高中数学 1.2.2《集合之间的运算》 新人教A版必修1
【免费下载】 新人教A版高中数学教材目录(必修+选修)

选修 1-1 第一章 常用逻辑用语 1.1 命题及其关系 1.2 充分条件与必要条件 1.3 简单的逻辑联结词 1.4 全称量词与存在量词 小结 复习参考题 第二章 圆锥曲线与方程 2.1 椭圆 探究与发现 为什么截口曲线是椭圆 信息技术应用 用《几何画板》探究点的轨迹:椭圆 2.2 双曲线 2.3 抛物线
新人教 A 版高中数学教材目录(必修+选修)
必修 1 第一章 集合与函数概念 1.1 集合 1.2 函数及其表示 1.3 函数的基本性质 第二章 基本初等函数(Ⅰ) 2.1 指数函数 2.2 对数函数 2.3 幂函数 第三章 函数的应用 3.1 函数与方程 3.2 函数模型及其应用 必修 2 第一章 空间几何体 1.1 空间几何体的结构 1.2 空间几何体的三视图和直观图
选修 1-2 第一章 统计案例
1.1 回归分析的基本思想及其初步应用 1.2 独立性检验的基本思想及其初步应用 实习作业 小结 复习参考题 第二章 推理与证明 2.1 合情推理与演绎证明 阅读与思考 科学发现中的推理 2.2 直接证明与间接证明 小结 复习参考题
选修 2-3 第一章 计数原理 1.1 分类加法计数原理与分步乘法计数原理 探究与发现 子集的个数有多少 1.2 排列与组合
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,系电,力根保通据护过生高管产中线工资敷艺料设高试技中卷术资配,料置不试技仅卷术可要是以求指解,机决对组吊电在顶气进层设行配备继置进电不行保规空护范载高与中带资负料荷试下卷高总问中体题资配,料置而试时且卷,可调需保控要障试在各验最类;大管对限路设度习备内题进来到行确位调保。整机在使组管其高路在中敷正资设常料过工试程况卷中下安,与全要过,加度并强工且看作尽护下可关都能于可地管以缩路正小高常故中工障资作高料;中试对资卷于料连继试接电卷管保破口护坏处进范理行围高整,中核或资对者料定对试值某卷,些弯审异扁核常度与高固校中定对资盒图料位纸试置,.卷编保工写护况复层进杂防行设腐自备跨动与接处装地理置线,高弯尤中曲其资半要料径避试标免卷高错调等误试,高方要中案求资,技料编术试5写交卷、重底保电要。护气设管装设备线置备4高敷动调、中设作试电资技,高气料术并中课3试中且资件、卷包拒料中管试含绝试调路验线动卷试敷方槽作技设案、,术技以管来术及架避系等免统多不启项必动方要方式高案,中;为资对解料整决试套高卷启中突动语然过文停程电机中气。高课因中件此资中,料管电试壁力卷薄高电、中气接资设口料备不试进严卷行等保调问护试题装工,置作合调并理试且利技进用术行管,过线要关敷求运设电行技力高术保中。护资线装料缆置试敷做卷设到技原准术则确指:灵导在活。分。对线对于盒于调处差试,动过当保程不护中同装高电置中压高资回中料路资试交料卷叉试技时卷术,调问应试题采技,用术作金是为属指调隔发试板电人进机员行一,隔变需开压要处器在理组事;在前同发掌一生握线内图槽部纸内故资,障料强时、电,设回需备路要制须进造同行厂时外家切部出断电具习源高题高中电中资源资料,料试线试卷缆卷试敷切验设除报完从告毕而与,采相要用关进高技行中术检资资查料料和试,检卷并测主且处要了理保解。护现装场置设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。
高中数学(新人教A版)必修第一册:集合的基本运算【精品课件】

的交集仍存在,此时A∩B=∅.
(三)交集
【做一做】
【探究2】
已知集合A={0,2},B={-2,-1,0,1,2},
则A∩B=(
)
A.{0,2}
C.{0}
B.{1,2}
D.{-2,-1,0,1,2}
交集的性质:
[答案]
A
①A∩B=B∩A;②A∩A=A;
③A∩∅=∅; ④若A⊆B,则A∩B=A;
(四)集合的交并运算
【巩固练习1】
(1) 已知集合A={x|(x-1)(x+2)=0},B={x|(x+2)(x-3)=0},则集合A∪B是(
A.{-1,2,3}
B.{-1,-2,3}
C.{1,-2,3}
D.{1,-2,-3}
(2) 若集合A={x|-2≤x<3},B={x|0≤x<4},则A∪B=________.
⑤(A∩B)⊆A;(A∩B)⊆B.
(四)集合的交并运算
1.集合的并集运算
例1.
(1)设集合M={x| 2 +2x=0,x∈R},N={x| 2 -2x=0,x∈R},则M∪N=(
A.{0}
B.{0,2} C.{-2,0} D.{-2,0,2}
(2)已知A={x|x≤-2,或x>5},B={x|1<x≤7},求A∪B。
(2)在解决问题时,用到了哪些数学思想?
第一章 集合与常用逻辑用语
1.3 集合的基本运算(第2课时)
教材分析
本小节内容选自:
《普通高中数学必修第一册》
人教A版(2019)
第一课时
课时内容
集合的并集、交集运算
集合的补集、综合运算
所在位置
教材第10页
新人教A版高中数学必修一1.1.2《集合间的基本关系》Word精品教案

课题:§1.2集合间的基本关系教材分析:类比实数的大小关系引入集合的包含与相等关系了解空集的含义课 型:新授课教学目的:(1)了解集合之间的包含、相等关系的含义;(2)理解子集、真子集的概念;(3)能利用V enn 图表达集合间的关系;(4)了解与空集的含义。
教学重点:子集与空集的概念;用Venn 图表达集合间的关系。
教学难点:弄清元素与子集 、属于与包含之间的区别;教学过程:一、引入课题1、复习元素与集合的关系——属于与不属于的关系,填以下空白:(1)0 N ;(2;(3)-1.5 R2、类比实数的大小关系,如5<7,2≤2,试想集合间是否有类似的“大小”关系呢?(宣布课题)二、新课教学(一) 集合与集合之间的“包含”关系;A={1,2,3},B={1,2,3,4}集合A 是集合B 的部分元素构成的集合,我们说集合B 包含集合A ;如果集合A 的任何一个元素都是集合B 的元素,我们说这两个集合有包含关系,称集合A 是集合B 的子集(subset )。
记作:)(A B B A ⊇⊆或读作:A 包含于(is contained in )B ,或B 包含(contains )A当集合A 不包含于集合B 时,记作A B用Venn)(A B B A ⊇⊆或(二)A B B A ⊆⊆且,则B A =中的元素是一样的,因此B A =即 ⎩⎨⎧⊆⊆⇔=AB B A B A 练习结论:任何一个集合是它本身的子集(三) 真子集的概念⊆若集合B A ⊆,存在元素A x B x ∉∈且,则称集合A 是集合B 的真子集(proper subset )。
记作:A B (或A )读作:A 真包含于B (或B 真包含A )举例(由学生举例,共同辨析)(四) 空集的概念(实例引入空集概念)不含有任何元素的集合称为空集(empty set ),记作:∅规定:空集是任何集合的子集,是任何非空集合的真子集。
(五) 结论:○1A A ⊆ ○2B A ⊆,且C B ⊆,则C A ⊆ (六) 例题(1)写出集合{a ,b}的所有的子集,并指出其中哪些是它的真子集。
(2021年整理)人教版A版高中数学必修1课后习题及答案三章全

人教版A版高中数学必修1课后习题及答案三章全编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(人教版A版高中数学必修1课后习题及答案三章全)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为人教版A版高中数学必修1课后习题及答案三章全的全部内容。
高中数学必修1课后习题答案第一章 集合与函数概念1.1集合1.1.1集合的含义与表示练习(第5页)1.(1)中国∈A ,美国∉A ,印度∈A ,英国∉A ;中国和印度是属于亚洲的国家,美国在北美洲,英国在欧洲.(2)1-∉A 2{|}{0,1}A x x x ===.(3)3∉B 2{|60}{3,2}B x x x =+-==-.(4)8∈C ,9.1∉C 9.1N ∉.2.解:(1)因为方程290x -=的实数根为123,3x x =-=,所以由方程290x -=的所有实数根组成的集合为{3,3}-;(2)因为小于8的素数为2,3,5,7,所以由小于8的所有素数组成的集合为{2,3,5,7};(3)由326y x y x =+⎧⎨=-+⎩,得14x y =⎧⎨=⎩,即一次函数3y x =+与26y x =-+的图象的交点为(1,4),所以一次函数3y x =+与26y x =-+的图象的交点组成的集合为{(1,4)};(4)由453x -<,得2x <,所以不等式453x -<的解集为{|2}x x <.1.1.2集合间的基本关系练习(第7页)1.解:按子集元素个数来分类,不取任何元素,得∅;取一个元素,得{},{},{}a b c ;取两个元素,得{,},{,},{,}a b a c b c ;取三个元素,得{,,}a b c ,即集合{,,}a b c 的所有子集为,{},{},{},{,},{,},{,},{,,}a b c a b a c b c a b c ∅.2.(1){,,}a a b c ∈ a 是集合{,,}a b c 中的一个元素;(2)20{|0}x x ∈= 2{|0}{0}x x ==;(3)2{|10}x R x ∅=∈+= 方程210x +=无实数根,2{|10}x R x ∈+==∅;(4){0,1}N (或{0,1}N ⊆) {0,1}是自然数集合N 的子集,也是真子集;(5){0}2{|}x x x = (或2{0}{|}x x x ⊆=) 2{|}{0,1}x x x ==;(6)2{2,1}{|320}x x x =-+= 方程2320x x -+=两根为121,2x x ==.3.解:(1)因为{|8}{1,2,4,8}B x x ==是的约数,所以AB ;(2)当2k z =时,36k z =;当21k z =+时,363k z =+,即B 是A 的真子集,B A ; (3)因为4与10的最小公倍数是20,所以A B =.1.1.3集合的基本运算练习(第11页)1.解:{3,5,6,8}{4,5,7,8}{5,8}A B ==,{3,5,6,8}{4,5,7,8}{3,4,5,6,7,8}A B ==.2.解:方程2450x x --=的两根为121,5x x =-=,方程210x -=的两根为121,1x x =-=,得{1,5},{1,1}A B =-=-,即{1},{1,1,5}A B A B =-=-.3.解:{|}A B x x =是等腰直角三角形,{|}A B x x =是等腰三角形或直角三角形.4.解:显然{2,4,6}U B =,{1,3,6,7}U A =,则(){2,4}U A B =,()(){6}U U A B =.1.1集合习题1.1 (第11页) A 组1.(1)237Q ∈ 237是有理数; (2)23N ∈ 239=是个自然数; (3)Q π∉ π是个无理数,不是有理数; (4)2R ∈ 2是实数;(5)9Z ∈ 93=是个整数; (6)2(5)N ∈ 2(5)5=是个自然数.2.(1)5A ∈; (2)7A ∉; (3)10A -∈.当2k =时,315k -=;当3k =-时,3110k -=-;3.解:(1)大于1且小于6的整数为2,3,4,5,即{2,3,4,5}为所求;(2)方程(1)(2)0x x -+=的两个实根为122,1x x =-=,即{2,1}-为所求;(3)由不等式3213x -<-≤,得12x -<≤,且x Z ∈,即{0,1,2}为所求.4.解:(1)显然有20x ≥,得244x -≥-,即4y ≥-,得二次函数24y x =-的函数值组成的集合为{|4}y y ≥-;(2)显然有0x ≠,得反比例函数2y x=的自变量的值组成的集合为{|0}x x ≠; (3)由不等式342x x ≥-,得45x ≥,即不等式342x x ≥-的解集为4{|}5x x ≥. 5.(1)4B -∉; 3A -∉; {2}B ; B A ;2333x x x -<⇒>-,即{|3},{|2}A x x B x x =>-=≥;(2)1A ∈; {1}-A ; ∅A ; {1,1}-=A ;2{|10}{1,1}A x x =-==-;(3){|}x x 是菱形{|}x x 是平行四边形;菱形一定是平行四边形,是特殊的平行四边形,但是平行四边形不一定是菱形;{|}x x 是等边三角形{|}x x 是等腰三角形.等边三角形一定是等腰三角形,但是等腰三角形不一定是等边三角形.6.解:3782x x -≥-,即3x ≥,得{|24},{|3}A x x B x x =≤<=≥,则{|2}A B x x =≥,{|34}A B x x =≤<.7.解:{|9}{1,2,3,4,5,6,7,8}A x x ==是小于的正整数,则{1,2,3}A B =,{3,4,5,6}A C =,而{1,2,3,4,5,6}B C =,{3}B C =,则(){1,2,3,4,5,6}A B C =,(){1,2,3,4,5,6,7,8}A B C =.8.解:用集合的语言说明这项规定:每个参加上述的同学最多只能参加两项,即为()A B C =∅.(1){|}A B x x =是参加一百米跑或参加二百米跑的同学;(2){|}A C x x =是既参加一百米跑又参加四百米跑的同学.9.解:同时满足菱形和矩形特征的是正方形,即{|}B C x x =是正方形,平行四边形按照邻边是否相等可以分为两类,而邻边相等的平行四边形就是菱形, 即{|}A B x x =是邻边不相等的平行四边形,{|}S A x x =是梯形.10.解:{|210}A B x x =<<,{|37}A B x x =≤<,{|3,7}R A x x x =<≥或,{|2,10}R B x x x =≤≥或,得(){|2,10}R A B x x x =≤≥或,(){|3,7}R A B x x x =<≥或,(){|23,710}R A B x x x =<<≤<或,(){|2,3710}R A B x x x x =≤≤<≥或或.B 组1.4 集合B 满足A B A =,则B A ⊆,即集合B 是集合A 的子集,得4个子集.2.解:集合21(,)|45x y D x y x y ⎧-=⎫⎧=⎨⎨⎬+=⎩⎩⎭表示两条直线21,45x y x y -=+=的交点的集合, 即21(,)|{(1,1)}45x y D x y x y ⎧-=⎫⎧==⎨⎨⎬+=⎩⎩⎭,点(1,1)D 显然在直线y x =上,得D C .3.解:显然有集合{|(4)(1)0}{1,4}B x x x =--==,当3a =时,集合{3}A =,则{1,3,4},A B A B ==∅;当1a =时,集合{1,3}A =,则{1,3,4},{1}A B A B ==;当4a =时,集合{3,4}A =,则{1,3,4},{4}A B A B ==;当1a ≠,且3a ≠,且4a ≠时,集合{3,}A a =,则{1,3,4,},A B a A B ==∅.4.解:显然{0,1,2,3,4,5,6,7,8,9,10}U =,由U A B =,得U B A ⊆,即()U U A B B =,而(){1,3,5,7}U A B =, 得{1,3,5,7}U B =,而()U U B B =,即{0,2,4,6,8.9,10}B =. 第一章 集合与函数概念1.2函数及其表示1.2.1函数的概念练习(第19页)1.解:(1)要使原式有意义,则470x +≠,即74x ≠-, 得该函数的定义域为7{|}4x x ≠-;(2)要使原式有意义,则1030x x -≥⎧⎨+≥⎩,即31x -≤≤,得该函数的定义域为{|31}x x -≤≤.2.解:(1)由2()32f x x x =+,得2(2)322218f =⨯+⨯=,同理得2(2)3(2)2(2)8f -=⨯-+⨯-=,则(2)(2)18826f f +-=+=,即(2)18,(2)8,(2)(2)26f f f f =-=+-=;(2)由2()32f x x x =+,得22()3232f a a a a a =⨯+⨯=+,同理得22()3()2()32f a a a a a -=⨯-+⨯-=-,则222()()(32)(32)6f a f a a a a a a +-=++-=,即222()32,()32,()()6f a a a f a a a f a f a a =+-=-+-=.3.解:(1)不相等,因为定义域不同,时间0t >;(2)不相等,因为定义域不同,0()(0)g x x x =≠.1.2.2函数的表示法练习(第23页)1.解:显然矩形的另一边长为,y ==,且050x <<,即(050)y x =<<.2.解:图象(A )对应事件(2),在途中遇到一次交通堵塞表示离开家的距离不发生变化; 图象(B )对应事件(3),刚刚开始缓缓行进,后来为了赶时间开始加速; 图象(D )对应事件(1),返回家里的时刻,离开家的距离又为零;图象(C )我出发后,以为要迟到,赶时间开始加速,后来心情轻松,缓缓行进.3.解:2,2|2|2,2x x y x x x -≥⎧=-=⎨-+<⎩,图象如下所示.4.解:因为3sin 60=,所以与A 中元素60相对应的B 中素是3; 的元 因为2sin 452=,所以与B 中的元素22相对应的A 中元素是45. 1.2函数及其表示习题1.2(第23页)1.解:(1)要使原式有意义,则40x -≠,即4x ≠, 得该函数的定义域为{|4}x x ≠;(2)x R ∈,2()f x x =都有意义,即该函数的定义域为R ;(3)要使原式有意义,则2320x x -+≠,即1x ≠且2x ≠, 得该函数的定义域为{|12}x x x ≠≠且;(4)要使原式有意义,则4010x x -≥⎧⎨-≠⎩,即4x ≤且1x ≠, 得该函数的定义域为{|41}x x x ≤≠且.2.解:(1)()1f x x =-的定义域为R ,而2()1x g x x=-的定义域为{|0}x x ≠, 即两函数的定义域不同,得函数()f x 与()g x 不相等; (2)2()f x x =的定义域为R ,而4()()g x x =的定义域为{|0}x x ≥, 即两函数的定义域不同,得函数()f x 与()g x 不相等;(3)对于任何实数,都有362=,即这两函数的定义域相同,切对应法则相同,x x得函数()f x与()g x相等.3.解:(1)定义域是(,)-∞+∞,值域是(,)-∞+∞;(2)定义域是(,0)(0,)-∞+∞,值域是(,0)(0,)-∞+∞;(3)定义域是(,)-∞+∞,值域是(,)-∞+∞;(4)定义域是(,)-∞+∞,值域是[2,)-+∞.4.解:因为2()352f x x x =-+,所以2(2)3(2)5(2)2852f -=⨯--⨯-+=+, 即(2)852f -=+;同理,22()3()5()2352f a a a a a -=⨯--⨯-+=++, 即2()352f a a a -=++;22(3)3(3)5(3)231314f a a a a a +=⨯+-⨯++=++, 即2(3)31314f a a a +=++;22()(3)352(3)3516f a f a a f a a +=-++=-+, 即2()(3)3516f a f a a +=-+.5.解:(1)当3x =时,325(3)14363f +==-≠-, 即点(3,14)不在()f x 的图象上;(2)当4x =时,42(4)346f +==--, 即当4x =时,求()f x 的值为3-;(3)2()26x f x x +==-,得22(6)x x +=-,即14x =. 6.解:由(1)0,(3)0f f ==,得1,3是方程20x bx c ++=的两个实数根, 即13,13b c +=-⨯=,得4,3b c =-=,即2()43f x x x =-+,得2(1)(1)4(1)38f -=--⨯-+=, 即(1)f -的值为8.7.图象如下:8.解:由矩形的面积为10,即10xy =,得10(0)y x x=>,10(0)x y y =>,由对角线为d ,即22d x y =+22100(0)d x x x =+>, 由周长为l ,即22l x y =+,得202(0)l x x x=+>, 另外2()l x y =+,而22210,xy d x y ==+,得22222()22220(0)l x y x y xy d d =+=++=+>, 即2220(0)l d d =+>.9.解:依题意,有2()2d x vt π=,即24vx t dπ=,显然0x h ≤≤,即240vt h dπ≤≤,得204h d t v π≤≤,得函数的定义域为2[0,]4h d vπ和值域为[0,]h . 10.解:从A 到B 的映射共有8个.分别是()0()0()0f a f b f c =⎧⎪=⎨⎪=⎩,()0()0()1f a f b f c =⎧⎪=⎨⎪=⎩,()0()1()0f a f b f c =⎧⎪=⎨⎪=⎩,()0()0()1f a f b f c =⎧⎪=⎨⎪=⎩,()1()0()0f a f b f c =⎧⎪=⎨⎪=⎩,()1()0()1f a f b f c =⎧⎪=⎨⎪=⎩,()1()1()0f a f b f c =⎧⎪=⎨⎪=⎩,()1()0()1f a f b f c =⎧⎪=⎨⎪=⎩.B组1.解:(1)函数()r f p =的定义域是[5,0][2,6)-; (2)函数()r f p =的值域是[0,)+∞;(3)当5r >,或02r ≤<时,只有唯一的p 值与之对应. 2.解:图象如下,(1)点(,0)x 和点(5,)y 不能在图象上;(2)省略.3.解:3, 2.522,211,10()[]0,011,122,233,3x x x f x x x x x x --<<-⎧⎪--≤<-⎪⎪--≤<⎪==≤<⎨⎪≤<⎪≤<⎪⎪=⎩图象如下4.解:(1)驾驶小船的路程为222x +,步行的路程为12x-,得222125x xt +-=+,(012)x ≤≤, 即24125x xt +-=+,(012)x ≤≤. (2)当4x =时,2441242583()55t h +-=+=+≈.第一章 集合与函数概念1.3函数的基本性质1.3.1单调性与最大(小)值练习(第32页)1.答:在一定的范围内,生产效率随着工人数量的增加而提高,当工人数量达到某个数量时,生产效率达到最大值,而超过这个数量时,生产效率随着工人数量的增加而降低.由此可见,并非是工人越多,生产效率就越高.2.解:图象如下[8,12]是递增区间,[12,13]是递减区间,[13,18]是递增区间,[18,20]是递减区间. 3.解:该函数在[1,0]-上是减函数,在[0,2]上是增函数,在[2,4]上是减函数,在[4,5]上是增函数.4.证明:设12,x x R ∈,且12x x <,因为121221()()2()2()0f x f x x x x x -=--=->, 即12()()f x f x >,所以函数()21f x x =-+在R 上是减函数。
1.2 集合间的基本关系 教学设计(2)-人教A版高中数学必修第一册

1.2集合间的基本关系教学设计(人教A版)第一节通过研究集合中元素的特点研究了元素与集合之间的关系及集合的表示方法,而本节重点通过研究元素得到两个集合之间的关系,尤其学生学完两个集合之间的关系后,一定让学生明确元素与集合、集合与集合之间的区别。
课程目标1. 了解集合之间包含与相等的含义,能识别给定集合的子集.2. 理解子集.真子集的概念.3. 能使用venn图表达集合间的关系,体会直观图示对理解抽象概念的作用。
数学学科素养1.数学抽象:子集和空集含义的理解;2.逻辑推理:子集、真子集、空集之间的联系与区别;3.数学运算:由集合间的关系求参数的范围,常见包含一元二次方程及其不等式和不等式组;4.数据分析:通过集合关系列不等式组,此过程中重点关注端点是否含“=”及 问题;5.数学建模:用集合思想对实际生活中的对象进行判断与归类。
重点:集合间的包含与相等关系,子集与其子集的概念.难点:难点是属于关系与包含关系的区别.教学方法:以学生为主体,采用诱思探究式教学,精讲多练。
教学工具:多媒体。
一、问题导入:实数有相等、大小关系,如5=5,5<7,5>3等等,类比实数之间的关系,你会想到集合之间有什么关系呢?要求:让学生自由发言,教师不做判断。
而是引导学生进一步观察.研探. 二、 预习课本,引入新课阅读课本7-8页,思考并完成以下问题1. 集合与集合之间有什么关系?怎样表示集合间的这些关系?2. 集合的子集指什么?真子集又是什么?如何用符号表示?3. 空集是什么样的集合?空集和其他集合间具有什么关系?要求:学生独立完成,以小组为单位,组内可商量,最终选出代表回答问题。
三、新知探究 (一)知识整理 1.集合与集合的关系(1)一般地,对于两个集合A ,B ,如果集合A 中任意一个元素都是集合B 中的元素,我们就说这两个集合有包含关系,称集合A 为B 的子集.记作:()A BB A ⊆⊇或读作:A 包含于B(或B 包含A).图示:(2)如果两个集合所含的元素完全相同(A B B A ⊆⊆且),那么我们称这两个集合相等.记作:A =B 读作:A 等于B.图示:2. 真子集若集合B A ⊆,存在元素A x B x ∉∈且,则称集合A 是集合B 的真子集。
湖南省芷江县第一中学高中数学 1 1 2 集合间的关系教

湖南省芷江县第一中学高中数学新课标A 版必修一1 1 2 集合间的关系 教案教学目的: 让学生初步了解子集的概念及其表示方法,同时了解相等集合、真子集和空集的有关概念.教学重难点:1、子集、真子集的概念及它们的联系与区别;2、空集的概念以及与一般集合间的关系.教学过程:一、 复习(结合提问):1.集合的概念、集合三要素2.集合的表示、符号、常用数集、列举法、描述法3.关于“属于”的概念二 、新课讲授 (一)子集的概念1. 实例: A={1,2,3} B={1,2,3,4,5} 引导观察.结论: 对于两个集合A 和B,如果集合A 的任何一个元素都是集合B 的元素,则说:这两个集合有包含关系,称集合A 为集合B 的子集,记作A ⊆B (或B ⊇A),读作“A 含于B ”(或“B 包含A ”).2. 反之: 集合A 不包含于集合B,或集合B 不包含集合A,记作A ⊄B 已(或B ⊄A)(二)空集的概念不含任何元素的集合叫做空集,记作φ,并规定: 空集是任何集合的子集.(三)“相等”关系1、实例:设 A={x|x 2-1=0} B={-1,1} “元素相同”结论:对于两个集合A 与B ,如果集合A 的任何一个元素都是集合B 的元素,同时,集合B 的任何一个元素都是集合A 的元素,我们就说集合A 等于集合B ,记作A=B (即如果A ⊆B 同时 B ⊆A 那么A=B ).2、 ① 任何一个集合是它本身的子集. A ⊆A② 真子集:如果A ⊆B ,且A ≠B 那就说集合A 是集合B 的真子集,记作A B ③ 空集是任何非空集合的真子集.④ 如果 A ⊆B, B ⊆C ,那么 A ⊆C.(三)例题与练习例1、 设集合A={1,3,a},B={1,a 2-a+1}A ⊇B ,求a 的值练习1:写出集合A={a ,b ,c}的所有子集,并指出哪些是真子集?有多少个?例2 、 求满足{x|x 2+2=0} M ⊆{x|x 2-1=0}的集合M. 例3、 若集合A={x|x 2+x-6=0},B={x|ax+1=0}且B A ,求a 的值. ⊂ ≠ ⊂ ≠ ⊂ ≠练习2: 集合M={x|x=1+a 2,a ∈N*}, P={x|x=a 2-4a+5,a ∈N*} 下列关系中正确的是( )A M PB P MC M=PD M P 且 P M ⊂ ≠ ⊂ ≠ ⊂ ≠ ⊂ ≠。
新人教A版高中数学教材目录(必修+选修)【很全面】

人教A版高中数学教材目录(必修+选修)必修1第一章集合与函数概念1.1 集合1.2 函数及其表示1.3 函数的基本性质实习作业小结复习参考题第二章基本初等函数(Ⅰ)2.1 指数函数2.2 对数函数2.3 幂函数小结复习参考题第三章函数的应用3.1 函数与方程3.2 函数模型及其应用实习作业小结复习参考题必修2第一章空间几何体1.1 空间几何体的结构1.2 空间几何体的三视图和直观图1.3 空间几何体的表面积与体积实习作业小结复习参考题第二章点、直线、平面之间的位置关系2.1 空间点、直线、平面之间的位置关系2.2 直线、平面平行的判定及其性质2.3 直线、平面垂直的判定及其性质小结复习参考题第三章直线与方程3.1 直线的倾斜角与斜率3.2 直线的方程3.3 直线的交点坐标与距离公式小结复习参考题第四章圆与方程4.1 圆的方程4.2 直线、圆的位置关系4.3 空间直角坐标系小结复习参考题必修3第一章算法初步1.1 算法与程序框图1.2 基本算法语句1.3 算法案例阅读与思考割圆术小结复习参考题第二章统计2.1 随机抽样阅读与思考一个著名的案例阅读与思考广告中数据的可靠性阅读与思考如何得到敏感性问题的诚实反应2.2 用样本估计总体阅读与思考生产过程中的质量控制图2.3 变量间的相关关系阅读与思考相关关系的强与弱实习作业小结复习参考题第三章概率3.1 随机事件的概率阅读与思考天气变化的认识过程3.2 古典概型3.3 几何概型阅读与思考概率与密码小结复习参考题必修4第一章三角函数1.1 任意角和弧度制1.2 任意角的三角函数1.3 三角函数的诱导公式1.4 三角函数的图象与性质1.5 函数y=Asin(ωx+ψ) 的图象1.6 三角函数模型的简单应用小结复习参考题第二章平面向量2.1 平面向量的实际背景及基本概念2.2 平面向量的线性运算2.3 平面向量的基本定理及坐标表示2.4 平面向量的数量积2.5 平面向量应用举例小结复习参考题第三章三角恒等变换3.1两角和与差的正弦、余弦和正切公式3.2 简单的三角恒等变换小结复习参考题必修5第一章解三角形1.1 正弦定理和余弦定理探究与发现解三角形的进一步讨论1.2 应用举例阅读与思考海伦和秦九韶1.3 实习作业小结复习参考题第二章数列2.1 数列的概念与简单表示法阅读与思考斐波那契数列阅读与思考估计根号下2的值2.2 等差数列2.3 等差数列的前n项和2.4 等比数列2.5 等比数列前n项和阅读与思考九连环探究与发现购房中的数学小结复习参考题第三章不等式3.1 不等关系与不等式3.2 一元二次不等式及其解法3.3 二元一次不等式(组)与简单的线性规划问题阅读与思考错在哪儿信息技术应用用Excel解线性规划问题举例3.4 基本不等式2abba+≤小结复习参考题选修1-1第一章常用逻辑用语1.1 命题及其关系1.2 充分条件与必要条件1.3 简单的逻辑联结词1.4 全称量词与存在量词小结复习参考题第二章圆锥曲线与方程2.1 椭圆探究与发现为什么截口曲线是椭圆信息技术应用用《几何画板》探究点的轨迹:椭圆2.2 双曲线2.3 抛物线阅读与思考圆锥曲线的光学性质及其应用小结复习参考题第三章导数及其应用3.1 变化率与导数3.2 导数的计算探究与发现牛顿法──用导数方法求方程的近似解3.3 导数在研究函数中的应用信息技术应用图形技术与函数性质3.4 生活中的优化问题举例实习作业走进微积分小结复习参考题选修1-2第一章统计案例1.1 回归分析的基本思想及其初步应用1.2 独立性检验的基本思想及其初步应用实习作业小结复习参考题第二章推理与证明2.1 合情推理与演绎推理阅读与思考科学发现中的推理2.2 直接证明与间接证明小结复习参考题第三章数系的扩充与复数的引入3.1 数系的扩充和复数的概念3.2 复数代数形式的四则运算小结复习参考题第四章框图4.1 流程图4.2 结构图信息技术应用用Word2002绘制流程图小结复习参考题选修2-1第一章常用逻辑用语1.1 命题及其关系1.2 充分条件与必要条件1.3 简单的逻辑联结词1.4 全称量词与存在量词小结复习参考题第二章圆锥曲线与方程2.1 曲线与方程2.2 椭圆探究与发现为什么截口曲线是椭圆信息技术应用用《几何画板》探究点的轨迹:椭圆2.3 双曲线探究与发现2.4 抛物线探究与发现阅读与思考小结复习参考题第三章空间向量与立体几何3.1 空间向量及其运算阅读与思考向量概念的推广与应用3.2 立体几何中的向量方法小结复习参考题选修 2-2第一章导数及其应用1.1 变化率与导数1.2 导数的计算1.3 导数在研究函数中的应用1.4 生活中的优化问题举例1.5 定积分的概念1.6 微积分基本定理1.7 定积分的简单应用小结复习参考题第二章推理与证明2.1 合情推理与演绎推理2.2 直接证明与间接证明2.3 数学归纳法小结复习参考题第三章数系的扩充与复数的引入3.1 数系的扩充和复数的概念3.2 复数代数形式的四则运算小结复习参考题选修2-3第一章计数原理1.1 分类加法计数原理与分步乘法计数原理探究与发现子集的个数有多少1.2 排列与组合探究与发现组合数的两个性质1.3 二项式定理探究与发现“杨辉三角”中的一些秘密小结复习参考题第二章随机变量及其分布2.1 离散型随机变量及其分布列2.2 二项分布及其应用探究与发现服从二项分布的随机变量取何值时概率最大2.3 离散型随机变量的均值与方差2.4 正态分布信息技术应用μ,σ对正态分布的影响小结复习参考题第三章统计案例3.1 回归分析的基本思想及其初步应用3.2 独立性检验的基本思想及其初步应用实习作业小结复习参考题选修3-1数学史选讲第一讲早期的算术与几何一古埃及的数学二两河流域的数学三丰富多彩的记数制度第二讲古希腊数学一希腊数学的先行者二毕达哥拉斯学派三欧几里得与《原本》四数学之神──阿基米德第三讲中国古代数学瑰宝一《周髀算经》与赵爽弦图二《九章算术》三大衍求一术四中国古代数学家第四讲平面解析几何的产生一坐标思想的早期萌芽二笛卡儿坐标系三费马的解析几何思想四解析几何的进一步发展第五讲微积分的诞生一微积分产生的历史背景二科学巨人牛顿的工作三莱布尼茨的“微积分”第六讲近代数学两巨星一分析的化身──欧拉二数学王子──高斯第七讲千古谜题一三次、四次方程求根公式的发现二高次方程可解性问题的解决三伽罗瓦与群论四古希腊三大几何问题的解决第八讲对无穷的深入思考一古代的无穷观念二无穷集合论的创立三集合论的进一步发展与完善第九讲中国现代数学的开拓与发展一中国现代数学发展概观二人民的数学家──华罗庚三当代几何大师──陈省身学习总结报告选修3-3球面上的几何第一讲从欧氏几何看球面一平面与球面的位置关系二直线与球面的位置关系和球幂定理三球面的对称性思考题第二讲球面上的距离和角一球面上的距离二球面上的角思考题第三讲球面上的基本图形一极与赤道二球面二角形三球面三角形1.球面三角形2.三面角3.对顶三角形4.球极三角形思考题第四讲球面三角形一球面三角形三边之间的关系二、球面“等腰”三角形三球面三角形的周长四球面三角形的内角和思考题第五讲球面三角形的全等1.“边边边”(s.s.s)判定定理2.“边角边”(s.a.s.)判定定理3.“角边角”(a.s.a.)判定定理4.“角角角”(a.a.a.)判定定理思考题第六讲球面多边形与欧拉公式一球面多边形及其内角和公式二简单多面体的欧拉公式三用球面多边形的内角和公式证明欧拉公式思考题第七讲球面三角形的边角关系一球面上的正弦定理和余弦定理二用向量方法证明球面上的余弦定理1.向量的向量积2.球面上余弦定理的向量证法三从球面上的正弦定理看球面与平面四球面上余弦定理的应用──求地球上两城市间的距离思考题第八讲欧氏几何与非欧几何一平面几何与球面几何的比较二欧氏平行公理与非欧几何模型──庞加莱模型三欧氏几何与非欧几何的意义阅读与思考非欧几何简史学习总结报告选修3-4对称与群第一讲平面图形的对称群一平面刚体运动1.平面刚体运动的定义2.平面刚体运动的性质思考题二对称变换1.对称变换的定义2.正多边形的对称变换3.对称变换的合成4.对称变换的性质5.对称变换的逆变换思考题三平面图形的对称群思考题第二讲代数学中的对称与抽象群的概念一n元对称群Sn思考题二多项式的对称变换思考题三抽象群的概念1.群的一般概念2.直积思考题第三讲对称与群的故事一带饰和面饰二化学分子的对称群三晶体的分类四伽罗瓦理论学习总结报告附录一附录二选修4-1 几何证明选讲第一讲相似三角形的判定及有关性质一平行线等分线段定理二平行线分线段成比例定理三相似三角形的判定及性质1.相似三角形的判定2.相似三角形的性质四直角三角形的射影定理第二讲直线与圆的位置关系一圆周角定理二圆内接四边形的性质与判定定理三圆的切线的性质及判定定理四弦切角的性质五与圆有关的比例线段第三讲圆锥曲线性质的探讨一平行射影二平面与圆柱面的截线三平面与圆锥面的截线学习总结报告选修 4-2矩阵与变换第一讲线性变换与二阶矩阵一线性变换与二阶矩阵(一)几类特殊线性变换及其二阶矩阵1.旋转变换2.反射变换3.伸缩变换4.投影变换5.切变变换(二)变换、矩阵的相等二二阶矩阵与平面向量的乘法三线性变换的基本性质(一)线性变换的基本性质(二)一些重要线性变换对单位正方形区域的作用第二讲变换的复合与二阶矩阵的乘法一复合变换与二阶矩阵的乘法二矩阵乘法的性质第三讲逆变换与逆矩阵一逆变换与逆矩阵1.逆变换与逆矩阵2.逆矩阵的性质二二阶行列式与逆矩阵三逆矩阵与二元一次方程组1.二元一次方程组的矩阵形式2.逆矩阵与二元一次方程组探究与发现三阶矩阵与三阶行列式第四讲变换的不变量与矩阵的特征向量一变换的不变量——矩阵的特征向量1.特征值与特征向量2.特征值与特征向量的计算二特征向量的应用1.Anα的简单表示2.特征向量在实际问题中的应用学习总结报告选修4-4 坐标系与参数方程引言第一讲坐标系一平面直角坐标系二极坐标系三简单曲线的极坐标方程四柱坐标系与球坐标系简介第二讲参数方程一曲线的参数方程二圆锥曲线的参数方程三直线的参数方程四渐开线与摆线学习总结报告选修4-5 不等式选讲引言第一讲不等式和绝对值不等式一不等式1.不等式的基本性质2.基本不等式3.三个正数的算术-几何平均不等式二绝对值不等式1.绝对值三角不等式2.绝对值不等式的解法第二讲证明不等式的基本方法一比较法二综合法与分析法三反证法与放缩法第三讲柯西不等式与排序不等式一二维形式柯西不等式阅读与思考法国科学家柯西二一般形式的柯西不等式三排序不等式第四讲数学归纳法证明不等式一数学归纳法二用数学归纳法证明不等式学习总结报告选修4-6 初等数论初步引言第一讲整数的整除一整除1.整除的概念和性质2.带余除法3.素数及其判别法二最大公因数与最小公倍数1.最大公因数2.最小公倍数三算术基本定理第二讲同余与同余方程一同余1.同余的概念2.同余的性质二剩余类及其运算三费马小定理和欧拉定理四一次同余方程1.一次同余方程2.大衍求一术五拉格朗日插值法和孙子定理六弃九验算法第三讲一次不定方程一二元一次不定方程二二元一次不定方程的特解三多元一次不定方程第四讲数论在密码中的应用一信息的加密与去密二大数分解和公开密钥学习总结报告附录一剩余系和欧拉函数附录二多项式的整除性选修4-7 优选法与试验设计初步引言第一讲优选法一什么叫优选法二单峰函数三黄金分割法——0.618法1.黄金分割常数2.黄金分割法——0.618法阅读与思考黄金分割研究简史四分数法1.分数法阅读与思考斐波那契数列和黄金分割2.分数法的最优性五其他几种常用的优越法1.对分法2.盲人爬山法3.分批试验法4.多峰的情形六多因素方法1.纵横对折法和从好点出发法2.平行线法3.双因素盲人爬山法第二讲试验设计初步一正交试验设计法1.正交表2.正交试验设计3.试验结果的分析4.正交表的特性二正交试验的应用学习总结报告附录一、附录二、附录三选修4-9 风险与决策引言第一讲风险与决策的基本概念一风险与决策的关系二风险与决策的基本概念1.风险(平均损失)2.平均收益3.损益矩阵4.风险型决策探究与发现风险相差不大时该如何决策第二讲决策树方法第三讲风险型决策的敏感性分析第四讲马尔可夫型决策简介一马尔可夫链简介1.马尔可夫性与马尔可夫链2.转移概率与转移概率矩阵二马尔可夫型决策简介三长期准则下的马尔可夫型决策理论1.马尔可夫链的平稳分布2.平稳分布与马尔可夫型决策的长期准则3.平稳准则的应用案例学习总结报告附录。
人教A版高中数学教科书目录(2019新版)

人教A 版高中数学教科书目录(2019新版)人教A 版(2019)必修第一册第一章 集合与常用逻辑用语 1.1集合的概念 1.2集合间的基本关系 1.3集合的基本运算1.4充分条件与必要条件 1.5全称量词与存在量词第二章 一元二次函数、方程和不等式 2.1等式性质与不等式性质 2.2基本不等式2.3二次函数与一元二次方程、不等式 第三章 函数的概念与性质3.1函数的概念及其表示 3.2函数的基本性质 3.3幂函数3.4函数的应用(一) 第四章 指数函数与对数函数4.1指数 4.2指数函数 4.3对数 4.4对数函数 4.5函数的应用(二) 第五章 三角图数5.1任意角和孤度制 5.2三角函数的概念 5.3诱导公式5.4三角函数的图象与性质 5.5三角恒等变换 5.6函数sin()yA x ωϕ+5.7三角函数的应用人教A 版(2019)必修第二册第六章 平面向量及其应用 6.1平面向量的概念 6.2平面向量的运算6.3平面向量的基本定理及坐标表示 6.4平面向量的应用 第七章 复数7.1复数的概念 7.2复数的四则运算 7.3*复数的三角表示 第八章 立体几何初步8.1基本立体图形 8.2立体图形的直观图 8.3简单几何体的表面积与体积 8.4空间点、直线、平面的位置关系 8.5空间直线、平面的平行 8.6空间直线、平面的垂直 第九章 统计9.1随机抽样 9.2用样本估计总体 第十章 概率 10.1随机事件与概率 10.2事件的相互独立型 10.3频率与概率人教A版(2019)选择性必修第一册第一章空间向量与立体几何1.1空间向量及其运算1.2空间向量基本定理1.3空间向量及其运算的坐标表示第二章直线与圆的方程2.1直线的倾斜角与斜率2.2直线方程2.3直线的交点坐标与距离公式2.4圆的方程2.5直线与圆、圆与圆的位置关第三章圆锥曲线的方程3.1椭圆3.2双曲线3.3抛物线人教A版(2019)选择性必修第二册第四章数列4.1数列的概念4.2等比数列4.3等差数列4.4数学归纳法第五章一元函数的导数及其应用5.1导数的概念及其意义5.2导数的运算5.3导数在研究函数中的应用人教A版(2019)选择性必修第三册第六章计数原理6.1分类加法计数原理与分步乘法计数原理6.2排列与组合6.3二项式定理第七章随机变量及其分布7.1条件概率与全概率公式7.2离散型随机变量及其分布7.3离散型随机变量的数字特征7.4二项分布与超几何分布7.5正态分布第八章成对数据的统计分析8.1成对数据的统计相关性8.2一元线性回归模型及其应用8.3列联表与独立检验。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(x,y)43xx 2yy67(1,2).
交集的性质:
A B BA
( A B ) C A(BC)
A A A
A A
如果 A B ,则 A B A
A B A AB A B B BA
试分析以下三个集合的关系
A { 1,2,3,4,5,6,9 } B { 1,4,6,9 } C { 2,3,5 }
发现:集合A就是由集合B中和
集合C中的公共元素所组成的集合
1.交集的定义:
一般地 ,对于两个给定的集合
A、 B,
由属于 A 又属于 B 的所有元素构成
的集合 ,叫做 A 、 B 的交集 . 记A 作 B (读 "A 作 交 B " ).
即 A B {x |x A 且 x B }.
A AB
C={x|本班全体女生} 发现:集合C就是集合中A的除去集 合B中的元素后余下来的元素所组 成的集合
4. 补集
如果给定集合A是全集集合U的一个子集 由U中不属于A的所有元素构成的集,合
叫做A在U中的补集,记作 CU A
读作" A在U中的补集"
CU A
U
A
例 6.已U 知 {1,2,3,4,5,6}A ,{1,3,5}
发现:集合C就是集合中A的除 去集合B中的元素后余下来的元 素所组成的集合
3.全集
在研究集合与集合之间的关系时, 如果所要研究的集合都是某一给 定集合的子集,那么称这个给定 的集合为全集,通常用U表示。
把A看作全集观察集合B与C集合之 间的关系
A={x|x本班全体同学}
B={x|x本班全体男生}
两次 都进 了哪 几种 货物:
试分析以下三个集合的关系
A { 1 ,3 ,5 ,7 } B { 1 ,2 ,3 ,4 ,5 ,6 ,7 } C { 1 ,3 ,5 ,7 ,8 ,9 }
发现:集合A就是由集合B中和 集合C中的公共元素所组成的集合
试分析以下三个集合的关系
A x x是正方形 B x x是菱形 C x x是矩形
§1.2集合之间的关系与运算
1.2.2集合之间的运算(1)
自学提纲
• 阅读教材p15-18页回答下列问题 • 1什么是交集? • 2交集有那些性质? • 3什么是并集? • 4并集有那些性质?
第一次 进货:
第二次 进货:
第一次 进货:
第二次 进货:
两次 进了 几种 货物:
第一次 进货:
第二次 进货:
解: A Z { x x是奇数} { x x是整数}
{ x x是奇数} A B Z { x x是偶数} { x x是整数是偶数}
{ x x是偶数} B
A B { x x是奇数} { x x是偶数}
例3.已知 A{(x,y)4xy6}, B{(x,y)3x2y7}
求AB.
( 2 )M N R
3.E{x|y2x1}F , {x|y22(x3)} 求 (1)EF {x|1x3}
(2)EF R
4 .P { x | 2 x 5 },
Q { x |k 1 x 2k 1 }
若 P Q ,求 k ( ,2)(4, )
5 .A {( x , y ) | y 3 1 }, x2
B
例1。求下列集合的交集: (1)A { x x2 2x 3 0 },
B { x x2 4x 3 0 }; (2)C { 1,3,5,7 },D { 2,4,6,8 }
解1 ) : A B ( {1 , 3 } { 1 , 3 } { 3 }
( 2 ) C D
例 2.设 A{xx是奇 }B 数 {xx是偶 } 数 求 AZ,BZ,AB.
求 C UA , A C UA , A C UA .
解:C U A { 2,4,6 }, ACU A, ACU AU
例 7已U 知 {xx是实 }Q , 数 {xx是有}理
求 CUQ.
解C: UA{xx是无}理 .
例 8 已 U R 知 ,A {x x 5 } 求 C ,U A .
解 C U : A {xx5}.
B {( x , y ) | y ax 2 }
若AB 求a
a 1或 1 2
1.2.2集合之间的运算(2)
沈阳二中 数学组 高永德
自学提纲
• 阅读教材P18-19页回答下列问题 • 1什么是全集和补集? • 2补集有那些性质?
试分析以下三个集合的关系 A={x|x是本班同学} B={x|x是本班男生} C={x|x是本班女生}
A ( B C ) (AB)(AC)
如果 A B ,则 A B B
练习:
1.A { y | y x2 1 },B { y | y x 1 }
求:(1 )A B {x|x1}
( 2 )A B R
2.M { y | y x2 1 },N { x | y x 1 } 求:(1 )M N {x|x1}
补集的性质:
AC U U
AC UA
C U (C U A ) A
C
(A
U
B
)
CUACUB
C (A B ) U
CUACUB
练习:
B 1.设S{0,1,2,3,4},A{0,1,2,3}, ( )
B{2,3,4},则(CS A)(CSB)等于
A.{0}
B.{0,1,4}
C.{0,1}
பைடு நூலகம்
AB
A
B
例 5已知 Q{xx是有理 },Z数 {xx是整}数 P{x|x是无理 } 数 求QZ,QP.
解:QZ{ xx是有理}数{ xx是整数 }
{x x是有理}数 QP{x| x是有理}数 {x|是无理}数
{x| x是实数 }
并集的性质:
A B BA A A A
A A A
( A B ) C A(BC)
发现:集合A就是由集合B中和 集合C中的所有元素所组成的集合
试分析以下三个集合的关系
Ax x是二中高一的男学生 Bx x是二中高一的女学生 C x x是二中高一的学生
发现:集合C就是由集合A中和 集合B中的所有元素所组成的集合
2.并集的定义: 一般地,对于两个给定的集合A、B,由 两个集合的所有元素构成的集合,叫 做A与B的并集.记作A B (读作" A并B" ). 即A B { x | x A或x B }.