实变函数习题与解答(电子科大) (2)
实变函数习题与解答(电子科大)

即, lim inf χ An ( x) =0 .
n
▉▉ 实变函数习题参考解答
从而,
χ lim inf A ( x) = lim inf χ A ( x) .
n
n
n
n
(ii) 方法与(i)雷同. 5.设 { An }n=1 为集列, B1 = A1 , Bi = Ai − ∪ A j (i > 1) 证明:
n
(ii) χ lim sup A ( x) = lim sup χ An ( x)
n
n
n
证 (i) 因 为 ∀x ∈ lim inf An = ∪ ( ∩ An ) , ∃ n0 ∈
n n∈ m≥ n
, 对 于 ∀m ≥ n0 有
x ∈ Am ,则 χ Am ( x) = 1 . 所以, inf χ Am ( x) = 1 .故
使得 f ( x )
∞ 1 1 1 > a 且 x ∈ E . 故 x ∈ E{x | f ( x) ≥ a + } ⊂ ∪ E{x | f ( x) ≥ a + } . 从 n =1 n n n ∞ 1 而, E{ x | f ( x ) > a} ⊂ ∪ E{x | f ( x ) ≥ a + } . n =1 n ∞ 1 1 反之, ∀x ∈ ∪ E{x { x | f ( x ) ≥ a + } , ∃n ∈ 使得 x ∈ E{x | f ( x ) ≥ a + } . n =1 n n 1 即, f ( x ) ≥ a + > a 并且 x ∈ E ,故 x ∈ E{ x | f ( x ) > a} . 于是, n ∞ 1 ∪ E{x | f ( x) ≥ a + } ⊂ E{x | f ( x) > a} . n =1 n ∞ 1 从而, E{x | f ( x ) > a} = ∪ E{x | f ( x ) ≥ a + } n =1 n
《实变函数》试卷及参考答案

《实变函数》试卷及参考答案《实变函数》试卷一一、单项选择题(3分×5=15分)1、1、下列各式正确的是( ),,,,limAA,,,limAA,,,(A); (B); nknk,,,,nnkn11nknn,,,,,,,,limAA,,,limAA,,,(C); (D); nknk,,,,nnkn1,,nkn1,,n2、设P为Cantor集,则下列各式不成立的是( ),'P,mP,0(A) c (B) (C) (D) P,PP,P3、下列说法不正确的是( ) (A) 凡外侧度为零的集合都可测(B)可测集的任何子集都可测(C) 开集和闭集都是波雷耳集 (D)波雷耳集都可测fx()E是上的有限的可测函数列,则下面不成立的是( ) 4、设ae..,,n sup()fxfxfx()(),fxfx()(),(A)若, 则 (B) 是可测函数 ,,nnnnfxfx()(), (C)是可测函数;(D)若,则可测 inf()fxfx(),,nnn5、设f(x)是上有界变差函数,则下面不成立的是( ) [a,b](A) 在上有界 (B) 在上几乎处处存在导数 f(x)[a,b]f(x)[a,b]b'f'(x)dx,f(b),f(a)f(x)(C)在上L可积 (D) [a,b],a二. 填空题(3分×5=15分)()(())CACBAAB,,,,,1、_________ sso'E0,12、设是上有理点全体,则=______,=______,=______. EEE,, nET3、设是中点集,如果对任一点集都有R1 (第页,共47页)EL_________________________________,则称是可测的、可测的________条件是它可以表成一列简单函数的极限函数. 4f(x)(填“充分”,“必要”,“充要”)ab,ab,5、设为上的有限函数,如果对于的一切分划,使fx(),,,,ab,______________________,则称为上的有界变差函数。
实变函数第一章复习题及解答(2)

实变函数第⼀章复习题及解答(2)第⼀章复习题(⼆)⼀、判断题1、设P ,n Q R ∈,则(,)0P Q ρ=?P Q =。
(× )2、设P ,n Q R ∈,则(,)0P Q ρ>。
(× )3、设123,,n P P P R ∈,则121323(,)(,)(,)PP P P P P ρρρ≥+。
(× ) 4、设点P 为点集E 的内点,则P E ∈。
(√ )5、设点P 为点集E 的外点,则P E ?。
(√ )6、设点P 为点集E 的边界点,则P E ∈。
(× )7、设点P 为点集E 的内点,则P 为E 的聚点,反之P 为E 的聚点,则P 为E 的内点。
(× )8、设点P 为点集E 的聚点,则P 为E 的边界点。
(× )9、设点P 为点集E 的聚点,且不是E 的内点,则P 为E 的边界点。
(√ )10、设点P 为点集E 的孤⽴点,则P 为E 的边界点。
(√ )11、设点P 为点集E 的外点,则P 不是E 的聚点,也不是E 的边界点。
(√ )12、开集中的每个点都是内点,也是聚点。
(√ )13、开集中可以含有边界点和孤⽴点。
(× )14、E 是开集?E E =的内部(开核)。
(√ )15、任意多个开集的并集仍为开集。
(√ )16、任意多个开集的交集仍为开集。
(× )17、有限个开集的交集仍为开集。
(√ )18、闭集中的每个点都是聚点。
(× )19、E '和E 都是闭集。
(√ )20、E 是闭集?E E '?。
(√ )21、任意多个闭集的交集仍为闭集。
(√ )22、任意多个闭集的并集仍为闭集。
(× )23、有限个闭集的并集仍为闭集。
(√ )24、E 是开集?cE 是闭集。
(√ )25、E 是完全集(完备集)?E E '=E ?是⽆孤⽴点的闭集。
(√ )⼆、填空题1、设1n R R =,1E 是[0,1]上的全部有理点,则1E '=[0,1];1E 的内部= 空集;1E =[0,1]。
实变函数第二章习题解答.docx

第二章习题参考解答1:证明:有理数全体是尺中可测集,且测度为0.证:(1)先证单点集的测度为O.V XG /?\令£ = {X }.V^>0,V HG /Vpp800—尹“莎),因如Sf 专初屮严'人为开区砖00工I I =工= £ .故加*E = 0.m 以E 可测且mE = 0. M = 1 〃 = 1 '"(2)再证:/?'中全体有理数全体Q 测度为0.设匕}羸是只中全体有理数,VneTV,令E n ={r n }.则{乞}是两两不相交的可测集0088列,由可测的可加性冇:加* 0 =加(u &)=工mE n =工0 = 0.n=1n=l n=\法二:设e = {rJL ,Vne/v,令/;=(乙—缶心+希),其中£是预先给定的任意性,加*2 = 0.2. 证明:若E 是/?"有界集,则m*E<+oo.证明:若E 是/?"有界.则日常数M >0,使Vx = (x p x 2,•••%…)€£,有间=<M ,即 Vz (l < z < /2),有 \x]<M ,从而Eu 匚[[兀一M,兀 +M].1=1所以加门比 -M,兀 +M]sf2M =(2M )” <+oo/=i/=i3. 至少含有一个内点的集合的外测度能否为零?解:不能.事实上,设E u R”, E 中有一个內点兀=(坷,…兀”)wEH5〉(),使得” <? C“Q Q0(兀,5)=訂(兀一牙,兀+ 牙)U E .则/??*£ >m*[]^[(x.+ —)] = s n> 0;=i22f=i2 2所以加* E H O.00cor~q与斤无关的正常数,贝ij : m^Q =诚{工I I n \ | U A o Q} <^l I1=工乔之•由£得n=\ J 】 >=1 i=\ 2〃二 1 /=!4•在㈡上]上能否作一个测度为h-a f但乂界于[Q,切的闭集?解:不能事实上,如果有闭集Fu[d,b]使得mF = b-a.不失一般性,可设aeFf\.beF . 事实上,若a 电F,则可作F* 二{a} U F,F* u [G,/?].UmF^ = m[a] + mF = mF .这样, 我们可记F*为新的F ,从而[a,b]-F = (a,b)-F = (a,b)-FCl@劝.如果[a,b]-FH0,即Bxe[a,b]-F = (a,b)-F f而(a,b)_F是开集,故兀是[a,b]-F的一个内点,由3题,([a,b]- F) = m([a,b]- F) = m(a.b)-mF与mF = b-a才盾.故不存在闭集Fcz[a,b]且mF=b — a5.若将§ 1定理6中条件”加(U ®) <0去掉,等式0 /n(limEJ<lim/nE zt是否仍n>k0"TOO "T8成立?解:§ 1定理6中条件*( U £,.)< 00”是不可去掉的.心k()事实上,Vne2V,令E n-[n-l,n),贝U{E”}爲是两两相交的可测集列,由习题一得15 题:iim£n = lim E/? = 0 m(lim £ J = 0,但V” w N , mE n =m[n-l,n) = l.所以"T8 w_>oo mslim mE n = 1 •从而lim mE n丰加(lim E tl).>00 "—>86.设代,E,…是[0,1)中具有下述性质的可测集列:X/£>0, 3k eN使证& >1-£',00证明:7H(U£/)=1/=!证:事实上,Vg〉0,因为mk G N , mE k >\-£1 > m[O,l] > m(U EJ > mE k >\-£i=\7.证明:对任意可测集A,B,下式恒成立.m{A U B) + m( A Pl B) = mA + mB .证明:A^B = (A\JB-A)\JA且(4UB —4)门4 = 0故m(A U B) = m(A U B 一A) + 加4 •即加(力U B) - mA = m(A B - A) = m(B - A)又因为B = (B-A)U(BnA)..E(B-A)n(BnA) = 0,所以mB =m{B一A) + m{B A A)故加(A U 5) - mA = mB -m(A Pl B),从而m{A U B) + m(A Pl B) = mA + mB&设是A,A?是[0,1]屮的两个可测集且满足m\+mA2 >1,证明:m(A^A2)>0.证:m{A{ UA2) + /n(A, 0^2) = /^ +mA2.又因为加(出U A2) < m([0,l]) = 1所以加(A 0 A?) = mA x + mA^ - m(A, U 人)》加人 + ""V -1 > 09.设A2,码是[0,1]中的两个可测集,且皿+叽+叽>2,证明:/n(A] n A2 n A3) > 0证:m(A l U A2 \J A3) + m[(A{ [J A2)C\A3] = m(A] U >42) + mA3 =in(A{) + m(A2) + m(A3) -m{A{ A A2).所以m(A i nA2) + m[(A I\JA2 Pl ^3)] = + m(A2) + m(A3) -m(A} \JA2 U £)又因为m[(A, nA2)u(A2nx3)u(A3 nA,)i=血[(儿AA2)U(AUA2A A3)J=加(Al 0人2)+ 〃[(£ u A2 n A3)J -zn[(A1AA2)D[(A1 U A2 D AJ] =加(儿门仏)* m[(A UA2)n AJ- m[(A{ C\A2H A J .所以加(岀介每门州)= m(A, M)+/7?[(A U A2 A 4 )1 - zn[(A1 HA2)U (A2 n 4)U (A3 AA)]= m(A,) + m(A2) + zn(A3) -zn(4 U A2 U A3)-加[(人A A2) U (A2 A A3)U (A3 A A,)]因为/n(A1UA2UA3)<m[0,l] = l加KA nA2)u(A2n A3)U(A3 nA)]</n[o,i] = 1 .所以加(A D A2 A A.) > 加(A〕)+ m(A2) + m(A3)-l-l = m(A t) + m(A2)-b m(A3) - 2 > 0.1().证明:存在开集G,使加乙>M G证明:设{乙}爲是[0,1]闭区间的一切有理数,对于V HG/V,令人二⑴一肖心+拾),并^G=Ol n是疋中开集Z Z 川=11二二1 C亍1 —— 1mG < Y mI n=S^F =~^T = - Gn[O,l],故mG > /n[O,l] = l>- = mG. n=\ n=\ 2 | _ 丄2 2211.设E是X中的不可测集,4是疋中的零测集,证明:EHCA不町测.证明:若EC\CA可测.因为£AA(= A,所以m*(EC\A)<m^A = QMVm * (E D A) = 0.故E " A可测.从而E = (E D A) U (E fl CA)可测,这与E不可测矛盾.故E"C4不可测.12•若E是[0,1冲的零测集,若闭集E是否也是零测集.解:不一定,例如:E是[0,1]中的冇理数的全体.E = [0,1]. mE = 0,但mE =加[0,1] = 1.13.证明:若E是可测集,则V6' > 0,存在G 〃型集G = E ,你型集F = E,使m{E 一F) < £ , m(G 一F) < £证明:由P51的定理2,对于E u R” ,存在G»型集GnE ,使得mG = m^E.^E 得可测性,m^E = mE .则V^>0.m(G-E) = mG-mE = 0J卩〉0, m(G -F)<£. 再由定理3,有F a型集F使得F =>E .且m{E一F) = mE一mF =0<s15.证明:有界集E可测当且仅当V^>0,存在开集G二E,闭集F = E,使得m(G- F) < £.证明:«=) V HG/V,由己知,存在开集G“ =)E,闭集F” =)E使得m(G n-F n)<~. n00令G=C|G“,则GoE.Vne/V, m * (G - E) < m * (G n - E) < m * (G n - F n)/?=!v丄一>0(〃TOO).所以,加*9一£)=0.即G-E是零测集,可测.n从而,E = G-(G-E)可测(=>)设E是冇界可测集8 00因为加*E = inf{^l//; I | U o £ ,人为开长方体}<+oo.故,0£〉0,存在开长另一方面,由E 得冇界性,存在7T 中闭长方体I 二E.记3 = / —E,则S 是/?"中 冇界nJ 测集.并冃.m S = ml - mE.由S 得有界可测性,存在开集G" nS 有加(G*-S)v?.因为I 二E ,故G"n/z )S.2因此三 > /n(G* A/-5) = m(G* 门 /)—加S = m(G* A /) - (ml -mE)=2mE - {ml 一 77?(G + Cl /))=加E 一 m{I 一 G* Cl /)令,F = /-G*n/,则F 是一个闭集,并且由G*n/=)S = /-E,有£o/-G*n/ = F.因此 m{E -F) = mE - mF = mE - m{I - G* A /) < - > 从而,存2在开集 G 二 E ,闭集 F = E.有 m(G - F) = m((G - E)\J (E - F)) <m{G 一 E)+ m(E -F) < — + — = £ ・2 2由£的任意性知,加*(/?'x{0}) = 0.即Fx{0}是零测集.从而,位于。
实变函数课后习题答案

第一章习题1.证明:(1) (A -B )-C =A -(B ∪C ); (2)(A ∪B )-C =(A -C )∪(B -C ). 证明:(1) 左=(A ∩B c )∩C c =A ∩(B c ∩C c )= A ∩(B ∪C )c =右; (2)左=(A ∪B )∩C c =(A ∩C c )∪(B ∩C c )=右. 2.证明: (1)();(2)().IIIIA B A B A B A B αααααααα∈∈∈∈-=--=-(1)ccI IA B A B αααα∈∈⎛⎫=== ⎪⎝⎭证明:左()右;(2)()c cI I A B A B αααα∈∈⎛⎫=== ⎪⎝⎭左右.111111.{},,1.{}1.n n n n n nnA B A B A A n B B A n νννννν-===⎛⎫==- ⎪⎝⎭>=≤≤∞ 3 设是一列集合,作证明:是一列互不相交的集合,而且,证明:用数学归纳法。
当n=2时,B 1=A 1,B 2=A 2-A 1, 显然121212B B B B B B n k =∅== 且,假设当时命题成立,1211,,,kkk B B B B A νννν===两两互不相交,而且,111111111kk k kkkk k n k B A A B A BA B νννννννν++=++====+=-==-⇒下证,当时命题成立,因为而,所以11211+1111111111111,,,;k k k k k k k k k kk k k k k B B B B B B B B B B A A A A A A A νννννννννννννννν++=++===+++====⎛⎫=∅ ⎪⎝⎭⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭⎛⎫⎛⎫⎛⎫=-==⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,于是,两两互不相交;由数学归纳法命题得证。
{}21214.0,,(0,),1,2,,n n n A A n n A n-⎛⎫=== ⎪⎝⎭设求出集列的上限集和下限集。
《实变函数》试卷及参考答案

《实变函数》试卷及参考答案《实变函数》试卷一一、单项选择题(3分×5=15分)1、1、下列各式正确的是( ),,,,limAA,,,limAA,,,(A); (B); nknk,,,,nnkn11nknn,,,,,,,,limAA,,,limAA,,,(C); (D); nknk,,,,nnkn1,,nkn1,,n2、设P为Cantor集,则下列各式不成立的是( ),'P,mP,0(A) c (B) (C) (D) P,PP,P3、下列说法不正确的是( ) (A) 凡外侧度为零的集合都可测(B)可测集的任何子集都可测(C) 开集和闭集都是波雷耳集 (D)波雷耳集都可测fx()E是上的有限的可测函数列,则下面不成立的是( ) 4、设ae..,,n sup()fxfxfx()(),fxfx()(),(A)若, 则 (B) 是可测函数 ,,nnnnfxfx()(), (C)是可测函数;(D)若,则可测 inf()fxfx(),,nnn5、设f(x)是上有界变差函数,则下面不成立的是( ) [a,b](A) 在上有界 (B) 在上几乎处处存在导数 f(x)[a,b]f(x)[a,b]b'f'(x)dx,f(b),f(a)f(x)(C)在上L可积 (D) [a,b],a二. 填空题(3分×5=15分)()(())CACBAAB,,,,,1、_________ sso'E0,12、设是上有理点全体,则=______,=______,=______. EEE,, nET3、设是中点集,如果对任一点集都有R1 (第页,共47页)EL_________________________________,则称是可测的、可测的________条件是它可以表成一列简单函数的极限函数. 4f(x)(填“充分”,“必要”,“充要”)ab,ab,5、设为上的有限函数,如果对于的一切分划,使fx(),,,,ab,______________________,则称为上的有界变差函数。
2024年考研实变函数题目分析与答案解答
2024年考研实变函数题目分析与答案解答【题目一】设函数f(x)在区间[a,b]上连续,且满足对任意的x∈[a,b],都有∫[a,x] f(t)dt=0,证明:f(x)在[a,b]上恒为0。
【解答一】首先,根据题意可得出∫[a,a] f(t)dt=0,即f(a)∫[a,a] 1dt=0。
因此,f(a)×0=0,即f(a)=0。
其次,我们可以利用函数的连续性来证明在区间[a,b]上的任意一点都满足f(x)=0。
假设存在某一点c∈(a,b),使得f(c)≠0。
由于f(x)在区间[a,b]上连续,根据连续函数的性质,对于任意给定的ε>0,存在δ>0,当|x-c|<δ时,有|f(x)-f(c)|<ε。
考虑到∫[a,c] f(t)dt=0,我们可以选择一个足够小的ε>0,使得f(c)-ε<f(x)<f(c)+ε,且满足∫[a,c] (f(c)-ε) dt<0和∫[a,c] (f(c)+ε) dt>0。
由于f(x)在区间[a,b]上连续,根据介值定理,存在一个点d∈(a,c),使得f(d)=f(c)-ε,并存在一个点e∈(a,c),使得f(e)=f(c)+ε。
那么根据积分的定义可以得到∫[a,c] (f(d)) dt<0和∫[a,c] (f(e)) dt>0。
由于f(x)在区间[a,b]上连续,根据积分的连续性质,对于任意选定的一个点x∈[a,e],有∫[a,x] f(t)dt>0,与题设矛盾。
因此,假设不成立,即f(x)必恒为0。
综上所述,我们证明了函数f(x)在区间[a,b]上恒为0。
【题目二】已知函数f(x)=x^3+3x^2+1,求f(x)在区间[-1,2]上的最小值与最大值。
【解答二】首先,我们求f(x)的导数f'(x)。
对f(x)求导,得到f'(x)=3x^2+6x。
其次,我们求f'(x)的零点。
实变函数综合练习题
实变函数综合练习题实变函数综合练习题《实变函数》综合训练题(⼀)(含解答)⼀、选择题(单选题)1、下列集合关系成⽴的是( A )(A )(\)A B B A B ?=? (B )(\)A B B A ?= (C )(\)B A A A ?? (D )(\)B A A ? 2、若n E R ?是开集,则( B )(A )E E '? (B )E 的内部E = (C )E E = (D )E E '= 3、设P 是康托集,则( C )(A )P 是可数集(B )P 是开集(C )0mP = (D )1mP = 4、设E 是1R 中的可测集,()x ?是E 上的简单函数,则( D )(A )()x ?是E 上的连续函数(B )()x ?是E 上的单调函数(C )()x ?在E 上⼀定不L 可积(D )()x ?是E 上的可测函数5、设E 是n R 中的可测集,()f x 为E 上的可测函数,若()d 0Ef x x =?,则( A )(A )在E 上,()f z 不⼀定恒为零(B )在E 上,()0f z ≥ (C )在E 上,()0f z ≡(D )在E 上,()0f z ≠ ⼆、多项选择题(每题⾄少有两个或两个以上的正确答案) 1、设E 是[0,1]中的⽆理点全体,则(C 、D )(A )E 是可数集(B )E 是闭集(C )E 中的每⼀点都是聚点(D )0mE > 2、若1E R ?⾄少有⼀个内点,则( B 、D )(A )*m E 可以等于零(B )*0m E > (C )E 可能是可数集(D )E 是不可数集3、设[,]E a b ?是可测集,则E 的特征函数()E X x 是(A 、B 、C )(A )[,]a b 上的简单函数(B )[,]a b 上的可测函数(C )E 上的连续函数(D )[,]a b 上的连续函数4、设()f x 在可测集E 上L 可积,则( B 、D )(A )()f z +和()f z -有且仅有⼀个在E 上L 可积(B )()f z +和()f z -都在E 上L 可积(C )()f z 在E 上不⼀定L 可积(D )()f z 在E 上⼀定L 可积5、设()f z 是[,]a b 的单调函数,则( A 、C 、D )(A )()f z 是[,]a b 的有界变差函数(B )()f z 是[,]a b 的绝对连续函数(C )()f z 在[,]a b 上⼏乎处处连续(D )()f z 在[,]a b 上⼏乎处处可导三、填空题(将正确的答案填在横线上)1、设X 为全集,A ,B 为X 的两个⼦集,则\A B=C A B ? 。
(完整版)实变函数题库集答案
实变函数试题库及参考答案本科、题 1.设A,B 为集合,则A B UB A U B (用描述集合间关系的符号填写)2.设A是B 的子集,则A B (用描述集合间关系的符号填写)3.如果E中聚点都属于E ,则称E是闭集4.有限个开集的交是开集5.设E1、E2是可测集,则m E1UE2 mE1 mE2 (用描述集合间关系的符号填写)n*6.设E ? n是可数集,则m E = 07.设f x 是定义在可测集E上的实函数,如果a ?1,E x f x a 是可测集,则称f x 在E上可测8.可测函数列的上极限也是可测函数9.设f n x f x ,g n x g x ,则f n x g n x f x g x10.设f x 在E上L可积,则f x 在E上可积11.设A,B 为集合,则B A UA A (用描述集合间关系的符号填写)12.设A 2k 1k 1,2,L ,则A=a(其中a表示自然数集N 的基数)13.设E ? n,如果E 中没有不属于E,则称E 是闭集14.任意个开集的并是开集15.设E1、E2是可测集,且E1 E2 ,则mE1 mE216.设E 中只有孤立点,则m*E =017.设f x 是定义在可测集E上的实函数,如果 a ?1,E x f x a 是可测,则称f x 在E上可测18.可测函数列的下极限也是可测函数19.设f n x f x ,g n x g x ,则f n x g n x f x g x20.设n x 是E上的单调增收敛于f x 的非负简单函数列,则f x dx lim n x dxE n E21.设A,B 为集合,则A B UB B22.设A为有理数集,则A=a(其中a表示自然数集N 的基数)23.设E ? n,如果E 中的每个点都是内点,则称E是开集24.有限个闭集的交是闭集25.设E ? n,则m*E 0 26.设E是? n中的区间,则m*E =E的体积27.设f x 是定义在可测集E上的实函数,如果 a ?1,E x f x a 是可测集,则称f x 在E上可测28.可测函数列的极限也是可测函数29.设f n x f x ,g n x g x a.e. ,则f n x g x30.设f n x 是E 上的非负可测函数列,且单调增收敛于f x ,由勒维定理,有f x dx lim fx dxnnE n E31.设A, B为集合,则B AI B UA=AU B32.设A为无理数集,则A=c (其中c 表示自然数集0,1 的基数)33.设E ? n,如果E 中没有不是内点的点,则称E是开集 34.任意个闭集的交是闭集n n * * * c35.设E ? n,称E是可测集,如果T ? n,m*T m* T I E m*T I E c36.设E是外测度为零的集合,且F E,则m*F=037.设f x 是定义在可测集E上的实函数,如果a ?1,E x a f x b 是可测,( a b)则称f x 在E 上可测38.可测函数列的上确界也是可测函数39.设f n x f x ,g n x g x a.e. ,则f n x g n x f x g x40.设f n x f x ,那么由黎斯定理,f n x 有子列f n k x ,使f n k x f x a.e. 于E41.设A, B为两个集合 ,则A B__ AI B c.(等于)42.设E R ,如果E 满足E E (其中E 表示E 的导集 ), 则E 是闭 .43.若开区间( , )为直线上开集G的一个构成区间 ,则( , )满(i) (a,b) G (ii) a G,b G44.设A为无限集 .则A的基数A__a(其中a表示自然数集N 的基数) 答案:45.设E1,E2为可测集 , mE2 ,则m( E1 E2) __ mE1 mE2. 答案:46.设f (x)是定义在可测集E上的实函数 ,若对任意实数a,都有E[x f(x) a]是可测集E上的可测函数 .47.设x0是E( R)的内点 ,则m*E__0. 答案48.设f n(x) 为可测集E 上的可测函数列 ,且f n(x) ____________ f(x),x E,则由黎斯 __定理可知得 ,存在f n(x) 的子列a.ef n k(x) ,使得f n k(x) f (x) (x E).49.设f (x)为可测集E( R n)上的可测函数 ,则f(x)在E上的L积分值不一定存在且| f(x)|在E上不一定L可积.50.若f ( x)是[ a, b]上的绝对连续函数 ,则f (x)是[a,b]上的有界变差函数51.设A, B为集合,则A U B ___(B A)U A 答案= 52.设E R n,如果E满足E0 E(其中E0表示E的内部),则E是开集53.设G为直线上的开集,若开区间(a,b)满足(a,b) G且a G,b G,则(a,b)必为G的构成区间54.设A {x|x 2n,n为自然数} ,则A的基数= a (其中a表示自然数集N的基数)55.设A, B为可测集,B A且mB ,则mA mB__m(A B) 答案 =56.设f (x) 是可测集E上的可测函数,则对任意实数a,b(a b),都有E[x a f(x) b]是可测集57.若E( R)是可数集,则mE__0 答案=a.e58.设f n(x) 为可测集E上的可测函数列,f(x) 为E上的可测函数,如果f n(x) f(x) (x E) ,则f n(x) f(x) x E不一定成立59.设f (x)为可测集E( R n)上的非负可测函数,则f(x)在E上的L积分值一定存在60.若f (x) 是[a,b]上的有界变差函数,则f (x)必可表示成两个递增函数的差(或递减函数的差) 多项选择题(每题至少有两个以上的正确答案)1.设E 0,1 中无理数,则( ACD )A E 是不可数集B E 是闭集C E 中没有内点D mE 12.设E ? n是无限集,则( AB )A E 可以和自身的某个真子集对等B E a(a 为自然数集的基数)CED m*E 03.设f x 是E 上的可测函数,则( ABD )A 函数f x 在E 上可测B f x 在E 的可测子集上可测C f x 是有界的D f x 是简单函数的极限4.设f x 是a,b 上的有界函数,且黎曼可积,则( ABC )A f x 在a,b 上可测B f x 在a,b 上L可积C f x 在 a,b 上几乎处处连续D f x 在 a, b 上几乎处处等于某个连续函数设 E ? n,如果 E 至少有一个内点,则( BD ) m E 可以等于 0 B m E 0 C E 可能是可数集 D E 不可能是可数集5.6. 设 E ? n是无限集,则( AB )E 含有可数子集 B E 不一定有聚点 C E 含有内点 D E 是无界的7. 设 f x 是 E 上的可测函数,则( BD )函数 f x 在 E 上可测f x 是非负简单函数列的极限 f x 是有界的8. 设 f x 是 a,b 上的连续函数,则( ABD )A f x在 a,b上可测B f x 在a,b b上 L 可积,且 R f x dx Lf x dxa ba ,b C f x 在 a,b 上 L 可积,但 R f x dx L f xaa ,bD f x 在 a,b 上有界9. 设 D x 是狄利克莱函数,即x 为 x0,1 中有理数 ,则( BCD )中无理数 10.设x 几乎处处等于 1x 是非负可测函数n*E ? n, m *E 0 ,Dx 则( ABD几乎处处等于 0 是 L 可积函数11. E 是可测集 B E 的任何子集是可测集 C E 是可数集 D E 不一定是可数集设E n, E x1 x Ec,则( AB ) E 0 x E c当 E 是可测集时, E x 是可测函数Ex 是可测函数时, E 是可测集f x 在 E 的可测子集上D 当E x 是不是可测函数时,E不一定是可测集12.设f x 是a,b 上的连续函数,则( BD )A f x 在a,b 上有界B f x 在a,b 上可测C f x 在a,b 上L可积D f x 在a,b 上不一定L 可积13.设f x 在可测集E上L可积,则( AC )A f x ,f x 都是E上的非负可积函数B f x 和f x 有一个在E上的非负可积C f x 在E 上L 可积D f x 在E 上不一定L 可积14.设E ? n是可测集,则( AD )A E c是可测集B mEC E 的子集是可测集D E的可数子集是可测集15.设f n x f x ,则( CD )A f n x 几乎处处收敛于f xB f n x 一致收敛于f xC fn x 有子列fnx ,使fnx f x a.e. 于ED f n x 可能几乎处处收敛于f x16.设f x 是a,b 上有界函数,且L 可积,则( BD )A f x 在a,b 上黎曼可积B f x 在a,b 上可测C f x 在a,b 上几乎处处连续D f x 在a,b 上不一定连续17. 设E {[0,1] 中的无理点} ,则(CD)(A )E是可数集(B)E是闭集(C)E中的每个点均是聚点(D)mE 0 18.若E(R)至少有一个内点,则( BD )A) m * E 可以等于0 (B)m *E 0 (C) E 可能是可数集 (D) E 不可能是可数集设 f (x) 是[a,b] 上的单调函数,则( ACD)f n (x) f ( x),( x E) ,则下列哪些结果不一定成立( ABCD(A) f (x)dx 存在(B) f(x)在 E 上L -可积 a.e(C)f n (x) f (x) (x E) (D) limf n (x)dx f(x)dxn E E24.若可测集 E 上的可测函数 f(x)在E 上有 L 积分值,则( AD ) A) f (x) L(E) 与 f (x) L (E)至少有一个成立 B) f (x)L(E) 且f(x) L(E)C) |f(x)|在 E 上也有L - 积分值D)| f(x)|L(E)、单项选择1. 下列集合关系成立的是(A )A B A I A B A B IACA B UB A D B A UA B2. 若E R n 是开集, 则( B)A E EB E 0E C E E D E E19. 设E [a,b] 是可测集,则E 的特征函数 E (x) 是( ABC ) A) [a,b] 上的符号函数 C) E 上的连续函数 B) [a,b] 上的可测函数 D)[a,b] 上的连续函数20. 21. A) C) 设E f (x) 是 [a,b] 上的有界变差函数 f (x) 在[a,b] 上几乎处处收敛 {[0,1] 中的有理点 } ,则( AC B) f(x) 是[a,b] 上的绝对连续函数 D) f(x) 在[a,b] 上几乎处处可导 A) E 是可数集mE 0B ) E 是闭集D )E 中的每一点均为 E 的22.若 E( R) 的外测度为 0,则( AB )A) E 是可测集 C) E 一定是可数B) mE 0 D) E 一定不是可数23 .设 mE, f n (x) 为 E 上几乎处处有限的可测函数列, f(x) 为 E 上几乎处处有限的可测函数,如果4.设f n x 是E 上一列非负可测函数,则(B)Elnimf nEndxlimnxdxElimf nEndxlimnxdxElnimf nEndxlimnxdxlimEf nn EdxElimf nEn5.列集合关系成立的是(IA cUA U A cIA cUA6.若E R n是闭集,则E07.A 9.设E 为无理数集,E 为闭集B 下列集合关系成立的是(C )E 是不可测集B )则(mEIA c A cUA A c U A c10.设Rn,则( A )A E EE D ED mE 0P为康托集,则( B B mP11.设A P 是可数集13.下列集合关系成立的是()A)P 是不可数集D P 是开集B则B c A c B则A c B cB则AI BB B则AUB14.设E R n,则A E E0 CE ED15.设E x,0x 则( B )A mE mE 2C E是R2中闭集2E是R2中完备集16.设f x ,g x 是E 上的可测函数,则( B )21.下列集合关系成立的是( A )A)E 0C) E23. 设 Q 的有理数集,则(四、判断题A Ex f x g x 不一定是可测集B Ex f x g x 是可测集C Ex f x g x是不可测集D Ex f x g x 不一定是可测集17 .下列集合关系成立的是( A )(A) (A B)UBAUB (B) (A B)U B A(C) (B A)U A A (D ) B A A18.若E R n是开集,则 ( B )(A) E 的导集 E (B) E 的开核 E(C) EE(D) E 的导集 E19. 设 P 的康托集,则 (C)(A) P为可数集(B) P 为开集(C) mP 0( D) mP 1设 20、 E 是 R 1中的可测集, (x)是 E 上的简单函数,则A) (x)是 E 上的连续函数 B) (x) 是E 上的单调函数 C) (x)在 E 上一定不 L 可积D) (x) 是 E 上的可测函数A) AI (BUC) (AI B)U (AI C) B) (A B)I A C)(B A)I A D) AUBAI B22. 若 E R n是闭集,则B) D)A ) mQ 0 B) Q 为闭集 C) mQ 0D) Q 为不可测集24.设 E 是 R n中的可测集, f(x)为 E 上的可测函数,若 f(x)dx0 ,则A)在 E 上, f ( x)不一定恒为零 B)在 E 上, f (x) C)在 E 上, f(x) 0D)在 E 上, f (x)1. 可数个闭集的并是闭集 .2. 可数个可测集的并是可测集 .3. 相等的集合是对等的 .4. 称 f x ,g x 在 E 上几乎处处相等是指使( × )( √ )( √ )g x 的x 全体是可测集 . ( √ )5. 可数个 F 集的交是 F 集 .6. 可数个可测函数的和使可测函数 .7. 对等的集合是相等的 .8. 称 f x ,g x 在 E 上几乎处处相等是指使( × ) (√) (× )x g x 的 x 全体是零测集 . ( × )9. 可数个 G 集的并是 G 集 . 10. 零测集上的函数是可测函数 .11. 对等的集合不一定相等 .12. 称 f x ,g x 在 E 上几乎处处相等是指使 f13. 可数个开集的交是开集14. 可测函数不一定是连续函数 . 15. 对等的集合有相同的基数 .16. 称 f x ,g x 在 E 上几乎处处相等是指使 f17. 可列个闭集的并集仍为闭集 18. 任何无限集均含有一个可列子集 19. 设 E 为可测集,则一定存在 G 集 G ,使 E√) ( √ ) ( √ )x gx的 x 全体是零测集 . (√)( × )xgx ( √ )( √ )0 ( × )的 x 全体的测度( × )( √ ) G 且 m G E 0.( √ )21. 设 f x 为可测集 E 上的非负可测函数,则22. 可列个开集的交集仍为开集 23. 任何无限集均是可列集24. 设 E 为可测集,则一定存在 F 集 F ,使 F25. 设 E 为 零 测 集 , 则 f x 为 E 上 的 可 测 函 数 的 充 要 条 件 是 : 实 数 a 都 有 E x f (x ) a √)26. 设 f x 为可测集 E 上的可测函数,则 f x dx 一定存在 . E 五、简答题1. 简述无限集中有基数最小的集合,但没有最大的集合 . 答:因为任何无限集均含有可数集,所以可数集是无限集中基数最小的,但无限集没有基数最大的,这是由于任何集 合 A , A 的幂集 2A的基数大于 A 的基x L E ( × )(× )( × )E ,且 m EF 0.( √ )x 不一 定是 E 上的可测函数(×) 20. 设 E 为零测集, x 为 E 上的实函数,则 是可测集 ×)数 .2.简述点集的边界点,聚点和内点的关系 .答 : 内点一定是聚点,边界点不一定是聚点,点集的边界点或为孤立点或为聚点 .3.简单函数、可测函数与连续函数有什么关系?答:连续函数一定是可测函数;简单函数一定是可测函数;简单函数可表示成简单函数或连续函数的极限4.a,b 上单调函数与有界变差函数有什么关系?答:单调函数是有界变差函数,有界变差函数可表示成两个单调增函数之差 .5.简述集合对等的基本性质 .答:A: A;若A: B,则B: A;若A: B,且B : C,则A: C.6.简述点集的内点、聚点、边界点和孤立点之间关系. 答:内点一定是聚点,内点不是孤立点,边界点由点集的孤立点和聚点组成 .7.可测集与开集、G 集有什么关系?答:设E是可测集,则0,开集G,使G E,使m G E ,或G 集G,使G E,且m G E 0.8.a,b 上单调函数、有界变差函数与绝对连续函数有什么关系?答:绝对连续函数是有界变差函数,反之不然;有界变差函数是单调增函数的差,而单调函数是有界变差函数 .9.简述证明集合对等的伯恩斯坦定理 .答:若A: B B ,又B: A A,则A: B10.简述R1中开集的结构 .答: 设G为R1中开集,则G可表示成R1中至多可数个互不相交的开区间的并 .11.可测集与闭集、F集有什么关系?答:设E是可测集,则0,闭集F E ,使m E F或F集F E ,使m E F 0.12.为什么说绝对连续函数几乎处处可微?答:因为绝对连续函数是有界变差,由若当分解定理,它可表示成两个单调增函数的差,而单调函数几乎处处有有限的导数,所以绝对连续函数几乎处处可微 .13.简述连续集的基数大于可数集的基数的理由 .答 :连续集是无限集,因而包含可数子集,又连续集是不可数集,所以连续集的基数大于可数集的基数 . 14.简述R n中开集的结构 .答:R n中开集可表示成可数个互不相交的半开半闭区间的并15.可测函数列几乎处处收敛、依测度收敛和近一致收敛的关系?答:设f n x , f x 是可测集E 上的一列可测函数,那当mE 时,f n x f x ,a.e 于E ,必有f n x f x .反之不成立,但不论mE 还是mE ,f n x 存在子列f n k x ,使f n x f x ,a.e于E .当mE 时,f n x f x ,a.e 于E ,由Egoroff 定理可得f n x 近一致收敛于f x ,反之,无需条件mE ,结论也成立 .16.为什么说有界变差函数几乎处处可微?答:由若当分解定理,有界变差函数可表示成两个单调增函数的差,而单调函数几乎处处可微,所以有界变差函数几乎处处可微 .17.简述无穷多个开集的交集是否必为开集?11 答:不一定,如 I 1 1, 1 11,1 n 1n n18. 可测集 E 上的可测函数与简单函数有什么关系? 答:简单函数必是可测函数但可测函数不一定是简单函数,可测函数一定可表示成简单函数列的极限形式 19. a,b 上的有界变差函数与单调函数有什么关系?答:单调函数必为有界变差函数但有界变差函数不一定为单调函数,有界变差函数可表示成单调函数之差 20. 简述无穷多个闭集的并集是否必为闭集?11 答:不一定 如 U 1 , 1 1,1 n 1n n21. 可测集 E 上的可测函数与连续函数有什么关系?答: E 上连续函数必为可测函数但 E 上的可测函数不一定时连续函数, E 上可测函数在 E 上是“基本上”22. a,b 上的绝对连续函数与有界变差函数有什么关系?答:绝对连续函数必为有界变差函数但有界变差函数不一定为绝对连续函数 六、计算题2xxE,其中 E 为0,1中有理数集,求 f1. 设 f x3xx dxx 0,1 E0,1解:因为 mE 0, 所以 f x x 3,a.e 于0,1 , 于是 f x dxx 3dx,0,1 0,1而 x 3在 0,1 上连续,从而黎曼可积,故由黎曼积分与勒贝格积分的关系,1 x r 1,r 2,L r n0 x 0,1 r 1,r 2,L ,求lim f n x dx .n0,1因此limf n x dx 0.n0,1解:因为 mP 0 ,所以 f x x 2, a.e 于 0,131 3x 3dxRx 3dx0,1因此 f x dx 10,14.4x44|1解:显然 f n x 在 0,1 上可测,另外由 f n x 定义知, f n x 0,a.e 于 0,1 n1所以 f nx dx0,10dx 00,1连续的函数 2. 设 r n 为 0,1 中全体有f n x3. 设 f xsinxxPx 0,1 PP 为康托集,求x dx .于是 f x dxx 2dx0,1 0,12而 x 2在 0,1 上连续,所以解:因为 f n x 在 0,1 上连续,所以可测 n 1,2,L而 lim 2 2 0 ,所以 lim f n x 0. n 1 n 2 x 2n因此由有界控制收敛定理lim f n x dxli f n x dx0dx 0n0,10,1n0,13xx E5. 设 x, E 为 0, 中有理数集,求 fx dxcosx x 0, E22 0,2解:因为 mE 0 ,所以x cosx,a.e 于 0,10,2而 cosx 在 0, 上连续,所以黎曼可积,由牛顿莱布尼公式2 cosxdx0,1R 2cos xdxsin x|021因此f x dx 10,26. 设f n x nxcos nx 0,1, 求lim f n x dx n 0,11 2 2 ,x nx 解:因为 f n x 在 0,1 上连续,所以可测 n 1,2,Lx 2dx0,1 x 2dx|1因此 0,1 x dx4. 设 fnx nxsinnx 2 2 ,x 1 n x0,1 ,求lim f n x dx . n0,1 又f n xnxsin nx22nxnx nx 11 n 2x2 2nx 2,x 0,1 ,n 1,2,L于是 f x dx cos xdx 0,2又 fn nxcosnx 22nx nx 22 1 n x 因此由有界控制收敛定理而lim n 0,所以lim n 0,1 n x dx0,1limn 7. 设 fx3sin x解:因为mP 0,所以 fnx221 n x lim f n x nx dx0,1nx 1 2nx 2,x 0.0dx 00,1P 为康托集,x, a.e 于 0,1而 x 在 0,1 上连续,所以1 2x 21 1xdx Rx dx |0 0,10 2 02因此 f x dx 1.0,12l n x nx 8. 求e cos xdx .n 0,nnln x n解:令 f n x0,n xn显然 f nx 在 0, 上可测,且 ln x ne cos xdxf n 0,n n0, ln x n x 因为 f n xe cosxn于是f x dx xdx0,1 0,1xe cosxx dx 0,1 ,n 0,11,2,Lx dx .ln x n, x 0, ,n 1,2,L n ln x n不难验证 g n x ,当 n 足够大时,是单调递减非负函数,且 nlim g n x 0 ,所以 n limnln x ndx nlimng n x dxl n im g n x 0, n0dx 0由勒贝格控制收敛定理lim f n x dx 0 n0,ln x n x 故lim e cos xdx 0. nn0,n9. 设 Dx1 x 为 0,1 上的有理点 0 x 为 0,1 上的无理点 ,求 D x dx .0,1 证明 记 E1 是 0,1中有理数集, E2 是 0,1 中无理数集,则 0,1E 1 U E 2, E 1 I E 2 , mE 1 0,mE 2 1,且E2所以 D x dx 1mE 1 0mE 2 0,1 0.10 求 l n im0 ln x n xe cos xdx . n 证明 易知 limnln x n x e cosx 0n对任意 0,n1, ln x n en x cosxln x nf(y ) ln x y 0 ,则 f (y)ylnxy 2yxy y 3时,yxyln x y , f (y)0.f(n) l n xn是单调减函数且非负( n 3 );l n lim nli mn 再由 limn xn li m n0,由 Levi 单调收敛定理得xn ln x n 0dx n0 l n imln x n dx n 0 0dx 0 , ln x nL(E),Lebsgue 控制收敛定理得ln x n x e cosxdx 0n ln x lim nnnx e cos xdx0dx2x11. 设 f x 3x 3x 0,1xP ,其中 P 为康托集,求dx .解:因为 P 为康托集,故 mP 0,m 0,1 P 1七、证明题证明 设{r n } 为全体有理数所成之集,则g(x)] U E[x| f (x) r n ]I E[x|g(x) r n ] n1因为 f (x),g(x)是 E 上的可测函数,所以 E[x| f (x) r n ], E[x|g(x) r n ]是可测集, n 1,2,L ,于是由可测所以 f x x 320,1 PxP所以0,1x dx23x mP x m 0,1 P12. 求 f nnxE0,1 ,求 limnx dx .解:易知: 令 f n xnx lim2 2 n 1 n 2x2 nx2 2,gx0,11nnxnx 1 n 2x 22 2 3n xnx nx 2 2 2 gx1 n x2 1 nx n x 0nx 2n 2 所以 0 n x gx x 0,1,n 1又因为 g x 在 0,1 上 Lebesgue 可积, 所以由控制收敛定理,得 lim 1n n x2x 2dxE 1 n x0dxE1.证明集合等式: (A B)U B AUB 证明 c(A B)U B (AI B c)U Bc (AI B c)U(AI B)UBcAI (BUB c)U B AUB2.设 E 是 [0,1] 中的无理数集,则 E 是可测集,且 mE 1 证明 设 F 是 [0,1] 中的有 理数集 ,则 F 是可数 集, 从 而 m *F 0 ,因此 F 是 可测集,从而 F c可 测, E [0,1] F [0,1] I F c,故 E 是可测集 .由于 EI F ,所以1 m[0,1] m(E UF) mE mF 0mF ,故 mF 13.设 f (x),g(x)是 E 上的可测函数,则 E[x| f (x) g( x)]是可测集E[x| f(x) g(x)] U E[x| f (x) r n n1集性质知 E[x|f(x) g(x)] 是可测集因为 f (x)在E 上可测,所以 | f (x) |在E 上非负可测,由非负可测函数积分性质,E[x|f(x)| a]adx E[x|f(x)| a]| f(x)|dx E |f(x)|dxE[x|f(x)| a]adx a mE[x |f (x)| a],所以4.设 f (x)是E 上的可测函数,则对任何常数 a 0,有 mE[x |f (x)| a]1a 1E | f ( x)证明 5.设 li m mE[x | f(x)|f ( x) 是 E 上的L 可积函数, f ( x)dx证明 因为 limmE0,所以 对连续性,0, 0,当e 于是当 n N 时, m E n 6.证明集合等式: ( A B)证明 A (A B ) 7.设 证明 1a] a 1E | f(x)|dx{E n }是 E 的一列可测子集,且 lim mE n 0,则 0, N E, me 因此 |E A I (AI B c )cA I(AI A c)U (A I A 1,A 2 是[0,1] 的可测子集,且 mA 1 因为 A 1 [0,1], A 2 [0,1] ,所以 另一方面, 1 ,当 n N 时, mE n ,又 f ( x) 在 E 上 L 时| f (x)dx| f ( x)dx |,即 lim f ( x)dx 0n E n 可积,所以由积分的绝 (A c U(B c )c) B) A I BmA 2 1 ,则 AI (A cUB)m(A 1 I A 2) 0A 1UA 2 [0,1] ,于是 m( A 1 U A 2 ) m[0,1] 1 A 1U A 2 [A 1 (A 1I A 2)] U A 2 ,所以m(A 1 U A 2 ) m [A 1 (A 1I A 2)]UA 2m[A 1 (A 1I A 2)] mA 2 mA 1 m(A 1I A 2) mA 2于是m(A 1I A 2) mA 1 mA 2 m(A 1U A 2) 08.设 f (x)是定义在可测集 E R n上的实函数, E n 为 E 的可测子集n 1,2,L ),且 E U E n ,则 f (x) 在 E 上n1可测的充要条件是 f (x) 在每个 E n 上可测 证明 对任何实数a ,因为E[x| f(x) a] U E n [x| f(x) a] U (E n I E[x| f(x) a])所以 f (x)在E 上可测的充要条件是对每个 n 1,2,L , f ( x)在每个 E n 上可测9.设 f (x)是 E 上的可测函数,则对任何常数 a 0,有 mE[x| f (x) a] e a E ef(x)dxaf (x)f (x)e dx e dx e dx E[x|f(x) a] E[x|f (x) a] Eaa而E[x|f(x) a]e a dx e amE[x| f (x) a],m *F 0 ,于是由卡氏条件易知 F 是可测集f n (x)g n (x) f (x) g(x).证明 对任何正数 0 ,由于|( f n (x) g n (x)) ( f (x) g(x))| | f n (x) f (x)| |g n (x) g(x)|所以 E[x |(f n (x) g n (x)) (f (x) g(x))| ]E[x | f n (x) f (x)| 2]U E[x |g n (x) g(x)| 2]于是 mE[x |(f n (x) g n (x)) (f (x) g(x))| ]mE[x | f n (x) f (x)| ] mE[x |g n (x) g(x) | ] 0(n )22证 明 因 为 f (x) 在 E 上 可 测 , 所以 e f(x)是 非 负 可 测 函数,于是由非负可测函数积分性质,所以mE[x| f (x) a]e ae f (x )dxE10.设 f (x) 是 E 上的可积函数, { E n } 为 E 的一列可测子集, mE ,如果 lim mE n mEn则lim nE f( x)dxE f ( x)dx 证明 因 f ( x) 在 E 上 L 可积, 由积分的绝对连续性知,对任意 0 ,存在 0, 对任何 A E , 当 mA有| A f (x)dx | , 由 于lim mE n mE n,故对上述的0,存在 k 0 , 当 n k 0 时 E nE , 且有mE mE n m( E E n )| E f ( x)dx Ef (x)dx| | E E f (x)dx|lim f ( x)dxE f (x)dx 11.证明集合等式: (AU B) C (A C) U(B C)证明 (AUB) C (AU B)I C c (AI C c )U(BI C c)(A C)U (B C)12.设 E R n是零测集,则 E 的任何子集 F 是可测集,且mF 证明 设 F E , m *E 0,由外测度的单调性和非负性, mF mE 0 , 所以13. 设 f n (x),g n (x), f (x), g( x) 是 E 上 几 乎 处 处 有 限 的可 测 函 数 , 且 f n (x) f (x) ,g n (x) g(x) ,则故f n(x) g n(x) f (x) g(x)14.设f(x),g(x)是E上L 可积函数,则f2(x) g2(x)在E上也是L 可积的证明因f(x),g(x)是E上L 可积,所以|f(x)|,|g(x)|在E上L 可积,从而| f(x)| |g(x)| L 可积,又f2(x) g2(x) (| f(x)| |g(x)|)2 | f(x)| |g(x)|故f 2(x) g2 (x) 在E 上L 可积15.设f (x)是可测集E上的非负可测函数,如果 f (x)dx 0,则f(x) 0 a.e 于E证明反证,令A E[x| f(x) 0],则由f (x)的可测性知,A是可测集 .下证mA 0,若不然,则mA 01由于A E[x| f(x) 0] U E[x| f(x) ] ,所以存在N 1,使n1 n1 mE[x| f (x) ]N d 0于是Ef( x)dx1 f( x)dxE[x|f (x)1]E[x|f(x) N1] N1dx N1mE[x| f(x) N1] N d0因此f( x)dx E0 ,矛盾,故f(x) 0 a.e 于E16.证明等式:A (B UC) (A B)I (A C)证明c c c c cA (BUC) AI (BUC)c AI (B c IC c) (AI B c)I (AI C c) (A B)I (A C) 17.设E R n是有界集,则m*E.证明因为E是有界集,所以存在开区间I ,使E I 由外测度的单调性,m*E m*I ,而m*I |I |m *E118.R1上的实值连续函数f (x) 是可测函数证明因为f ( x)连续,所以对任何实数a,{x| f(x) a}是开集,而开集为可测集,因此f(x)是可测函数19.设mE ,函数f (x)在E上有界可测,则f(x)在E上L 可积,从而[a,b]上的连续函数是L 可积的证明因为f (x)在E上有界可测,所以存在M 0,使| f(x)| M ,x E,| f ( x) |是非负可测函数,由非负可测函数的积分单调性,| f(x)|dx Mdx M mE故|f (x)|在E上L 可积,从而f(x)在E上L 可积因为[a,b] 上的连续函数是有界可测函数,所以L 可积的20.设f n(x)(n 1,2,L )是E上的L 可积函数,如果lim | f n( x) |dx 0,则f n(x) 0 n E n证明对任何常数0,mE[x | f n(x)| ] E[x|f (x)| ]| f n(x)|dx1所以mE[x | f n(x)| ] 1E[x|f n(x)| ]| f n(x)|dx1E| f n(x)|dx 0(n )因此f n (x) 021. 证明集合等式:AUB C A C U B C .证明AUB C AUB I C c AI C c U BI C c A C U B C22. 设E0 0,1 中的有理点,则E0为可测集且mE0 0.证明因为E0 为可数集,记为E0 r1,r2,L r n,L ,0,取I n r n2n 1,r n 2n 1 n 1,2,L显然E0 UI n ,所以E0 UI n0 m E0 I nn1 n1n1 n12让,得m E0 0.TR n,由于T TI E0 U TI Ec所以mT m TI E0 m TI E0ccc c又TI E0c T,m E0 0,所以mT m TI E0c m TI E0 m TI E0c.故mT m T I E0 m TI E0c其中|I | 表示区间I 的体积),所以故E0 为可测集,且mE0 01123. 证明:R1上的实值连续函数f x 必为R1上的可测函数11证明a,b R1,不妨假设a b,因为f x 是R1上的连续函数,故f x 是a,b 上的连续函数,记Fa,b ,由f x 在F 上连续,则M,m m M ,使m f x M ,则显然易证,R1,F f 是闭集,即f x为a,b 上的可测函数,由a,b的任意性可知,f x 是R1上的可测函数 .24. 设f x L E ,E n为E的一列可测子集,mE ,如果lim mE n mE,则lim f x dx f x dx .nnE n E证明因f (x)在E上L可积,由积分的绝对连续性知,对任意0,存在0,对任何A E,当mA 时有|Af( x)dx| m(E由于lim mE nnmE ,故对上述的0 ,存在k0 ,当n k0 时E n E ,且有E n),于是|Ef (x)dx Ef(x)dx| |EEEnE Enf(x)dx|即n limEn f(x)dxEf (x)dx25. 证明集合等式:A BUC ABU A C. 证明A BUC AI BUC c AIB cI CcAI B c I AIC cABI AC26. 设E R1,且mE0 ,则E 为可测集 .证明T R n,由于T R n T T I E UT I E c所以mT mT IE m T I E c又T I E c T,m E0 ,所以mTm TI Ec m T I E m T I E c.故mT m T I E m TI E c 所以E 为可测集27. 证明:R1上的单调函数f x 必为可测函数11证明a,b R1,不妨假设a b,因为f x 是R1上的单调函数,不妨设f x 为单调增函数,故f x 是a,b 上则R 1, 有1) 当 sup fx 时, E x f (x) ; xE 2) 当 inf f x 时, E x f (x) E; 3) 当 inf f x sup f x 1 时,必有 x 0 E I R ,使xE xEf x0 0 ,fx 0 或 f x 0 0 , f x 0 0 由 f x 的单调增知, E x f(x) EI x 0, 或 EI x 0, 在所有情况下, E x f(x) 都可测 . 即 f x 是 a,b 上的可测函数 由由 a,b 的任意性可知, f x 是 R 1上的可测函数 .充分性28. 设 f x 为可测集 E R n 上的可测函数,则f L E 的充要条件 证明 必要性 若 f x LE , 因为 f x x ,且 f x L E 所以 f Ex dx, f E x dx 中至少有一个是有限值,dx x dx xdx因为 f x x ,且 f xLE 所以 f Edx, f E x dx 中至少有一个是有限值,故f x dxEx dx f x dx ,E。
《实变函数》试卷二与参考答案
考生答题2不得超此线5. 若()f x 是可测函数,则下列断言( )是正确的 (A) ()f x 在[],a b L -可积|()|f x ⇔在[],a b L -可积; (B) [][](),|()|,f x a b R f x a b R -⇔-在可积在可积 (C) [][](),|()|,f x a b L f x a b R -⇔-在可积在可积; (D) ()()(),()f x a R f x L +∞-⇒∞-在广义可积在a,+可积二. 填空题(3分×5=15分)1、设11[,2],1,2,n A n n n=-=,则=∞→n n A lim _________。
2、设P 为Cantor 集,则 =P ,mP =_____,oP =________。
3、设{}i S 是一列可测集,则11______i i i i m S mS ∞∞==⎛⎫⋃ ⎪⎝⎭∑4、鲁津定理:_____________________________________________________________________________________________________________________ 5、设()F x 为[],a b 上的有限函数,如果_________________________________ _____________________________________________________________________________________________则称()F x 为[],a b 上的绝对连续函数。
三.下列命题是否成立?若成立,则证明之;若不成立,则说明原因或举出反例.(5分×4=20分)1、由于[](){}0,10,10,1-=,故不存在使()[]0,101和,之间11-对应的映射。
2、可数个零测度集之和集仍为零测度集。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
由 f 在 E 上的可测性知,每个 E{x | α i < f ( x) < 可测. 若O是 的无解开集时,对于 ∀n ∈
∞
β i } 可测,从而 f −1 (O)
,记 E n = [ − n, n] ,则 On =
O ∩ En 是
中有界开集,并且 O = ∪ On ,故
n =1
f
再由 f
故, E{ x | f ( x ) > α } 是可测集,从而 f ( x ) 在 E 上可测. 7. 设 f 是 E 上的可测函数,证明: (1)对 (2)对 (3)对 上的任意开集 O , f 中的任何开集 F , f
−1 −1
(O) 是可测集; ( F ) 是可测集;
−1
中的任何 Gδ 型集或 Fσ 型集 M , f
证明 设 f ( x ) 和 g ( x ) 是 E 上的两个可测函数,令
E 0 = E − E{x | g ( x) = ±∞}
并且对于 ∀a ∈ , 因为
E0 {x | f ( x) + g ( x) > a} = E0 {x | f ( x) > a − g ( x)}
= ∪ E0 {x | f ( x) > ri > a − g ( x)}
f
由f
−1
−1
(G ) = ∩ f −1 [G k ] 且 f
k =1
∞
−1
( F ) = ∪ f −1 [ Fk ] .
k =1 −1
(G k ) 与 f
−1
( Fk ) 的可测性知, f
−1
(G ) 与 f
( F ) 均可测.
8. 证明: E 上两个可测函数的和仍是可测函数.
4
实变函数第三章▉▉
α ≠ 0 , 因为
m * E = inf{∑ | I i | ∪ I i ⊃ E , I i 为开区间 } ,
i =1 i =1 ∞ ∞
则对于 ∀ε > 0 , 存在开区间序列 {I i }i∞ =1 ,使得
1
▉▉第三章习⊃ E 并且 m * E ≤ ∑ | I i | < m * E +
i =1
∞
∞
ε . |α |
又因为 ∪ αI i ⊃ E (注:若 I i = (α i , β i ) ,则
i =1
αI i = ⎨
所以
⎧(αα i , αβ i ), α . ⎩(αβ i , αα i ), α
∞
m * αE ≤ ∑ | αI i | = ∑ | α || I i | =| α | ∑ | I i | <| α | ⋅m * E + ε .
n
m( E − F ) < ε 并且 f ( x ) 在 F 上连续. 现在证: f ( x ) 在 F 上有界.
事实上,如果 f ( x ) 在 F 无界,即 ∀M > 0 ,存在 xm ∈ F 使 | f ( xm ) |
> M . 特别地,当 M 1 = 1 时,存在 x1 ∈ F 有 | f ( x1 ) |> M 1 ;当
E 0 {x | f ( x) + g ( x) > a} 可测. 又因为
E{x | g ( x ) = ±∞} ∩ E { x | f ( x) + g ( x ) > a}
是零测集,故可测. 从而, f + g 在 E 上可测. 9. 证明: 若 f ( x ) 是 E1 及 E 2 上的非负可测函数, 则 f 也是 E1 ∪ E 2 上 的非负可测函数. 证明 因为 f ( x ) 是 E1 及 E 2 上的非负可测函数,则对于 ∀a ∈ ,
−1
−1
(O) = f −1 [ ∪ O] = ∪ f −1 [On ] .
n =1 n =1 −1
∞
∞
(O n ) 得可测性知, f (O ) 是可测集.
中的任一闭集,记 O =
−1
(2)设 F 是
−F 是
−1
中开集,则
−1
f
即, f
−1
(O ) = f
−1
−1
(R′ − F ) = f
−1
( R ′) − f
i =1
∞
∞
又因为 ∪
∞
1
i =1
α
I i ⊃ E ,故 m * E ≤ ∑|
i =1 ∞
1
α
I i | < m * αE + ε .
由 ε 得任意性,有 | α | m * E ≤ m * αE . 从而 | α | m * E = m * αE . 命题 2. 设 E ⊂ P54.19 题的直接推论). 证明: (⇐) 是直接的,我们仅需证明 (⇒)
m * E < +∞ , , 则 E 可测 ⇔ ∀α ∈
αE 可测.(由 ,
∀a ∈
,如果 α = 0 ,则 αE = {0} 为零测集.故 αE 可测. 不妨设 ,有
α ≠ 0 . 现在证明:对于 ∀T ⊆
事实上,对于 ∀T ⊆
m * T = m * (T ∩ α E ) + m * (T ∩C α E ) .
E1{x | f ( x) > a} 与 E 2 {x | f ( x) > a}
均是可测集合. 于是,记 E = E1 ∪ E 2 ,则
E {x | f ( x) > a} = E1{x | f ( x) > a} ∪ E 2 {x | f ( x) > a}
是可测的. 从而, f ( x ) 在 E = E1 ∪ E 2 上非负可测. 10. 设 E 是 R 中有界可测集, f 是 E 上几乎处处有限的可测函数, 证明: ∀ε > 0 ,存在闭集 F ⊂ E ,使得 m( E − F ) < ε ,而在 F 上 f ( x ) 有界. 证明(法一)由 Lu sin 定理, ∀ε > 0 ,存在闭集 F ⊂ E ,使得
可测,记 E* = ( a, b) ,则 E = ∪ E k .
k =1
因为 ∀α ∈
,有 E * {x | f ( x) > α } = ∪ E k {x | f ( x) > α } , 由每
k =1
∞
个 Ek {x | f ( x) > α } 的可测性,得 E *{x | f ( x ) > α } 是可测集. 所以,
( M ) 是可测集.
证明: (1)当 O 时
中有界开集时,由第一章定理 11(p.25) ,O是
i
至多可数个互不相交的开区间 {(α i , β i )}i 的并,即 O = ∪(α i , βi ) . 则
f
−1
(O) = f −1 [∪(α i , β i )] = ∪ f −1 [(α i , β i )] = ∪ E{α | α i < f ( x) < β i }
a } 可测. 从而, [ f ( x)]3
5. 若 [ a , b] 上的函数 f ( x ) 在任意线段 [α , β ] ( a < α < β < b) 上可 测,试证它在整个闭区间上也可测. 证明: ∀k ∈ , E k = [a +
∞
b −1 b −1 , b − k +1 ] ⊆ ( a, b) , f ( x ) 在 E k 上 k +1 2 2
是可测集合. 从而, f (αx ) 也是 E = 上的可测函数.
3
4. 设 f ( x ) 是 E 上的可测函数,证明: [ f ( x)] 在 E 上可测. 证明 ∀α ∈ , 因 f ( x ) 在 E 上可测. 所以 E{ x | f ( x ) >
3 3 3
a } 也是可
列集. 又因为 E{ x | f ( x ) > a} = E{ x | f ( x ) > 在 E 上可测.
i =1 i =1 i =1
∞
∞
由 ε 得任意性,有
m * αE ≤ inf{∑ | I i | ∪ I i ⊃ αE , I i 为开区间 }
i =1 i =1
∞
∞
故存在开区间 {I i }i∞ =1 使得
i =1
∪ I i ⊃ αE ,且 m * E ≤ ∑ | I i | < m * αE + ε .
i =1 ∞
= [ ∪ E0 {x | f ( x) > ri } ∩ E 0 {x | g ( x) > a − ri }] .
i =1
∞
再由 f ( x ) 与 g ( x ) 在 E 的可测性知,f ( x ) 与 g ( x ) 在 E0 上也是可测得. 从 而,对于 ∀i ∈ , E 0 {x | f ( x) > ri }] 与 E 0 {x | g ( x) > a − ri }] 可测,故
k → +∞
对于 ∀a ∈
,取单调递减的有理数序列 {rk }∞ k =1 使得
lim rk = a ,则
E = {x | f ( x) > a} = ∪ E{x | f ( x) > rk }
k =1
∞
而由每个 E{x | f ( x) > rk }的可测性,知 E = { x | f ( x ) > a} 可测.
3. 设 f 是 上的可测函数. 证明 记 E = ,对于 ∀α ∈ ,当 α = 0 时,因为 上的可测函数,证明:对于任意的常数 α , f (αx ) 是
f (0) ≤ a ⎧∅ , E{x | f (0) > a} = ⎨ , f (0) > a ⎩E = 令 y = αx , 所以,E{ x | f (αx ) > a} 可测, 进而 f (αx ) 可测. 当 α ≠ 0 时,