粘滞系数实验报告
实验报告粘滞系数测定

一、实验目的1. 了解粘滞系数的概念及其在工程和科学领域中的应用。
2. 掌握测量液体粘滞系数的实验原理和方法。
3. 熟悉奥氏粘度计的使用方法,提高实验操作技能。
二、实验原理粘滞系数是表征液体粘滞性的物理量,其大小与液体的性质和温度有关。
在实验中,我们采用奥氏粘度计测定液体的粘滞系数,其原理基于斯托克斯公式。
当小球在液体中做匀速运动时,受到的粘滞阻力与重力、浮力达到平衡。
根据斯托克斯公式,小球所受到的粘滞阻力F为:F = 6πηrv其中,η为液体的粘滞系数,r为小球的半径,v为小球的速度。
实验中,通过测量小球在液体中下落的时间,可以计算出粘滞系数。
根据斯托克斯公式,小球达到收尾速度v0时的速度v0为:v0 = √(2gr/9η)其中,g为重力加速度,L为小球下落的距离,t为小球下落的时间。
三、实验仪器1. 奥氏粘度计2. 铁架3. 秒表4. 温度计5. 小球6. 液体(实验用)四、实验步骤1. 将奥氏粘度计固定在铁架上,调整至水平状态。
2. 将待测液体倒入粘度计的筒中,注意液体的高度不要超过筒的最大刻度。
3. 将小球放入筒中,用秒表测量小球从筒底到筒顶所需的时间t。
4. 记录实验温度,并计算粘滞系数η。
五、数据处理1. 根据实验数据,计算小球下落的平均速度v = L/t。
2. 根据斯托克斯公式,计算粘滞系数η = 2grv0/9。
六、实验结果与分析1. 通过实验,测量得到小球下落的平均速度v和实验温度。
2. 根据斯托克斯公式,计算出粘滞系数η。
3. 对实验数据进行误差分析,讨论实验结果与理论值之间的差异。
七、实验结论1. 通过本次实验,我们掌握了测量液体粘滞系数的原理和方法。
2. 奥氏粘度计是一种常用的测量液体粘滞系数的仪器,具有操作简便、测量精度高等优点。
3. 在实验过程中,我们注意了实验操作规范,保证了实验结果的准确性。
八、实验心得1. 在实验过程中,我们要严格遵守实验操作规程,确保实验安全。
粘滞系数实验报告

粘滞系数实验报告
实验目的:测定不同液体的粘滞系数,了解粘滞现象对流体运动的影响。
实验原理:粘滞系数(η)是衡量流体内部粘滞阻力大小的物理量。
根据牛顿第二定律和斯托克斯定律,流体粘滞系数可通过粘滞实验进行测定。
斯托克斯定律适用于介质为稀薄、粘滞系数不随温度和流速改变的情况,即呈牛顿流体的情况。
实验器材:粘度计、容器、不同液体样品、计时器。
实验步骤:
1. 在容器中加入待测液体,注意避免气泡的产生。
2. 将粘度计的毛细管完全浸入液体中。
3. 用计时器记录流体从A点到B点的通过时间τ。
4. 测量不同液体的通过时间,每种液体至少测量5次,取平均值。
实验数据处理:
1. 根据斯托克斯定律,计算粘滞系数的表达式为:η =
(ρgτd^2)/(18L) ,其中ρ为液体的密度,g为重力加速度,d为粘度计的直径,L为毛细管的长度。
2. 将实验得到的数据代入公式中计算粘滞系数,并计算各组数据的平均值。
实验结果和讨论:
根据实验数据计算得到的粘滞系数可以与文献中给出的数值进
行对比,判断实验结果的准确性。
同时,可以比较不同液体的粘滞系数大小,分析各液体分子间相互作用力的差异对粘滞现象的影响。
实验结论:
通过粘滞实验测得不同液体的粘滞系数,比较了液体粘滞特性的差异,进一步了解流体运动中的粘滞现象。
粘滞现象研究实验报告

粘滞现象研究实验报告标题:粘滞现象研究实验报告摘要:本实验旨在研究液体中的粘滞现象。
通过测量不同液体在不同温度下的流动性,观察和比较其粘滞性,从而对液体的流动和粘滞行为有更深入的理解。
实验结果表明,粘滞现象与液体的性质、温度和剪应力有关。
引言:粘滞现象是指流体在流动过程中受到内部摩擦力的阻碍而表现出的一种性质。
它与流体的黏度密切相关,因此研究液体的粘滞现象对于我们理解流体力学和实际应用具有重要意义。
本实验通过测量不同液体在不同温度下的流动性,探究粘滞现象的影响因素。
实验方法:1. 准备实验装置:将粘度计插入待测液体中,保证液体完全覆盖粘度计的暗区;将温度计插入液体中,确保准确测量温度;设置数据记录仪,以记录液体的流速。
2. 实验设计:选择多种液体(如水和甘油)作为实验对象,并将它们分别在不同温度下进行测试,以观察粘滞现象的变化。
3. 测量:将粘度计悬置于液体中,并通过测量不同的温度和剪应力下的流速来测定液体的粘度。
温度的选择范围应包括液体的冰点和沸点,剪应力的选择范围应保证液体的粘滞现象能够显现。
4. 数据分析:根据测量结果绘制流速随温度和剪应力变化的曲线,并计算出液体的粘度值。
通过比较不同液体在不同温度和剪应力下的流动性能,分析粘滞现象的差异和规律。
结果与讨论:实验结果显示,不同液体在不同温度和剪应力下的流速存在明显差异。
在相同温度下,黏度较高的液体流速较慢,粘滞性较大。
在相同剪应力下,降低温度会显著增加液体的粘滞性,导致流速减小。
而增加剪应力则会减小液体的粘滞性,促进流速增加。
实验结果还表明,液体的粘滞现象与其性质密切相关。
相同温度下,不同液体的流速和粘滞性都会有明显差异。
例如,水比甘油的粘度小,流动性较好;而甘油则表现出较大的粘滞性,流速较慢。
此外,相同液体在不同温度下也会呈现出不同的粘滞性,表明温度对液体的黏度有显著影响。
结论:通过本实验的研究,我们得出以下结论:1. 液体的粘滞现象与其性质、温度和剪应力有关,黏度较大的液体流速较慢,而降低温度和增加剪应力会增加液体的粘滞性。
粘滞系数实验报告

一、实验目的1. 理解粘滞系数的概念及其在流体力学中的应用。
2. 掌握用落球法测定液体粘滞系数的原理和方法。
3. 培养实验操作技能和数据处理能力。
二、实验原理粘滞系数(η)是表征流体粘滞性的物理量,其数值越大,表示流体粘滞性越强。
落球法是一种常用的测量液体粘滞系数的方法,其原理如下:当一球形物体在液体中匀速下落时,物体所受的粘滞阻力F与物体运动速度v、半径r以及液体的粘滞系数η有关,具体关系为:F = 6πηrv其中,ρ为液体的密度。
当物体在液体中匀速下落时,物体所受的粘滞阻力与重力mg、浮力f相等,即:F = mg - f将上述两个等式联立,得到:6πηrv = mg - f由阿基米德原理,物体所受浮力f为:f = ρvg其中,v为物体体积。
将f代入上述等式,得到:6πηrv = mg - ρvg整理得:η = (mg - ρvg) / (6πrv)根据斯托克斯公式,当r >> d(d为特征长度,如毛细管直径、球直径等)时,物体所受的粘滞阻力F与物体运动速度v、半径r及液体粘滞系数η的关系为:F = 6πηrv将斯托克斯公式代入上述等式,得到:η = (mg - ρvg) / (6πrv) = (mg - ρvg) / (6πr^2)整理得:η = (mg - ρvg) / (6πr^2)三、实验仪器与材料1. 落球法实验装置:包括玻璃圆筒、钢球、秒表、螺旋测微器等。
2. 液体:待测液体(如食用油、洗洁精、洗衣液等)。
3. 温度计:用于测量液体温度。
四、实验步骤1. 将待测液体倒入玻璃圆筒中,记录液体高度h。
2. 使用螺旋测微器测量钢球的直径d,并计算钢球的半径r = d/2。
3. 将钢球轻轻放入液体中,开始计时,记录钢球通过液体高度h所需时间t。
4. 重复上述步骤多次,记录不同高度下的时间t。
5. 计算钢球通过液体高度h的平均速度v = h/t。
6. 根据斯托克斯公式,计算液体的粘滞系数η。
粘滞系数的测定实验报告

粘滞系数的测定实验报告一、引言粘滞系数是流体力学中的一个重要参数,它描述了流体流动时的黏性特性。
粘滞系数的测定对于研究流体的性质以及流体力学现象有着重要的意义。
本实验旨在通过测定不同流体的流动速度和施加的力的关系,来确定流体的粘滞系数。
二、实验装置与原理实验所需的装置主要包括流体槽、流体注射器、流速计和测力计。
实验中使用的流体为水和甘油。
流体槽中设置了流速计,可以测量流体的流动速度。
测力计用于测量施加在流体上的力。
根据流体力学的基本原理,流体的粘滞系数可以通过测量流体流动速度和施加的力来确定。
当流体在流体槽中流动时,流速计会测出流体的流动速度,测力计会测量施加在流体上的力。
通过改变流体注射器的开度,可以调节流体的流动速度。
三、实验步骤及数据处理1. 准备工作:将流体槽放在水平台面上,调整好流速计的位置,并将测力计固定在流体槽的一侧;2. 清洗流体槽:用适量的水清洗流体槽,确保流体槽内干净无杂质;3. 测量流体粘滞系数:首先将流体槽注满水,调整流体注射器的开度,使得流动速度适中。
然后记录下流动速度和施加的力,记录多组数据以提高准确性。
重复以上步骤,将流体槽注满甘油,测量不同浓度的甘油的流动速度和施加的力;4. 数据处理:根据测得的流动速度和施加的力,计算出不同流体的粘滞系数。
使用适当的公式,根据测得的力和流动速度的关系,绘制出力与速度的曲线。
根据数据曲线的斜率,可以得到流体的粘滞系数。
四、结果与讨论经过实验测量和数据处理,得到了水和甘油的粘滞系数。
根据实验数据计算得到的粘滞系数与理论值相比较,结果表明实验测量值与理论值基本吻合。
这说明实验测定粘滞系数的方法是可靠有效的。
通过实验我们还可以观察到不同流体的粘滞性质不同。
水的粘滞系数较小,流动性较好,而甘油的粘滞系数较大,流动性较差。
这与我们平时的观察和经验是相符合的。
实验中可能存在的误差主要来自于仪器的精度以及实验环境的影响。
为了减小误差,我们在实验中尽量保持流体槽的水平,确保测量的准确性。
液体粘滞系数的测定实验报告

液体粘滞系数的测定实验报告一、实验目的1、了解用落球法测定液体粘滞系数的原理和方法。
2、掌握游标卡尺、千分尺、秒表等仪器的使用方法。
3、学会数据处理和误差分析。
二、实验原理当一个小球在液体中下落时,它会受到重力、浮力和粘滞阻力的作用。
在小球下落速度较小的情况下,粘滞阻力可以表示为:\(F = 6\pi\eta r v\)其中,\(\eta\)是液体的粘滞系数,\(r\)是小球的半径,\(v\)是小球下落的速度。
当小球下落时,重力减去浮力等于粘滞阻力,即:\(mg \rho Vg = 6\pi\eta r v\)其中,\(m\)是小球的质量,\(\rho\)是液体的密度,\(V\)是小球的体积。
当小球下落达到匀速时,加速度为零,速度不再变化,此时有:\(mg \rho Vg = 6\pi\eta r v_{0}\)其中,\(v_{0}\)是小球匀速下落的速度。
设小球的密度为\(\rho_{0}\),半径为\(r\),质量\(m =\frac{4}{3}\pi r^{3}\rho_{0}\),体积\(V =\frac{4}{3}\pi r^{3}\),则可得:\(\eta =\frac{\left( \rho_{0} \rho \right) g r^{2}}{18 v_{0}}\)通过测量小球匀速下落的速度\(v_{0}\)、小球的半径\(r\)、液体的密度\(\rho\)和小球的密度\(\rho_{0}\),就可以计算出液体的粘滞系数\(\eta\)。
三、实验仪器1、粘滞系数测定仪:包括玻璃圆筒、调平螺丝、激光光电门等。
2、小钢球:若干个。
3、游标卡尺:用于测量小球的直径。
4、千分尺:用于更精确地测量小球的直径。
5、电子秒表:用于测量小球下落的时间。
6、温度计:用于测量液体的温度。
7、镊子:用于夹取小球。
8、纯净水、酒精等不同液体。
四、实验步骤1、调节粘滞系数测定仪水平:通过调节底座的调平螺丝,使玻璃圆筒处于竖直状态,确保小球能够沿直线下落。
粘滞系数测定实验报告

一、实验目的1. 深入理解液体粘滞系数的概念及其测量方法。
2. 掌握落球法测定液体粘滞系数的原理和操作步骤。
3. 通过实验,学会使用相关实验仪器,并提高数据处理和分析能力。
二、实验原理液体粘滞系数是表征液体粘滞性大小的物理量,通常用符号η表示。
在流体力学中,斯托克斯公式描述了球形物体在无限宽广的液体中以匀速运动时所受到的粘滞阻力与速度、半径、粘滞系数之间的关系。
具体公式如下:\[ F = 6\pi \eta rv \]其中,F为粘滞阻力,η为液体粘滞系数,r为球形物体的半径,v为物体的运动速度。
当质量为m、半径为r的球形物体在无限宽广的液体中竖直下落时,受到三个力的作用:重力mg、液体浮力f和粘滞阻力F。
其中,浮力f为:\[ f = 4\pi r^3 \rho g \]其中,ρ为液体的密度,g为重力加速度。
当小球达到收尾速度v0时,粘滞阻力与重力及浮力平衡,即:\[ mg - f = F \]代入粘滞阻力公式,得到:\[ mg - 4\pi r^3 \rho g = 6\pi \eta rv_0 \]整理可得:\[ \eta = \frac{mg}{6\pi rv_0} - \frac{2\rho g}{3} \]三、实验仪器1. 落球法粘滞系数测定仪2. 螺旋测微器3. 游标卡尺4. 秒表5. 温度计6. 液体样品四、实验步骤1. 将待测液体倒入粘滞系数测定仪的容器中,确保液体表面平整。
2. 使用游标卡尺测量球形物体的直径d,并计算半径r。
3. 将球形物体轻轻放入液体中,使其自由下落。
4. 使用秒表测量小球从开始下落到到达收尾速度所需的时间t。
5. 重复步骤3和4,至少测量三次,以减小误差。
6. 使用温度计测量液体的温度,以便根据温度修正粘滞系数。
7. 计算小球收尾速度v0和液体粘滞系数η。
五、实验结果及数据处理1. 记录实验数据,包括球形物体的半径r、液体温度t、下落时间t、重力加速度g等。
液体粘滞系数实验报告

一、实验目的1. 理解液体粘滞系数的概念及其在流体力学中的重要性。
2. 掌握落球法测定液体粘滞系数的原理和实验步骤。
3. 通过实验,加深对斯托克斯定律的理解,并验证其在实际应用中的准确性。
二、实验原理液体粘滞系数是表征液体粘滞性的一个物理量,其大小反映了液体流动时内部分子间摩擦力的大小。
本实验采用落球法测定液体粘滞系数,其原理基于斯托克斯定律。
斯托克斯定律指出,当一球形物体在无限宽广的液体中以速度v运动,且不产生涡流时,所受到的粘滞阻力F与速度v成正比,与球体半径r的平方成正比,与液体粘滞系数η成反比。
具体公式如下:F = 6πηrv其中,F为粘滞阻力,η为液体粘滞系数,r为球体半径,v为球体运动速度。
当球体在液体中下落时,受到三个力的作用:重力mg、浮力f和粘滞阻力F。
当球体达到终端速度v0时,这三个力达到平衡,即:mg = f + F将斯托克斯定律中的粘滞阻力代入上式,得到:mg = f + 6πηrv0由于浮力f = ρgV,其中ρ为液体密度,V为球体体积,将浮力表达式代入上式,得到:mg = ρgV + 6πηrv0化简得:v0 = (2ρgV / 9πηr)由此,通过测量球体的半径、液体密度和终端速度,可以计算出液体的粘滞系数。
三、实验仪器与材料1. 球形钢球(直径约5mm)2. 玻璃圆筒(内径约20mm,高度约30cm)3. 温度计4. 秒表5. 液体(水、甘油等)6. 精密天平四、实验步骤1. 准备实验装置,将玻璃圆筒放置在水平桌面上,确保圆筒竖直。
2. 在圆筒内加入待测液体,液面高度约为圆筒高度的一半。
3. 用天平测量球形钢球的质量,记录数据。
4. 用游标卡尺测量球形钢球的直径,记录数据。
5. 用温度计测量液体温度,记录数据。
6. 将球形钢球轻轻放入圆筒内,开始计时,记录球体达到终端速度时所用时间t。
7. 重复步骤6,至少测量3次,取平均值作为实验结果。
五、数据处理与结果分析1. 根据实验数据,计算球体体积V = (4/3)πr³。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.998
15
2.988
8
2.992
16
2.981
平均
2.991
计算σ=0.0055,因此所有小球均满足 3σ原则,均可以使用。
由此,计算密度:
20个球的质量:2.21g平均质量:0.111g
平均体积:14.003mm3
平均密度:7.93g/cm3
直径的不确定度:
密度的不确定度:
光电门间的距离,即小球匀速下落的距离:
另外需要注意的是因为实验中要使用蓖麻油,所以实验过程中尽量保持仪器的干净, 整洁。
课后思考题:
1. 因为待测液置于容器中,不能达到液体无限深广的条件;
2. 改变下边那个光电门的高度,多次测得几组时间于光电门距离,若速度相等,那么小球在上边那个光电门处已处于匀速运动状态;
3. 温度,待测液的纯度及是否平均分布,小球表面有无异物、是否沾水;
26.1
26.05
不确定度:
小球直径数据:
序号
直径(mm)
序号
直径(mm)
序号
直径(mm)
1
2.995
9
2.995
17
2.981
2
2.989
10
2.991
18
2.999
3
2.989
11
2.992
19
2.995
4
2.991
12
2.980
20
2.985
5
2.988
13
2.991
6
2.993
14
2.996
iv. 注意:要在测微螺杆快靠近被测物体时应停止使用旋钮,而改用微调旋钮,避免产生过大的压力,既可使测量结果精确,又能保护螺旋测微器;当小砧和测微螺杆并拢时,可动刻度的零点与固定刻度的零点不相重合,将出现零误差,应加以修正,即在最后测长度的读数上去掉零误差的数值。
5. 先假设一组检测数据只含有随机误差,对其进行计算处理得到标准偏差,按一定概率确定一个区间,认为凡超过这个区间的误差,就不属于随机误差而是粗大误差,含有该误差的数据应予以剔除。
光电门距离(液柱高度)(m)
0.0961
不确定度:
测试的10 组小球下落时间数据:
序号
1
2
3
4
5
时间(s)
1.9141
1.9224
1.9157
1.9231
1.9121
序号
6
7
8
9
10
时间(s)
1.9236
1.9321
1.9218
1.9192
1.9233
平均时间(s)
1.9207
时间的不确定度为:
量筒内径测量数据:
4. 1).游标卡尺:内测量用上边的卡尺,外测量用下边的卡尺
i. 根据副尺零线以左的主尺上的最近刻度读出整毫米数;
ii. 根据副尺零线以右与主尺上的刻度对准的刻线数乘上 0.02 读出小数;
iii. 将上面整数和小数两部分加起来,即为总尺寸。
iv. 注意:使用前,应先擦干净两卡脚测量面,合拢两卡脚,检查副尺 0 线与主尺0 线是否对齐;读数时,视线要垂直于尺面,否则测量值不准确若未对齐, 应根据原始误差修正测量读数
计算公式σ≈s(x)=
2).螺旋测微器:
i. 使用前应先检查零点
ii. 放入被测物,转动保护旋钮夹住被测物, 直到棘轮发出声音为止,拨动固定旋钮G 使测杆固定后读数
iii. 先读固定刻度,再读半刻度,若半刻度线已露出,记作 0.5mm;若半刻度线未露出,记作 0.0mm;再读可动刻度(注意估读)。记作 n×0.01mm;最终读数结果为固定刻度+半刻度+可动刻度
量筒内径D=65.10mm
不确定度:
液面高度测量数据:
液面高度H=277.5mm
不确定度:
最后,由公式:μ= ·
不确定度:
粘滞系数为6.00(0.09)P
此时雷诺系数为Re=0.024<0.1,不需要修正
实验总结:
总的来说,这次实验比较简单,也是比较成功的。
待测液温度为 20℃,经查表,其对应的粘滞系数为6(P)左右,与实验所得数据基本吻合。实验中,最为困难的是让小球下落时通过光电门,尽管在刚开始实验时,通过线锤调节了光电门的位置与角度,让激光通过垂线,但在进行实验时,小球并不能每次都通过两个光电门.另外,在投掷小球的时候,尽量使其竖直下落,这样有较大几率通过两组光电门。在测量小球内径时,可以将小球放在纸巾上,然后用螺旋测微器将其夹住,测得其直径,这样可以解决小球直径较小,不方便测量的问题。
粘滞系数实验报告
201611940158励耘化学 黄承宏
所用量具:
量具名称
分辨力
测量
钢卷尺(mm)
1
H、L
游标卡尺(mm)
0.02
D
螺旋测微器(mm)
0.Hale Waihona Puke 1d电子天平(g)
0.01
m
光电门(s)
0.0001
t
电子温度计(℃)
0.1
待测液温度
测得待测液温度数据:
T1
T2
平均值
待测液温度(℃)
26.0