实变函数习题解答(1)
(完整版)实变函数试题库1及参考答案

实变函数试题库及参考答案(1) 本科一、填空题1.设,A B 为集合,则()\A B B U A B U (用描述集合间关系的符号填写) 2.设A 是B 的子集,则A B (用描述集合间关系的符号填写) 3.如果E 中聚点都属于E ,则称E 是 4.有限个开集的交是5.设1E 、2E 是可测集,则()12m E E U 12mE mE +(用描述集合间关系的符号填写) 6.设nE ⊂¡是可数集,则*m E 07.设()f x 是定义在可测集E 上的实函数,如果1a ∀∈¡,()E x f x a ⎡⎤≥⎣⎦是 ,则称()f x 在E 上可测8.可测函数列的上极限也是 函数9.设()()n f x f x ⇒,()()n g x g x ⇒,则()()n n f x g x +⇒ 10.设()f x 在E 上L 可积,则()f x 在E 上 二、选择题1.下列集合关系成立的是( )A ()\B A A =∅I B ()\A B A =∅IC ()\A B B A =UD ()\B A A B =U2.若nR E ⊂是开集,则( )A E E '⊂B 0E E =C E E =DE E '=3.设(){}n f x 是E 上一列非负可测函数,则( )A ()()lim lim n n E En n f x dx f x dx →∞→∞≤⎰⎰ B ()()lim lim n n E E n n f x dx f x dx →∞→∞≤⎰⎰C ()()lim lim n n E En n f x dx f x dx →∞→∞≤⎰⎰ D ()()lim lim n n EE n n f x dx f x →∞→∞≤⎰⎰三、多项选择题(每题至少有两个以上的正确答案) 1.设[]{}0,1E =中无理数,则( )A E 是不可数集B E 是闭集C E 中没有内点D 1mE =2.设nE ⊂¡是无限集,则( )A E 可以和自身的某个真子集对等B E a ≥(a 为自然数集的基数)C E '≠∅D *0mE >3.设()f x 是E 上的可测函数,则( )A 函数()f x 在E 上可测B ()f x 在E 的可测子集上可测C ()f x 是有界的D ()f x 是简单函数的极限4.设()f x 是[],a b 上的有界函数,且黎曼可积,则( )A ()f x 在[],a b 上可测B ()f x 在[],a b 上L 可积C ()f x 在[],a b 上几乎处处连续D ()f x 在[],a b 上几乎处处等于某个连续函数四、判断题1. 可数个闭集的并是闭集. ( )2. 可数个可测集的并是可测集. ( )3. 相等的集合是对等的. ( )4. 称()(),f x g x 在E 上几乎处处相等是指使()()f x g x ≠的x 全体是可测集. ( ) 五、定义题1. 简述无限集中有基数最小的集合,但没有最大的集合.2. 简述点集的边界点,聚点和内点的关系.3. 简单函数、可测函数与连续函数有什么关系?4. [],a b 上单调函数与有界变差函数有什么关系?六、计算题1. 设()[]230,1\xx E f x xx E⎧∈⎪=⎨∈⎪⎩,其中E 为[]0,1中有理数集,求()[]0,1f x dx ⎰.2. 设{}n r 为[]0,1中全体有理数,(){}[]{}12121,,00,1\,,n n n x r r r f x x r r r ∈⎧⎪=⎨∈⎪⎩L L ,求()[]0,1lim n n f x dx →∞⎰.七、证明题1.证明集合等式:(\)A B B A B =U U2.设E 是[0,1]中的无理数集,则E 是可测集,且1mE =3.设(),()f x g x 是E 上的可测函数,则[|()()]E x f x g x >是可测集4.设()f x 是E 上的可测函数,则对任何常数0a >,有1[|()|]|()|E mE x f x a f x dx a≥≤⎰5.设()f x 是E 上的L -可积函数,{}n E 是E 的一列可测子集,且lim 0n n mE →∞=,则lim ()0nE n f x dx →∞=⎰实变函数试题库及参考答案(1) 本科一、填空题1.=2.≤3.闭集4.开集5.≤6.=7.可测集8.可测9.()()f x g x + 10.可积 二、单选题 ABB三、多选题ACD AB ABD ABC 四、判断题 × √√√ 五、定义题1.答:因为任何无限集均含有可数集,所以可数集是无限集中基数最小的,但无限集没有基数最大的,这是由于任何集合A ,A 的幂集2A 的基数大于A 的基数.2.答: 内点一定是聚点,边界点不一定是聚点,点集的边界点或为孤立点或为聚点.3.答:连续函数一定是可测函数;简单函数一定是可测函数;简单函数可表示成简单函数或连续函数的极限4.答:单调函数是有界变差函数,有界变差函数可表示成两个单调增函数之差.六、解答题1.解:因为0mE =,所以()3,.f x x a e =于[]0,1,于是()[][]30,10,1f x dx x dx =⎰⎰,而3x 在[]0,1上连续,从而黎曼可积,故由黎曼积分与勒贝格积分的关系,[]()41331000,11|44x x dx R x dx ===⎰⎰ 因此()[]0,114f x dx =⎰.2.解:显然()n f x 在[]0,1上可测,另外由()n f x 定义知,()0,.n f x a e =于[]0,1()1n ≥ 所以()[][]0,10,100nf x dx dx ==⎰⎰因此()[]0,1lim0nn f x dx →∞=⎰七、证明题 1.证明(\)()c A B B A B B =U I U ()()()c c A B A B B A B B B A B ===I U I U I U U U2.证明 设F 是[0,1]中的有理数集,则F 是可数集,从而*0m F =,因此F 是可测集,从而c F 可测,又[0,1]\[0,1]cE F F ==I ,故E 是可测集.由于E F =∅I ,所以1[0,1]()0m m E F mE mF mF ===+=+U ,故1mF =3.证明 设{}n r 为全体有理数所成之集,则()11[|()()][|()()][|()][|()]n n n n n E x f x g x E x f x r g x E x f x r E x g x r ∞∞==>=≥>=≥<I U U因为(),()f x g x 是E 上的可测函数,所以[|()]n E x f x r ≥,[|()]n E x g x r <是可测集,1,2,n =L ,于是由可测集性质知[|()()]E x f x g x >是可测集4.证明 因为()f x 在E 上可测,所以|()|f x 在E 上非负可测,由非负可测函数积分性质,[|()|][|()|]|()||()|E x f x a E x f x a Eadx f x dx f x dx ≥≥≤≤⎰⎰⎰而[|()|][|()|]E x f x a adx a mE x f x a ≥=⋅≥⎰,所以1[|()|]|()|E mE x f x a f x dx a≥≤⎰5.证明 因为lim 0n n mE →∞=,所以0,1N δ∀>∃≥,当n N ≥时,n mE δ<,又()f x 在E 上L -可积,所以由积分的绝对连续性,0,0,εδ∀>∃>当,e E me δ⊂<时|()|ef x dx ε<⎰于是当n N ≥时,n mE δ<,因此|()|nE f x dx ε<⎰,即lim ()0nE n f x dx →∞=⎰。
实变函数第一章习题解答(罗绍辉)

A = U Α n 为正交可数集,即 Α n ≤ C 0 n∈N
{ 又因为 Q ~ { x} | x ∈ Q
n =1
∞
n n
n
1 ⇒ x ∈ U E{x | f ( x ) ≥ a + } ⇒ E{x | f ( x ) > a} ⊂ n =1 n ∞ 1 U E{x | f ( x ) ≥ a + } n =1 n ∞ 1 反过来, ∀x ∈ nU1 E{x{x | f ( x) ≥ a + n }, ∃n ∈ N ,使 = 1 x ∈ E{x | f ( x ) ≥ a + } n 1 即 f ( x ) ≥ a + n > a且x ∈ E 故 x ∈ E{x | f ( x) > a} ∞ 1 ∪ E{x | f ( x ) ≥ a + } ⊂ E{x | f ( x ) > a} . 故 所以 n =1 n ∞ 1 E{x | f ( x) > a} U E{x | f ( x) ≥ a + } n =1 n
所以中直线上每个闭集必是可数个开集的交每个开集必是可数个闭集的并
第一章习题参考解答
3.等式 ( A − B) ∪ C = A − ( B − C ) 成立的的充要条件是什么? 解:若 ( A − B) ∪ C = A − ( B − C ) 则
C ⊂ ( A − B) ∪ C = A − ( B − C ) ⊂ A .即, C ⊂ A .
Bn = An − U Ai ⊂ An − Am ,又因为 Bm ⊂ Am ,所以 i =1
实变函数(程其襄版)第一至四章课后习题答案

习惯上,N表示自然数集,(本书中的自然数集不包含0),Z表示整数集,Q表示有理数集,R表示实数集.
设 是定义在E上的函数,记 ={ : ∈E},称之为f的值域。若D是R中的集合,则 ={ : ∈E ,},称之为D的原像,在不至混淆时,{ : ∈E, 满足条件p}可简写成{ : 满足条件 }.
定理1
(交换律)
证明我们只证明
先设 则有 且有 于是
这证明了
在证反过来的包含关系,设 ,则有 ,此即 ,因此 于是 。
综合起来,便是等式成立。
这表面,集合运算的分配律,在无限并的情况下依然成立
3、集合的差集和余集
若A和B是集合,称 为A和B是差集,A\B也可以记为A-B,如图1.3是A-B的示意图:
实变函数论建立在实数理论和集合论的基础上,对于实数的性质,我们假定读者已经学过,所以本书只是介绍集合论方面的基本知识。
§1 集合的表示
集合是数学中所谓原始概念之一,不能用别的概念加以定义,就目前来说,我们只要求掌握一下朴素的说法:
在一定范围内的个体事物的全体,当将它们看作一个整体时,我们把这个整体称作一个集合,其中每一个个体事物叫做该集合的元素。
定理2【伯恩施坦(Bernstein)定理】
设A,B是两个非空集合。如果A对等与B的一个子集,B又对等与A的一个子集,那么A对等于B.
注利用基数的说法是:设 .
证明有假设,存在A到B得子集 上的一一映射 及B到A得子集 上的一一映射 。因为 ,记 .显然 是 到 上的一一映射,即
并且 .作映射 和 的复合映射 如下:当 时, 。那么 实现了A到 上的一一对应。因为 是A的子集, 是 的子集,所以
2.集合的包含关系
若集合A和B满足关系:对任意 ∈A,可以得到x∈B,则成A是B的子集,记为A B或B A,若A B但A并不与B相同,则称A是B的真子集.
实变函数(程其襄版)第一至四章课后习题答案

若集合A和B满足关系:对任意 ∈A,可以得到x∈B,则成A是B的子集,记为A B或B A,若A B但A并不与B相同,则称A是B的真子集.
例7. 若 在R上定义,且在[a,b]上有上界M,即任意对
∈[a,b]有 M.用集合语言表示为:[a,b] { : M}.
用集合语言描述函数性质,是实变函数中的常用方法,请在看下例.
定理1
(交换律)
证明我们只证明
先设 则有 且有 于是这证来自了在证反过来的包含关系,设 ,则有 ,此即 ,因此 于是 。
综合起来,便是等式成立。
这表面,集合运算的分配律,在无限并的情况下依然成立
3、集合的差集和余集
若A和B是集合,称 为A和B是差集,A\B也可以记为A-B,如图1.3是A-B的示意图:
请读者注意:我们怎样把描述函数列性质的 语言,转换为集合语言。
例12 设 是定义在E上的函数列,若x是使 收敛与0的点,则对任意的 ,存在 ,使得对任意 即
顺便说明一下,一个集合的各个元素必须是彼此互异的,哪些事物是给定集合的元素必须是明确的,下面举出几个集合的例子。
例14,7 ,8,3四个自然数构成的集合。
例2全体自然数
例30和1之间的实数全体
例4 上的所有实函数全体
例5A,B,C三个字母构成的集合
例6平面上的向量全体
全体高个子并不构成一个集合,因为一个人究竟算不算高个子并没有明确的界限,有时难以判断他是否属于这个集合。
例1设 和 是定义在E上的函数,则对任意
例2.
例3若记
例4 若 是一族开区间,而 ,则存在
使得 (有限覆盖定理)
例5若 是定义在E上的函数,则
2、集合的交集
设A,B是任意两个集合,由一切既属于A又属于B的元素组成的集合C称为A和B的交集或积集,简称为交或积,记作 ,它可以表示为
实变函数课后习题答案_北大版_周民强

证: lim En = [a, b]\E.
n→∞ n→∞
n→∞
∀ x ∈ [a, b] \ E, ∵ lim fn (x) = 1, ∴ ∃N, ∀ n ≥ N, fn (x) ≥
n→∞ 1 , i.e. 2 n→∞ n→∞
∞
{x ∈ [0, 1] : |f (x)| >
n=1
1 } n
=
∞
+ − 1 < |f (x1 ) + f (x2 ) + · · · + f (xp )| ≤ M, p < nM , 所以 E1 则 p· n /n 只含有限个数, 同理 E1/n 也只含有限个数, 由此可得 E 可数.
n=1
+ (E1 /n
S (C, r3 )), S (P, r) 表示以 P 为圆心 r 为半径的球面 }, E 可数.
10. 设 E 是平面 R2 中的可数集, 试证明存在互不相交的集合 A 与 B , 使得 E = A ∩ B, 且任一平行于 x 轴的直线交 A 至多是有限个点, 任一平行于 y 轴的直线交 B 至多是有限 个点. 2
证: ∵ E 可数, ∴ E 中点的横坐标, 纵坐标集合也可数, 分别记为 X = {x1 , x2 , · · · , xn , · · · }, Y = {y1 , y2 , · · · , yn , · · · }, 如此就可记 E = {(xi , yj ) ∈ E : i, j ∈ N}, 作从 E 到 N2 的映 射 f : f ((xi , yj )) = (i, j ); 记 A1 = {(i, j ) : i ≤ j }, B1 = {(i, j ) : i > j }, 令 A = f −1 (A1 ), B = f −1 (B1 ) 即可. 11. 设 {fα (x)}α∈I 是定义在 [a, b] 上的实值函数族. 若存在 M > 0, 使得 |fα (x)| ≤ M, x ∈ [a, b], α ∈ I, 试证明对 [a, b] 中任一可数集 E , 总有函数列 {fαn (x)}, 存在极 限 lim {fαn (x)}, x ∈ E.
实变函数课后习题答案

第一章习题1.证明:(1) (A -B )-C =A -(B ∪C ); (2)(A ∪B )-C =(A -C )∪(B -C ). 证明:(1) 左=(A ∩B c )∩C c =A ∩(B c ∩C c )= A ∩(B ∪C )c =右; (2)左=(A ∪B )∩C c =(A ∩C c )∪(B ∩C c )=右. 2.证明: (1)();(2)().IIIIA B A B A B A B αααααααα∈∈∈∈-=--=-(1)ccI IA B A B αααα∈∈⎛⎫=== ⎪⎝⎭证明:左()右;(2)()c cI I A B A B αααα∈∈⎛⎫=== ⎪⎝⎭左右.111111.{},,1.{}1.n n n n n nnA B A B A A n B B A n νννννν-===⎛⎫==- ⎪⎝⎭>=≤≤∞ 3 设是一列集合,作证明:是一列互不相交的集合,而且,证明:用数学归纳法。
当n=2时,B 1=A 1,B 2=A 2-A 1, 显然121212B B B B B B n k =∅== 且,假设当时命题成立,1211,,,kkk B B B B A νννν===两两互不相交,而且,111111111kk k kkkk k n k B A A B A BA B νννννννν++=++====+=-==-⇒下证,当时命题成立,因为而,所以11211+1111111111111,,,;k k k k k k k k k kk k k k k B B B B B B B B B B A A A A A A A νννννννννννννννν++=++===+++====⎛⎫=∅ ⎪⎝⎭⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭⎛⎫⎛⎫⎛⎫=-==⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,于是,两两互不相交;由数学归纳法命题得证。
{}21214.0,,(0,),1,2,,n n n A A n n A n-⎛⎫=== ⎪⎝⎭设求出集列的上限集和下限集。
实变函数参考答案

习题1解答(A 组题)一、选择题1、C ;2、A ;3、D ;4、C ;5、C ;6、A ;7、A ;8、B ;9、D ;10、C 二、判断题1、×;2、×;3、×;4、×;5、√;6、×;7、×;8、×;9、×; 10、× 三、填空题1、=;2、∅;3、()0,1;4、[]1,1-;5、,EF EF ;6、()2,3-;7、≥;8、c9、设有两个集合A 和B ,若≤A B ,≥A B ,则=A B 。
四、证明题1、(1)()()()()()\\====C C CC A A B A A B AAB A A AB A B ;(2)()()()()()()\\==C C CC A B CD A B CD A C B D()()()()\==CA C BD A C BD 。
2、111\lim \∞∞∞∞∞∞→∞======⎛⎫⎛⎫⎛⎫⎛⎫=== ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭C Cn n n n n N n N N n N N n N A B A B A B AB ()111lim(\)∞∞∞∞∞∞→∞======⎛⎫⎛⎫⎛⎫⎛⎫==== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭C C C n n n n n N n N N n N N n N A B A B A B A B 。
同理可证第2个集合等式。
3、当A =∅时,{}∅张成的环和σ-环均为它自身;张成的代数和σ-代数均为{},X ∅。
当A X =时,{}X张成的环、σ-环、代数和σ-代数均为{},X ∅。
当A 为X 的非空真子集时,{}A 张成的环和σ-环均为{},A ∅;张成的代数和σ-代数均为{},,,cA A X∅。
4、首先,令()()tan 12π⎡⎤=-⎢⎥⎣⎦f x x ,由于()f x 是()0,1上的严格单调递减的连续函数,且()()()0,10,=+∞f,所以()f x 是()0,1到()0,+∞的一一映射。
实变函数试题库及参考答案

实变函数试题库及参考答案IMB standardization office【IMB 5AB- IMBK 08- IMB 2C】实变函数试题库及参考答案(1) 本科一、填空题1.设,A B 为集合,则()\A B B A B (用描述集合间关系的符号填写) 2.设A 是B 的子集,则A B (用描述集合间关系的符号填写) 3.如果E 中聚点都属于E ,则称E 是 4.有限个开集的交是 5.设1E 、2E 是可测集,则()12m E E 12mE mE +(用描述集合间关系的符号填写) 6.设nE ⊂是可数集,则*m E 07.设()f x 是定义在可测集E 上的实函数,如果1a ∀∈,()E x f x a ⎡⎤≥⎣⎦是 ,则称()f x 在E 上可测8.可测函数列的上极限也是 函数9.设()()n f x f x ⇒,()()n g x g x ⇒,则()()n n f x g x +⇒ 10.设()f x 在E 上L 可积,则()f x 在E 上 二、选择题1.下列集合关系成立的是( ) 2.若n R E ⊂是开集,则( )3.设(){}n f x 是E 上一列非负可测函数,则( ) 三、多项选择题(每题至少有两个以上的正确答案) 1.设[]{}0,1E =中无理数,则( )A E 是不可数集B E 是闭集C E 中没有内点D 1mE =2.设nE ⊂是无限集,则( )A E 可以和自身的某个真子集对等B E a ≥(a 为自然数集的基数)3.设()f x 是E 上的可测函数,则( )A 函数()f x 在E 上可测B ()f x 在E 的可测子集上可测C ()f x 是有界的D ()f x 是简单函数的极限 4.设()f x 是[],a b 上的有界函数,且黎曼可积,则( )A ()f x 在[],a b 上可测B ()f x 在[],a b 上L 可积C ()f x 在[],a b 上几乎处处连续D ()f x 在[],a b 上几乎处处等于某个连续函数 四、判断题1. 可数个闭集的并是闭集. ( )2. 可数个可测集的并是可测集. ( )3. 相等的集合是对等的. ( )4. 称()(),f x g x 在E 上几乎处处相等是指使()()f x g x ≠的x 全体是可测集. ( ) 五、定义题1. 简述无限集中有基数最小的集合,但没有最大的集合.2. 简述点集的边界点,聚点和内点的关系.3. 简单函数、可测函数与连续函数有什么关系?4. [],a b 上单调函数与有界变差函数有什么关系? 六、计算题1. 设()[]230,1\x x E f x xx E⎧∈⎪=⎨∈⎪⎩,其中E 为[]0,1中有理数集,求()[]0,1f x dx ⎰.2. 设{}n r 为[]0,1中全体有理数,(){}[]{}12121,,00,1\,,n n n x r r r f x x r r r ∈⎧⎪=⎨∈⎪⎩,求()[]0,1lim n n f x dx →∞⎰.七、证明题1.证明集合等式:(\)A B B A B =2.设E 是[0,1]中的无理数集,则E 是可测集,且1mE = 3.设(),()f x g x 是E 上的可测函数,则[|()()]E x f x g x >是可测集 4.设()f x 是E 上的可测函数,则对任何常数0a >,有1[|()|]|()|E mE x f x a f x dx a≥≤⎰ 5.设()f x 是E 上的L -可积函数,{}n E 是E 的一列可测子集,且lim 0n n mE →∞=,则实变函数试题库及参考答案(1) 本科一、填空题1.=2.≤3.闭集4.开集5.≤6.=7.可测集8.可测9.()()f x g x + 10.可积 二、单选题 ABB 三、多选题ACD AB ABD ABC 四、判断题 × √√√ 五、定义题1.答:因为任何无限集均含有可数集,所以可数集是无限集中基数最小的,但无限集没有基数最大的,这是由于任何集合A ,A 的幂集2A 的基数大于A 的基数.2.答: 内点一定是聚点,边界点不一定是聚点,点集的边界点或为孤立点或为聚点.3.答:连续函数一定是可测函数;简单函数一定是可测函数;简单函数可表示成简单函数或连续函数的极限4.答:单调函数是有界变差函数,有界变差函数可表示成两个单调增函数之差. 六、解答题1.解:因为0mE =,所以()3,.f x x a e =于[]0,1,于是()[][]30,10,1f x dx x dx =⎰⎰,而3x 在[]0,1上连续,从而黎曼可积,故由黎曼积分与勒贝格积分的关系, 因此()[]0,114f x dx =⎰. 2.解:显然()n f x 在[]0,1上可测,另外由()n f x 定义知,()0,.n f x a e =于[]0,1()1n ≥ 所以()[][]0,10,100nf x dx dx ==⎰⎰因此()[]0,1lim0nn f x dx →∞=⎰七、证明题 1.证明2.证明 设F 是[0,1]中的有理数集,则F 是可数集,从而*0m F =,因此F 是可测集,从而c F 可测,又[0,1]\[0,1]c E F F ==,故E 是可测集.由于EF =∅,所以1[0,1]()0m m EF mE mF mF ===+=+,故1mF =3.证明 设{}n r 为全体有理数所成之集,则因为(),()f x g x 是E 上的可测函数,所以[|()]n E x f x r ≥,[|()]n E x g x r <是可测集,1,2,n =,于是由可测集性质知[|()()]E x f x g x >是可测集4.证明 因为()f x 在E 上可测,所以|()|f x 在E 上非负可测,由非负可测函数积分性质,而[|()|][|()|]E x f x a adx a mE x f x a ≥=⋅≥⎰,所以5.证明 因为lim 0n n mE →∞=,所以0,1N δ∀>∃≥,当n N ≥时,n mE δ<,又()f x 在E 上L -可积,所以由积分的绝对连续性,0,0,εδ∀>∃>当,e E me δ⊂<时|()|ef x dx ε<⎰于是当n N ≥时,n mE δ<,因此|()|nE f x dx ε<⎰,即lim ()0nE n f x dx →∞=⎰。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章习题解答
1、证明 A (B C)=(A B) (A C)
证明:设x∈A (B C),则x∈A或x∈(B C),若x∈A,则x∈A B,且x∈A C,从而x∈(A B) (A C)。
若x∈B C,则x∈B且x∈C,于是x∈A B且x∈A C,从而x∈(A B) (A C),因此
A (B C) ⊂ (A B) (A C) (1)
设x∈(A B) (A C),若x∈A,则x∈A (B C),若x∈A,由x∈A B 且x∈A C知x∈B且x∈C,所以x∈B C,所以x∈A (B C),因此
(A B) (A C) ⊂ A (B C) (2)
由(1)、(2)得,A (B C)=(A B) (A C) 。
2、证明
①A-B=A-(A B)=(A B)-B
②A (B-C)=(A B)-(A C)
③(A-B)-C=A-(B C)
④A-(B-C)=(A-B) (A C)
⑤(A-B) (C-D)=(A C)-(B D)
(A-B)=A B
A-(A B)=A C(A B)=A (CA CB)
=(A CA) (A CB)=φ (A CB)=A-B
(A B)-B=(A B) CB=(A CB) (B CB)
=(A CB) φ=A-B
②(A B)-(A C)=(A B) C(A C)
=(A B) (CA CC)=(A B CA) (A B CC)=φ [A (B CC)]=
A (B-C)
③(A-B)-C=(A CB) CC=A C(B C)
=A-(B C)
④A-(B-C)=A C(B CC)=A (CB C)
=(A CB) (A C)=(A-B) (A C)
⑤(A-B) (C-D)=(A CB) (C CD)
=(A C) (CB CD)=(A C) C(B D)
=(A C)-(B D)
⑥A -(A -B)=A C(A CB)=A (CA B)
=(A CA) (A B)=φ (A B)=A B
3、证明: (A B)-C =(A -C) (B -C)
A -(
B C)=(A -B) (A -C)
证明:(A B)-C =(A B) CC
=(A CC) (B CC)=(A -
(A -B) (A -C)=(A CB) (A CC)
=(A A) (CB CC)=A C(B C)=A -(B C)
4、证明:s C (∞=1i i A )=∞=1
i s C i A 证明:设x ∈s C (∞=1i i A ),则x ∈∞=1
i i A ,于是,i ∀、x ∈i A ,从而x ∈C i A ,所以,x ∈∞=1i C i A ,所以,s C (∞=1i i A )⊂∞=1
i s C i A 。
设x ∈∞=1i s C i A ,则i ∀、x ∈C i A ,即x ∈i A ,于是,x ∈∞=1i i A ,即x ∈C (∞=1
i i A ),所以∞=1i C i A ⊂ C (∞=1
i i A ),由以上两步得 s C (∞=1i i A ) = ∞=1
i s C i A
N ∈ααA )-B =N
∈α (αA -B) ②(N ∈α αA )-B =N
∈α (αA -B) 证明:①(N ∈α αA )-B =(N
∈α αA ) CB =N ∈α (αA CB)=N
∈α (αA -B)
②(N ∈α αA )-B =(N
∈α αA ) CB =N ∈α (αA CB)=N
∈α (αA -B) 6、设{n A }是一列集合,作1B =1A ,n B =n A -(11
-=n k k A )n >1。
证明n B 是一列互不相交的集,而且n k 1= k A =n k 1
= k B ,n =1,2,3,…。
证明:设i ≠j ,不妨设i <j ,因为
i B j B ⊂i A [j A -(11
-=j k k A )] =i A [j A (11
-=j k C k A )] =i A j A [C i A (11-≠=j i
k k C k A )]=(i A C i A ) j A (11-≠=j i k k C k A )=φ j A (11-≠=j i
k k k A )=φ ∴ i B j B =φ,{n B }互不相交。
∵ i B ⊂i A ,∴ n k 1= k A =n k 1
= k B 。
另一方面,设x ∈n k 1= k A ,则存在最小的自然数i ,使x ∈i A ,x ∈11
-=i k k A ,∴ k A =i B ⊂n k 1
= k B , ∴ n k 1= k A ⊂n k 1= k B ∴ n k 1= k A =n
k 1= k B 。
7、设12-n A =(0,n 1
),n A 2=(0,n ),n =1,2,…,求出集列{n A }的上限集和下限集。
解:∀n 。
∵ 12-n A =(0,n 1),n A 2=(0,n ),
∴ 12-n A ⊂n A 2 。
∞=n m m A =∞=n m (12-m A m A 2)=∞=n m m A 2=∞=n
m (0,m )=(0,∞)
∞→n lim n A =∞=1n ∞=n m m A =∞=1
n (0,∞)=(0,∞) ∞=n m m A =∞=n m (12-m A m A 2)=∞=n
m 12-m A =∞=n
m (0,m 1)=φ
∴ ∞→n lim n A =∞=1n ∞=n m n A =∞=1n φ=φ 。
8、证明:∞→n lim n A =∞=1n ∞=n
m m A
证明:x ∈∞→n lim n A ⇒∃n ,∀m ≥n ,有x ∈m A ⇒∃n ,x ∈∞=n
m m A ⇐⇒
x ∈∞=1n ∞=n m m A ,∴ ∞→n lim n A =∞=1n ∞=n
m m A 。
9、作出一个(-1,1)和(-∞,+∞)的1—1对应,并写出这一对应的解析表达式。
解:y=tg 2
π
x ,x ∈(-1,1),y(-∞,+∞)。
10、证明将球面去掉一点以后,余下的点所成的集合和整个平面上的点所成的集合是对等的。
证明:用P 表示在球面上挖去的那一点,P 与球心O 的连线交球面于M ,过M 作球面的切平面,过P 点和球面上任一点N 引直线,该直线与平面交于N ',将N 与N '对应,P 与M 对应,则球面上的点与整个平面上的点用上述方法构成一个一一对应,由对等的定义,挖去一点的球面与平面是对等的。
A 的元素,则A 至多为可数集。
由有理数的稠密性知,在每一区间中至少含有一个有理数,在每一开区间中任取一有理数与该区间对应,由于开区间互不相交,故不同开区间对应不同的有理数,但有理数全体为一可数集,其子集至多是可数集,所以直线上互不相交的开区间作成的集至多是可数集。
12、证明所有系数为有理数的多项式组成一可数集。
证明:以A 表示这个集合,n A 表示n 次有理系数多项式的全体,则A =∞=0
n n A 。
n A 由n +1个独立记号,即n 次多项式的n +1个有理系数所决定,其中首项系数为异于0的有理数,其余系数可取一切有理数,因此,每个记号独立地跑遍一个可数集,所以,n A 是可数集,A
13、设A 圆的全体,则A 是可数集。
证明:A 中任一元素由三个独立记号(a ,b ,r )所决定,其中(a ,b )是圆心的坐标,r 是圆的半径,a 、b 各自跑遍全体有理数,r 跑遍大于0的有理数,而且它们都是可数集,故A 是可数集。
14、证明单调增加函数的不连续点最多只有可数多个。
证明:设)(x f 是(-∞,+∞)上的单调增加函数,其不连续点的全体记为E ,设0x ∈E ,由数学分析知,0x 必为第一类不连续点,即其左、右极限)0(0-x f 、)0(0+x f 必存在,且)0(0-x f <)0(0+x f ,这样,每个不连续点0x 对应一个开区间()0(0-x f ,)0(0+x f ),且这些开区间互不相交。
由11题知,这些开区间最多有可数多个,所以,E 最多是一个可数集。