a , b , c ,已知cos 2 C =- .( 1 ) 求sin C 的值;( 2 ) 当 a = 2 , 2sin A = sin C 时,求 b 及 c 的长.4 .设△ ABC 的内角 A , B , C 所对的边长分别为 a , b , c ,且cos B =, b = 2.( 1 ) 当 A = 30°时,求 a 的值;( 2 ) 当△ ABC 的面积为3时,求 a + c 的值.课后强化与提高练习(基础篇-必会题)解析1 解析:选C a < b ⇔ A < B ⇔ cos A >cos B .2 解析:选D 由已知得 bc sin A = ×1× c ×sin =,解得 c = 2 ,则由余弦定理可得 a 2 = 4 + 1 - 2×2×1×cos =3 ⇒ a = .3 解析:选B 由1 +=和正弦定理得 cos A sin B +sin A cos B=2sin C cos A ,即 sin C =2sin C cos A ,所以 cos A =,则 A =60°. 由正弦定理得=,则 sin C =,又 c < a ,则 C <60°,故 C =45°.4 解析:选 C 由余弦定理得 a 2 + b 2 - c 2 =2 ab cos C ,又 c 2 =( a 2 + b 2 ),得 2 ab cos C = ( a 2 + b 2 ),即 cos C =≥ = .6 解析:选 C 由正弦定理得 a 2 + b 2 < c 2 ,所以 cos C =<0,所以 C 是钝角,故△ ABC 是钝角三角形.∴ sin A =,∴ A =30°或 A =150°. 答案:30°或 150°7 解析:由正弦定理可知 sin B ===,所以 B =或 ( 舍去 ),所以 C =π - A - B =π --= . 答案:8 解析:根据正弦定理得=,则 c ==2 ,再由余弦定理得 b 2 = a 2 + c 2 -2 ac cos B ,即 a 2 - 4 a -12=0,( a +2)( a -6)=0,解得 a =6 或 a =-2( 舍去 ).答案:2 69 解析:根据余弦定理代入 b 2 =4+(7- b ) 2 -2×2×(7- b )× ,解得b =4. 答案:410 解:(1) 由正弦定理得 a 2 + c 2 - ac = b 2 . 由余弦定理得 b 2 = a 2 +c 2 -2 ac cos B .故cos B =,因此 B =45°.(2)sin A =sin(30°+45°)=sin 30°cos 45°+cos 30°sin 45°= .故 a = b × ==1+, c = b × =2×= .1 1 解:(1) 因为 a -2 b sin A =0,所以 sin A -2sin B sin A =0,因为sin A ≠0,所以 sin B = . 又 B 为锐角,所以 B = .( 2 ) 由 ( 1 ) 可知, B = .因为 b = .根据余弦定理,得7= a 2 + c 2 -2 ac cos ,整理,得 ( a + c ) 2 - 3 ac =7.由已知 a + c =5,得 ac =6.又 a > c ,故 a =3, c =2.于是cos A ===,所以 ·=| |·| |cos A = cb cos A=2× × =1.12 解: ( 1 ) 证明:在△ ABC 中,由于sin B ( tan A +tan C ) =tan A tan C ,所以sin B = ·,因此sin B ( sin A cos C +cos A sin C ) =sin A sin C ,所以 sin B sin( A + C )=sin A sin C .又 A + B + C =π ,所以 sin( A + C )=sin B ,因此 sin 2 B =sin A sin C .由正弦定理得 b 2 = ac ,即 a , b , c 成等比数列.( 2 ) 因为 a =1, c =2,所以 b =,由余弦定理得cos B ===,因为0< B <π,所以sin B ==,故△ ABC 的面积 S = ac sin B = ×1×2× = .课后强化与提高练习(提高篇-选做题)解析1 解析:选D 由题意可得 a > b > c ,且为连续正整数,设 c = n , b = n +1,a = n +2 ( n >1,且n ∈ N * ) ,则由余弦定理可得3 ( n +1 ) =20 ( n +2 ) ·,化简得7 n 2 -13 n -60=0,n ∈ N * ,解得 n =4,由正弦定理可得sin A ∶ sin B ∶ sin C =a ∶ b ∶ c =6 ∶ 5 ∶ 4.2 解析:因为4sin 2 -cos 2 C =,所以2[1-cos( A + B )]-2cos 2 C +1=,2+2cos C -2cos 2 C +1=,cos 2 C -cos C +=0,解得cos C = .根据余弦定理有cos C ==,ab = a 2 + b 2 -7 , 3 ab = a 2 + b 2 +2 ab -7= ( a + b ) 2 -7=25-7=18,ab =6,所以△ ABC 的面积 S △ ABC = ab sin C = ×6× =.答案:3 解: ( 1 ) 法一:由 ( 2 b - c ) cos A - a cos C =0及正弦定理,得(2sin B -sin C )cos A -sin A cos C =0,∴ 2sin B cos A -sin( A + C )=0,sin B (2cos A -1)=0. ∵ 0< B < π ,∴ sin B ≠0,∴ cos A =. ∵ 0< A < π ,∴ A= .法二:由 (2 b - c )cos A - a cos C =0,及余弦定理,得 (2 b - c )·- a ·=0,整理,得 b 2 + c 2 - a 2 = bc ,∴ cos A ==,∵ 0<A < π ,∴ A = .(2) ∵ S △ ABC = bc sin A =,即 bc sin =,∴ bc =3,①∵ a 2 = b 2 + c 2 -2 bc cos A , a =, A =,∴ b 2 + c 2 =6,② 由①② 得 b = c =,∴△ ABC 为等边三角形.选择题解析1 解析:在△ ABC 中, A + C =2 B ,∴ B =60°. 又∵ sin A ==,∴ A =30°或 150°( 舍 ),∴ C =90°,∴ sin C =1.答案:12 解析:选A 法一: ( 化边为角 ) 由正弦定理知:sin A =2sin B cos C ,又 A =π -( B + C ),∴ sin A =sin( B + C )=2sin B cos C .∴ sin B cos C +cos B sin C =2sin B cos C ,∴ sin B cos C -cos B sin C =0,∴ sin ( B - C ) =0.又∵ B 、 C 为三角形内角,∴ B = C .法二: ( 化角为边 ) 由余弦定理知cos C =,∴ a =2 b ·=,∴ a 2 = a 2 + b 2 - c 2 ,∴ b 2 = c 2 ,∴ b = c .3 解: ( 1 ) 因为cos 2 C =1-2sin 2 C =-,且0< C <π,所以sin C = .( 2 ) 当 a =2 , 2sin A =sin C 时,由正弦定理=,得 c =4.由cos 2 C =2cos 2 C -1=-,及0< C <π得cos C =± .由余弦定理 c 2 = a 2 + b 2 -2 ab cos C ,得 b 2 ± b -12=0,解得 b =或2 ,所以或4 解: ( 1 ) 因为cos B =,所以sin B = .由正弦定理=,可得=,所以 a = .( 2 ) 因为△ ABC 的面积 S = ac ·sin B ,sin B =,所以 ac =3, ac =10.由余弦定理得 b 2 = a 2 + c 2 -2 ac cos B ,得4= a 2 + c 2 - ac = a 2 + c 2 -16,即 a 2 + c 2 =20.所以 ( a + c ) 2 - 2 ac =20, ( a + c ) 2 =40.所以 a + c =2 .。

初中正弦余弦正切公式

初中正弦余弦正切公式

初中正弦余弦正切公式“初中数学必背三角函数公式、三角函数值”主要包括正弦、余弦、正切函数的定义式和关系式,特殊锐角的正弦、余弦、正切值。

一、正弦、余弦、正切的定义假设在直角三角形ABC中,∠C为直角,∠A、∠B、∠C的对边长度分别记为a、b、c,则有(注:初中数学里,三角函数的定义只适用于直角三角形。

):1、锐角A的正弦值、余弦值、正切值的定义式分别如下:(1)∠A的正弦值=∠A的对边:斜边,记作sinA=a/c。

(2)∠A的余弦值=∠A的邻边:斜边,记作cosA=b/c。

(3)∠A的正切值=∠A的对边:∠A的邻边,记作tanA=a/b。

2、锐角B的正弦值、余弦值、正切值的定义式分别如下:(1)∠B的正弦值=∠B的对边:斜边,记作sinB=b/c。

(2)∠B的余弦值=∠B的邻边:斜边,记作cosB=a/c。

(3)∠B的正切值=∠B的对边:∠B的邻边,记作tanB=b/a。

【注】正弦=“对比斜”、余弦=“邻比斜”、正切=“对比邻”。

3、互余的两个角间的正弦、余弦、正切值关系假设在直角三角形ABC中,∠C为直角,则∠A与∠B互余。

通过∠A和∠B的正弦、余弦、正切值的定义式的对比,我们不难发现:∠A的正弦值与∠B的余弦值相等,∠A的余弦值与∠B的正弦值相等,∠A的正切值与∠B的正切值互为倒数。

所以,当∠A与∠B互余时我们有以下3个同时成立的等式关系:(1)sinA=cosB;(2)sinB=cosA;(3)tanA·tanB=1。

二、同角的正弦值、余弦值、正切值间的关系式1、商数关系:tanA=sinA/cosA;tanB=sinB/cosB.2、平方关系:同一个锐角的‘正弦的平方’与‘余弦的平方’的和为1,即(sinA)^2+(cosA)^2=1;(sinB)^2+(cosB)^2=1.3、倒数关系:tanA·cotA=1;tanB·cotB=1.【注】“cotA”称为为∠A的余切,它等于∠A的邻边比上∠A的对边。

三角函数中的正弦函数与余弦函数

三角函数中的正弦函数与余弦函数

三角函数中的正弦函数与余弦函数在数学中,三角函数是研究角的性质和变化规律的重要工具。

其中,正弦函数(sine function)和余弦函数(cosine function)是最基本和常见的两个三角函数。

它们在数学、物理、工程等领域中都有广泛的应用。

本文将对正弦函数和余弦函数进行详细介绍,探讨它们的定义、性质和应用。

一、正弦函数正弦函数是三角函数中最基本的函数之一,通常用符号sin表示。

它可以通过单位圆上的点的纵坐标来定义。

在单位圆上,以圆心为原点,半径为1的圆为基准,对于圆上的任意一点P,其纵坐标y就是正弦函数的值。

正弦函数的定义域是实数集,值域是闭区间[-1,1]。

正弦函数具有以下几个重要的性质:1. 周期性:正弦函数是周期函数,其最小正周期为2π。

也就是说,对于任意实数x,有sin(x+2π)=sin(x)。

2. 奇偶性:正弦函数是奇函数,即满足sin(-x)=-sin(x)。

这意味着正弦函数关于原点对称。

3. 对称性:正弦函数具有轴对称性,即sin(π-x)=sin(x)。

4. 最值:正弦函数的最大值为1,最小值为-1。

正弦函数在数学和物理中有广泛的应用。

例如,在几何学中,正弦函数可以用来求解三角形的边长和角度。

在物理学中,正弦函数可以用来描述波动、振动等现象。

二、余弦函数余弦函数是另一个常见的三角函数,通常用符号cos表示。

它也可以通过单位圆上的点的横坐标来定义。

在单位圆上,以圆心为原点,半径为1的圆为基准,对于圆上的任意一点P,其横坐标x就是余弦函数的值。

余弦函数的定义域是实数集,值域是闭区间[-1,1]。

余弦函数具有以下几个重要的性质:1. 周期性:余弦函数也是周期函数,其最小正周期为2π。

也就是说,对于任意实数x,有cos(x+2π)=cos(x)。

2. 偶性:余弦函数是偶函数,即满足cos(-x)=cos(x)。

这意味着余弦函数关于y轴对称。

3. 对称性:余弦函数具有轴对称性,即cos(π-x)=-cos(x)。

正弦定理与余弦定理的关系

正弦定理与余弦定理的关系

正弦定理与余弦定理的关系
正弦余弦正切的关系:sinA/cosA=tanA,三角函数是基本初等函数之一,是以角度为自变量,角度对应任意角终边与单位圆交点坐标或其比值为因变量的函数。

也可以等价地用与单位圆有关的各种线段的长度来定义。

三角函数在研究三角形和圆等几何形状的性质时有重要作用,也是研究周期性现象的基础数学工具。

定要确定角的范围,本题中sinα·cosα大于0,则sinα和cosα同号,正弦值和余弦值符号相同,说明角α是第一或者第三象限角,又已知中π≤α≤2π,则就可以确定α是第三象限角,则sinα和cosα都是负数,则sinα+cosα的值是负值。

正弦与余弦

正弦与余弦

正弦与余弦【知识要点】1.正弦:在直角三角形中,一个锐角所对的直角边与斜边的比,叫做这个角的正弦.即:c a A A =∠=斜边的对边sin ; cb B B =∠=斜边的对边sin . 2.余弦:在直角三角形中,一个锐角的邻边与斜边的比,叫做这个角的余弦.即:c b A A =∠=斜边的邻边cos ; ca B B =∠=斜边的邻边cos 3.特殊角的三角函数值=︒0sin ;=︒30sin ;=︒45sin ;=︒60sin ;=︒90sin ; =︒0cos ;=︒30cos ;=︒45cos ;=︒60cos ;=︒90cos .4. 增减性正弦值随锐角的增大而增大,余弦值随锐角的增大而减小。

正切值随锐角的增大而增大,余切值随锐角的增大而减小。

5.互余关系:任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值.()ααcos 90sin =-︒; ()ααsin 90cos =-︒.6.同角的正弦,余弦间的关系: ①平方和的关系:1cos sin 22=+A A .②大小比较:当︒<<︒450A 时,A A sin cos >.当︒<<︒9045A 时,A A sin cos <.【典型例题】例1. 根据下列图中给出的ABC Rt ∆的数据,求A sin ,A cos ,B sin , B cos 的值.例2.已知等腰梯形ABCD 中,上底CD=2cm,下底AB=5cm,腰AD=3cm ,试求A sin ,A cos 的值.例3.求下列各式的值.(1)︒+︒-︒60cos 45cos 30sin (2)︒⋅︒-︒30cos 30sin 260sinBA2 C B3 A B(3)︒+︒+︒50cos 50sin 45cos 222 (4)︒-︒︒60cos 245cos 45sin 例4.用不等号“>”“<”或“=”连接。

⑴ ︒35sin 635sin '︒; ⑵0372cos '︒ 2872cos ︒;⑵ ︒50.15sin 0315sin '︒; ⑷︒6cos ︒84sin⑸︒-︒27cos 63sin 0; ⑹︒-︒48sin 32cos 0。

初中数学 什么是正弦和余弦

初中数学 什么是正弦和余弦

初中数学什么是正弦和余弦正弦和余弦是初中数学中与三角函数相关的两个重要概念。

它们是用来描述和计算三角形中角度和边长之间关系的函数。

在本文中,我们将详细讨论正弦和余弦的定义、性质和应用。

一、正弦函数正弦函数是指一个角的正弦值与其对边与斜边的比值之间的关系。

具体来说,对于一个锐角A,它的正弦值定义为sin(A) = 对边/斜边。

对于钝角A,正弦值定义为sin(A) = -对边/斜边。

正弦函数具有以下几个重要的性质:1. 值域和定义域:正弦函数的值域为[-1, 1],定义域为整个实数集。

2. 周期性质:正弦函数是周期函数,其最小正周期为2π,即sin(A) = sin(A + 2π)。

3. 对称性质:正弦函数是奇函数,即sin(-A) = -sin(A)。

4. 单调性质:在一个周期内,正弦函数在[0, π]上是单调递增的,在[π, 2π]上是单调递减的。

正弦函数在几何学中有着广泛的应用。

它可以用来计算和描述三角形中的角度和边长之间的关系,比如计算角度的正弦值、计算边长的比例等。

此外,正弦函数还可以用来解决关于周期性和周期函数的问题,比如计算函数的周期、求解方程等。

二、余弦函数余弦函数是指一个角的余弦值与其邻边与斜边的比值之间的关系。

具体来说,对于一个锐角A,它的余弦值定义为cos(A) = 邻边/斜边。

对于钝角A,余弦值定义为cos(A) = -邻边/斜边。

余弦函数具有以下几个重要的性质:1. 值域和定义域:余弦函数的值域为[-1, 1],定义域为整个实数集。

2. 周期性质:余弦函数是周期函数,其最小正周期为2π,即cos(A) = cos(A + 2π)。

3. 对称性质:余弦函数是偶函数,即cos(-A) = cos(A)。

4. 单调性质:在一个周期内,余弦函数在[0, π/2]上是单调递减的,在[π/2, 3π/2]上是单调递增的。

余弦函数在几何学中有着广泛的应用。

它可以用来计算和描述三角形中的角度和边长之间的关系,比如计算角度的余弦值、计算边长的比例等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

九年级下册1.1.1 锐角三角函数(第2课时-正弦余弦)
班级: 姓名:
一、 温故知新
1、如图,Rt △ABC 中,tanA = ,tanB= 。

2、在Rt △ABC 中,∠C =90°,tanA =4
3
,AC =10,求BC,AB 的长。

3、若梯子与水平面相交的锐角(倾斜角)为∠A ,∠A 越大,梯子越 ;tanA 的值越大,梯子越 。

4、当Rt △ABC 中的一个锐角A 确定时,其它边之间的比值也确定吗? 可以用其它的方式来表示梯子的倾斜程度吗?
二、探究新知
探究1:如图,请思考:
(1)Rt △AB 1C 1和Rt △AB 2C 2的关系是 ; (2)
的关系是和2
2
2111AB C B AB C B ; (3)如果改变B 2在斜边上的位置,则
的关系是和2
2
2111AB C B AB C B ; 思考:从上面的问题可以看出:当直角三角形的一个锐角的大小已确定时,它的对边与斜边的比值__________,根据是______________________________________。

它的邻边与斜边的比值呢?
归纳概念: 1、正弦的定义:
如图,在Rt △ABC 中,∠C =90°,我们把锐角∠A 的对边BC 与斜边AB 的比叫做∠A 的正弦,记作sinA ,即:sinA =________。

B 1
B 2
A
C 1
C 2
A
C B
2、余弦的定义:
如图,在Rt △ABC 中,∠C =90°,我们把锐角∠A 的邻边AC 与斜边AB 的比叫做∠A 的余弦,记作cosA ,即:cosA=_ _____。

3、锐角A 的正弦,余弦,正切和余切都叫做∠A 的三角函数。

温馨提示:
(1)sinA ,cosA 是在直角三角形中定义的,∠A 是一个锐角;
(2)sinA ,cosA 中常省去角的符号“∠”。

但∠BAC 的正弦和余弦表示为: sin ∠BAC ,cos ∠BAC 。

∠1的正弦和余弦表示为: sin ∠1,cos ∠1; (3)sinA ,cosA 没有单位,它表示一个比值;
(4)sinA ,cosA 是一个完整的符号,不表示“sin ”,“cos ”乘以“A” ;
(5)sinA ,cosA 的大小只与∠A 的大小有关,而与直角三角形的边长没有必然的关系。

探究2:我们知道,梯子的倾斜程度与tanA 有关系,tanA 越大,梯子越陡,那么梯子的倾斜程度与sinA 和cosA 有关系吗?是怎样的关系?
探索发现:梯子的倾斜程度与sinA,cosA 的关系: sinA 越大,梯子 ; cosA 越 ,梯子越陡。

探究活动3:如图,在Rt △ABC 中,∠C=90°,AB=20,sinA=0.6,求BC 和cosB 。

通过上面的计算,你发现sinA 与cosB 有什么关系呢? sinB 与cosA 呢?在其它直角三角形中是不是也一样呢?请举例说明。

小结规律:在直角三角形中,一个锐角的正弦等于另一个锐角的 。

三、及时检测
1、如图,在Rt △ABC 中,锐角A 的对边和邻边同时扩大100倍,sinA 的值( ) A 、扩大100倍 B 、缩小100倍 C 、不变 D 、不能确定
A
B
C
2、已知∠A ,∠B 为锐角 (1)若∠A=∠B ,则sinA sinB ; (2)若sinA=sinB ,则∠
A ∠
B 。

3、如图, ∠C=90°,CD ⊥AB ,sinB=( )=( )=( )
四、归类提升
类型一:已知直角三角形两边长,求锐角三角函数值
例1、如图,在Rt △ABC 中,∠C=90°, AC=3,AB=6,求∠B 的三个三角函数值。

类型二:利用三角函数值求线段的长度
例2、如图,在Rt △ABC 中,∠C=90°,BC=3,sinA= ,求AC 和AB 。

类型三:利用已知三角函数值,求其它三角函数值
例3、在Rt △ABC 中,∠C=90°,BC=6,sinA=
,求cosA 、tanB 的值。

类型四:求非直角三角形中锐角的三角函数值
例4、如图,在等腰△ABC 中,AB=AC=5,BC=6,求sinB,cosB,tanB 。

五、总结延伸
1、锐角三角函数定义:sinA= ,cosA= ,tanA= ;
2、在用三角函数解决一般三角形或四边形的实际问题中,应注意构造直角三角形。

135
5
3
C
E
A
D
F
B
3、你觉得应该注意的问题:
六、随堂小测
1、如图,分别求∠α,∠β的三个三角函数值。

2、在等腰△ABC 中, AB=AC=13,BC=10,求sinB,cosB 。

3、在△ABC 中,AB=5,BC=13,AD 是BC 边上的高,AD=4。

求:CD 和sinC 。

4、在Rt △ABC 中,∠BCA=90°,CD 是中线,BC=8,CD=5。

求sin ∠ACD ,cos ∠ACD 和tan ∠ACD 。

5、在梯形ABCD 中,AD//BC ,AB=DC=13,AD=8,BC=18,求sinB,cosB,tanB 。

6、如图,在△ABC 中,点D 是AB 的中点,DC ⊥AC ,且tan ∠BCD=1/3。

求∠A 的三个三角函数值。

相关文档
最新文档