实验粘滞系数测量

合集下载

实验报告粘滞系数测定

实验报告粘滞系数测定

一、实验目的1. 了解粘滞系数的概念及其在工程和科学领域中的应用。

2. 掌握测量液体粘滞系数的实验原理和方法。

3. 熟悉奥氏粘度计的使用方法,提高实验操作技能。

二、实验原理粘滞系数是表征液体粘滞性的物理量,其大小与液体的性质和温度有关。

在实验中,我们采用奥氏粘度计测定液体的粘滞系数,其原理基于斯托克斯公式。

当小球在液体中做匀速运动时,受到的粘滞阻力与重力、浮力达到平衡。

根据斯托克斯公式,小球所受到的粘滞阻力F为:F = 6πηrv其中,η为液体的粘滞系数,r为小球的半径,v为小球的速度。

实验中,通过测量小球在液体中下落的时间,可以计算出粘滞系数。

根据斯托克斯公式,小球达到收尾速度v0时的速度v0为:v0 = √(2gr/9η)其中,g为重力加速度,L为小球下落的距离,t为小球下落的时间。

三、实验仪器1. 奥氏粘度计2. 铁架3. 秒表4. 温度计5. 小球6. 液体(实验用)四、实验步骤1. 将奥氏粘度计固定在铁架上,调整至水平状态。

2. 将待测液体倒入粘度计的筒中,注意液体的高度不要超过筒的最大刻度。

3. 将小球放入筒中,用秒表测量小球从筒底到筒顶所需的时间t。

4. 记录实验温度,并计算粘滞系数η。

五、数据处理1. 根据实验数据,计算小球下落的平均速度v = L/t。

2. 根据斯托克斯公式,计算粘滞系数η = 2grv0/9。

六、实验结果与分析1. 通过实验,测量得到小球下落的平均速度v和实验温度。

2. 根据斯托克斯公式,计算出粘滞系数η。

3. 对实验数据进行误差分析,讨论实验结果与理论值之间的差异。

七、实验结论1. 通过本次实验,我们掌握了测量液体粘滞系数的原理和方法。

2. 奥氏粘度计是一种常用的测量液体粘滞系数的仪器,具有操作简便、测量精度高等优点。

3. 在实验过程中,我们注意了实验操作规范,保证了实验结果的准确性。

八、实验心得1. 在实验过程中,我们要严格遵守实验操作规程,确保实验安全。

粘滞系数实验报告

粘滞系数实验报告

粘滞系数实验报告
实验目的:测定不同液体的粘滞系数,了解粘滞现象对流体运动的影响。

实验原理:粘滞系数(η)是衡量流体内部粘滞阻力大小的物理量。

根据牛顿第二定律和斯托克斯定律,流体粘滞系数可通过粘滞实验进行测定。

斯托克斯定律适用于介质为稀薄、粘滞系数不随温度和流速改变的情况,即呈牛顿流体的情况。

实验器材:粘度计、容器、不同液体样品、计时器。

实验步骤:
1. 在容器中加入待测液体,注意避免气泡的产生。

2. 将粘度计的毛细管完全浸入液体中。

3. 用计时器记录流体从A点到B点的通过时间τ。

4. 测量不同液体的通过时间,每种液体至少测量5次,取平均值。

实验数据处理:
1. 根据斯托克斯定律,计算粘滞系数的表达式为:η =
(ρgτd^2)/(18L) ,其中ρ为液体的密度,g为重力加速度,d为粘度计的直径,L为毛细管的长度。

2. 将实验得到的数据代入公式中计算粘滞系数,并计算各组数据的平均值。

实验结果和讨论:
根据实验数据计算得到的粘滞系数可以与文献中给出的数值进
行对比,判断实验结果的准确性。

同时,可以比较不同液体的粘滞系数大小,分析各液体分子间相互作用力的差异对粘滞现象的影响。

实验结论:
通过粘滞实验测得不同液体的粘滞系数,比较了液体粘滞特性的差异,进一步了解流体运动中的粘滞现象。

测量粘滞系数实验注意事项

测量粘滞系数实验注意事项

测量粘滞系数实验注意事项测量粘滞系数是一个常见的实验。

下面是一些实验中需要注意的事项:1. 保持实验室环境稳定:实验室应处于恒定的温度和湿度条件下,以避免外部因素对实验结果的影响。

2. 准备实验材料:在进行实验之前,需要准备好所需的实验材料,包括测量设备、实验样品和标准物质。

3. 样品制备:根据实验要求,将样品制备成适当的形式,以便于实验测量。

例如,对于液体样品,可以将其倒入测量容器中;对于固体样品,可以将其剪切成所需的形状。

4. 按照实验设计进行测量:根据实验要求,选择合适的测量设备和测量方法进行实验。

在测量过程中,要注意避免外界干扰,如振动、电磁辐射等。

5. 确保测量准确性:在进行测量之前,要校准使用的测量设备,以确保其准确性。

同时,要注意实验操作的规范性和准确性,避免人为误差对结果的影响。

6. 进行多次重复测量:为了提高实验结果的可靠性和准确性,应进行多次重复测量,并取平均值作为最终结果。

7. 控制实验条件:在进行实验时,要注意控制实验条件的一致性。

例如,保持测量温度、压力等参数的稳定,避免因这些因素的变化对测量结果的影响。

8. 注意安全防护:在进行实验时,要注意安全操作。

例如,避免接触有毒、易燃物质;佩戴适当的防护装备,如实验手套、护目镜等。

9. 实验结果的处理和分析:在完成实验后,应对实验结果进行数据处理和分析。

可以使用适当的数学模型来拟合实验数据,计算粘滞系数等参数。

10. 记录实验过程和结果:实验过程和结果应进行详细的记录,包括实验条件、测量数据和分析结果。

这些记录有助于后续的实验验证和结果复现。

总之,进行粘滞系数的测量实验时,需要严格遵循实验要求和操作规范,保持实验条件的一致性,并注意实验安全。

通过合理的实验设计和准确的测量,可以得到可靠和准确的实验结果。

液体粘滞系数的测定实验报告

液体粘滞系数的测定实验报告

液体粘滞系数的测定实验报告摘要:本实验旨在测定不同液体的粘滞系数。

实验过程中,我们利用扭转法测定了不同浓度的液体的粘滞系数,并得到了粘滞系数与浓度的关系曲线。

结果表明,液体的粘滞系数随着浓度的增加而升高,并符合经验公式。

引言:液体的粘滞性是指液体流动时,由于内部分子之间相互作用的影响所产生的阻力。

粘度的大小与液体的浓度、分子量、温度、压力等因素有关。

通过测定不同浓度下的液体粘滞系数,可以探究液体的流动性质,有利于理解生产过程中的液体流动情况。

实验设计:我们选取了乙二醇、甘油、水三种液体进行实验,分别制备了不同浓度的溶液。

实验采用扭转法测定液体的粘滞系数,扭转装置的设计如下图所示:把液体装入圆柱形玻璃杯中,将旋转轴插入杯中,同时在杯的周围设置电加热器。

通过扭转试杆制造扭转辐位力矩,利用测定扭转桿扭转角度和时间来计算出粘滞系数。

实验步骤:1. 用天平测量所需的溶液。

2. 把液体放入扭转法粘度计中,设置加热器,装上试杆。

3. 在适当的时间内记录粘度计旋转的角度和时间。

4. 根据记录的数据计算粘滞系数。

实验结果:我们测定了不同浓度的乙二醇、甘油、水三种液体的粘滞系数,并得到了下面的实验数据:表 1. 不同液体在不同浓度下的粘滞系数液体浓度/mmol.dm^-3 粘滞系数/Pa.s乙二醇 40 30.1260 45.3280 67.42100 90.24甘油 40 17.2360 28.7280 48.23100 71.12水 40 0.8160 0.9380 1.01100 1.14我们还绘制了液体浓度与粘滞系数的关系曲线,如下图所示:从图中可以看出,液体的粘滞系数随着浓度的增加而升高,并且不同液体之间的粘滞系数也有所不同。

我们还将数据带入到经验公式中进行拟合计算,得到了乙二醇、甘油、水的粘滞系数分别为0.043Pa.s、0.022Pa.s、0.0014Pa.s。

结论:本实验通过扭转法测定了不同液体在不同浓度下的粘滞系数,并得到了粘滞系数与浓度的关系曲线。

实验11落球法测量液体的粘滞系数

实验11落球法测量液体的粘滞系数

福建农林大学物理实验要求及原始数据表格实验11落球法测量液体的粘滞系数专业___________________学号___________________姓名___________________一、预习要点1.落球法测定粘滞系数的基本原理是什么?2.表示粘滞阻力的斯托克斯公式受到怎样的局限?实验中如何修正?二、实验内容使用变温粘度仪测定不同温度下蓖麻油的粘滞系数。

三、实验注意事项1.控温时间至少保证10分钟以上,从而使得样品温度与加热水温一致;2.调节样品管的铅直,尽量保证小球沿样品管中心下落;3.测量过程中,尽量避免对液体的扰动;4.从0刻线开始,小球每下落5cm计时一次,计时要眼明手快,保证视线与管壁刻线水平。

5.为保证数据的一致性,选用唯一的小球进行实验,完成实验后,将小球保存于样品管中的蓖麻油里,防止氧化,以备下次实验使用。

四、原始数据记录表格组号________ 同组人姓名____________________ 成绩__________ 教师签字_______________温度每上升5°C左右测量一次,依照室温情况,测量范围可以在20°C ~55°C间任意选择,但40°C必做。

五、数据处理要求1.计算出不同温度条件下小球下落的速度及蓖麻油的粘滞系数,结果填入表格中,保留三位有效数字;2.用坐标纸画出蓖麻油粘滞系数与温度的关系曲线;3.依照书本的理论值,求出40°C时蓖麻油粘滞系数的相对误差,并分析引起误差的原因。

1福建农林大学物理实验要求及原始数据表格六、数据处理注意事项1.画图时,粘滞系数 为纵坐标,温度T为横坐标,作一条平滑的曲线;2.相对误差保留二位有效数字。

七、思考题1.落球法为什么只适用于测量粘滞系数较高的液体?2.为什么落球要在圆筒中心轴线垂直下落?如果不满足该条件,会导致测量值偏大还是偏小?2。

测粘滞系数实验报告

测粘滞系数实验报告

测粘滞系数实验报告实验报告:测粘滞系数引言:粘滞是液体的一种特性,它是指液体流动阻力的大小。

粘滞系数是描述液体粘滞性质的物理量,它越大,表示液体越黏稠;它越小,表示液体越流动性好。

测量粘滞系数对于了解液体的流动特性和性质具有重要意义。

本实验通过韩涅管法测定液体的粘滞系数,并探究影响粘滞系数的因素。

实验目的:1. 学习韩涅管测粘滞系数的原理和方法。

2. 探究黏度计常数与所测粘滞系数的关系。

3. 探究温度对粘滞系数的影响。

实验仪器和材料:1. 韩涅管黏度计2. 水浴锅3. 温度计4. 水桶5. 实验管6. 水7. 甘油8. 高粘度液体(如稠油或玻璃胶)实验原理:韩涅管法是测定流体粘度的一种常用方法,其原理是利用单位长度细管的流体流动阻力来推测整个流体的粘度。

根据流量方程和托球测量法则,可以得到测定粘滞系数的公式:η= (ρ×g×(d^2 - D^2)×t)/(4×V)其中,η为粘滞系数,单位为贝克尔(Be),ρ为流体密度,g为重力加速度,d 为细管内径,D为细管外径,t为测量时间,V为托球的体积。

实验步骤:1. 在韩涅管黏度计上装上细管和托球。

2. 用水桶将韩涅管浸入水中,并放入水浴锅中进行加热,使水温保持在一定的范围内。

3. 待水温稳定后,用温度计测量水温,并记录下来。

4. 用实验管量取一定量的液体(如水或甘油)。

5. 将实验管中的液体缓慢倒入韩涅管中,并立即启动计时器。

6. 观察托球的下沉过程,当托球下沉一定距离后,停止计时器。

7. 记录下托球下沉所用的时间,然后倒出韩涅管内的液体。

8. 重复上述步骤3-7,进行多次实验,并分别记录下所测得的时间和水温。

实验结果:根据实验中所测得的时间和水温数据,可以计算得到粘滞系数的数值。

根据公式计算出多组数据的粘滞系数,并计算出平均值和标准差。

实验讨论:1. 分析不同温度下粘滞系数的变化趋势,探讨温度对粘滞系数的影响。

液体粘滞系数的测定实验报告

液体粘滞系数的测定实验报告

液体粘滞系数的测定实验报告一、实验目的。

本实验旨在通过测定不同液体的粘滞系数,探究液体的流动特性,并学习粘滞系数的测定方法。

二、实验原理。

液体的粘滞系数是衡量液体黏性的重要指标,通常用于描述流体的内摩擦力。

在本实验中,我们将通过测定液体在不同条件下的流动速度和流动层厚度,利用流变学原理计算出液体的粘滞系数。

三、实验仪器与试剂。

1. 流体力学实验装置。

2. 不同液体样品(如水、甘油、汽油等)。

3. 测量工具(如尺子、计时器等)。

四、实验步骤。

1. 准备工作,将实验装置设置在水平台面上,并将不同液体样品倒入实验装置中。

2. 测定流速,打开实验装置,调节流体流动速度,并测定不同液体在相同条件下的流速。

3. 测定流动层厚度,观察液体流动时的流动层厚度,并记录下来。

4. 数据处理,根据实验数据,利用流变学原理计算出不同液体的粘滞系数。

五、实验结果与分析。

经过实验测定和数据处理,我们得到了不同液体的粘滞系数。

通过对实验结果的分析,我们发现不同液体的粘滞系数存在较大差异,这与液体的性质密切相关。

例如,甘油的粘滞系数较大,而汽油的粘滞系数较小,这与它们的分子结构和相互作用有关。

六、实验总结。

通过本次实验,我们深入了解了液体的粘滞系数测定方法,并学习了流变学原理在实验中的应用。

同时,我们也认识到了不同液体的粘滞系数反映了其内部分子结构和流动特性,这对于液体的工程应用具有重要意义。

七、实验注意事项。

1. 在实验过程中要注意操作规范,确保实验安全。

2. 实验数据的准确性对于结果的可靠性至关重要,要认真记录实验数据。

3. 在测定流速和流动层厚度时,要保持仪器的稳定,避免外界干扰。

八、参考文献。

1. 《流体力学实验方法》,XXX,XXX出版社,XXXX年。

2. 《流变学导论》,XXX,XXX出版社,XXXX年。

以上为本次液体粘滞系数的测定实验报告,谢谢阅读。

粘滞系数的测定实验报告

粘滞系数的测定实验报告

粘滞系数的测定实验报告一、引言粘滞系数是流体力学中的一个重要参数,它描述了流体流动时的黏性特性。

粘滞系数的测定对于研究流体的性质以及流体力学现象有着重要的意义。

本实验旨在通过测定不同流体的流动速度和施加的力的关系,来确定流体的粘滞系数。

二、实验装置与原理实验所需的装置主要包括流体槽、流体注射器、流速计和测力计。

实验中使用的流体为水和甘油。

流体槽中设置了流速计,可以测量流体的流动速度。

测力计用于测量施加在流体上的力。

根据流体力学的基本原理,流体的粘滞系数可以通过测量流体流动速度和施加的力来确定。

当流体在流体槽中流动时,流速计会测出流体的流动速度,测力计会测量施加在流体上的力。

通过改变流体注射器的开度,可以调节流体的流动速度。

三、实验步骤及数据处理1. 准备工作:将流体槽放在水平台面上,调整好流速计的位置,并将测力计固定在流体槽的一侧;2. 清洗流体槽:用适量的水清洗流体槽,确保流体槽内干净无杂质;3. 测量流体粘滞系数:首先将流体槽注满水,调整流体注射器的开度,使得流动速度适中。

然后记录下流动速度和施加的力,记录多组数据以提高准确性。

重复以上步骤,将流体槽注满甘油,测量不同浓度的甘油的流动速度和施加的力;4. 数据处理:根据测得的流动速度和施加的力,计算出不同流体的粘滞系数。

使用适当的公式,根据测得的力和流动速度的关系,绘制出力与速度的曲线。

根据数据曲线的斜率,可以得到流体的粘滞系数。

四、结果与讨论经过实验测量和数据处理,得到了水和甘油的粘滞系数。

根据实验数据计算得到的粘滞系数与理论值相比较,结果表明实验测量值与理论值基本吻合。

这说明实验测定粘滞系数的方法是可靠有效的。

通过实验我们还可以观察到不同流体的粘滞性质不同。

水的粘滞系数较小,流动性较好,而甘油的粘滞系数较大,流动性较差。

这与我们平时的观察和经验是相符合的。

实验中可能存在的误差主要来自于仪器的精度以及实验环境的影响。

为了减小误差,我们在实验中尽量保持流体槽的水平,确保测量的准确性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

v L
大学物理实验
t
2.确定小球达到收尾速度时光电门的位置
•光电门2的激光在量筒中轴线距底上方5cm,光电门1的激光 在量筒中轴线距液面下方分别为:1cm、3cm、5cm处。
•记录小球通过L1、L2所用时间t,测出L1、L2距离L(用尺 测量激光在量筒的两入射光点之间距离和出射光点之间距离 离,取其平均值)。
•用温度计测量实验前的油温T (℃), 随温度升高迅速减少。
•同一个球重复测量6次。 •换另一个半径的小钢球,重复以上实验测量6次。
大学物理实验
四. 数据处理
1. 求实。
2.求相对误差: 理 实 100% 理
实查表或 log 0.0347T 0.7046
五.思考题 教材: 1题(实验报告) 2题(实验报告) 3题(实验报告)
•计算小球的下落速度v1、v2、v3 ( v=L/t)。
•若v1v2=v3,则光电门1可选在其激光在圆筒中轴线处距油面
下方3cm以下的位置。
大学物理实验
3.测量粘滞系数
D

(r球 r液)d 2 gt
18L(1 2.4 d )(11.6 d )
D
H
用直尺测L1、 LL2,之2间次距离
用计时仪测小球 通过L1、L2之 间的时间
D
H
要测 ,关键要测准收尾速度v收,即测量
小球匀速下落L的时间t。
D
待测液体 r液
L1 F f
H
小 球
L
n mg
L2
底座
大学物理实验
三、实验内容与步骤
1.调节液体粘滞系数测定仪
•调测定仪底盘水平; •调激光发射器,使两束激光平行 地对准铅锤线; •调激光接收器,使之接到激光; •开“计时仪”电源,按“计时” 键;显示“C0.000”, “C”表示计时仪处于计时状态 ; •吸拾钢球,投球,使球挡光、计 时器计时;
大学物理实验
实验33 液体粘滞系数的测定
一.实验任务 二.测量原理与方法 三.实验内容与步骤 四.数据处理 五.思考题
斯托克斯
大学物理实验
各种流体(液体、气体)都具有不同程度的粘性。 什么是粘滞力? —液层与邻层液体间的摩擦力(非物体与液体间的摩擦力) 如何测粘滞系数? —— 本实验落球法。 粘滞系数与哪些因数有关? —— 本实验落球法。
大学物理实验
The End
用计时仪测小球通过 L1、L2之间的时 间
用螺旋测微计测量 小球直径6次
待测液体 r液
L1 F f
H
小 球
L
n mg
L2
r球 = 7800.0 kg.m-3,蓖麻油的密度:r液 = 962.0 kg.m-3 ,
底座
量筒直径: D=6.010-2 m .
•光电门1的激光在量筒中轴线距液面下方5cm处。
一. 实验任务
1.测量收尾速度. 2.用落球法测液体的粘滞系数.
大学物理实验
二. 实验原理与方法
粘滞阻力: F 6 r v
小球三力平衡时: mg r液Vg 6vr
收尾速度:匀速下落速度
v收

L t

(r球 r液)d 2 gt
18L(1 2.4 d )(11.6 d )
相关文档
最新文档