2007年高考数学(理科)试卷及答案(宁夏卷)
宁夏海南理

k k 1
p p p 2( x2 ) ( x1 ) ( x3 ), 即: 2 FP2 FP 1 FP 3 . 2 2 2
7.已知 x 0 , y 0 , x,a,b,y 成等差数列, x,c,d,y 成等比数列,
则
( a b) 2 的最小值是( cd
) D. 4 20 正视图 20
)
开始
S 2 1 2 2 2 50 2
2
1 50 50 2550. 2
k 1
S 0
k ≤ 50?
6.已知抛物线 y 2 px ( p 0) 的焦点为 F ,
,y1 ),P2 ( x2,y2 ) , P3 ( x3,y3 ) 在抛物线上, 点P 1 ( x1
A. 0 B. 1 【答案】:D
C. 2
【分析】: a b x y , cd xy ,
20 侧视图
(a b) 2 ( x y ) 2 (2 xy ) 2 4. cd xy xy
10 10 20 俯视图
8.已知某个几何体的三视图如下,根据图中 标出 的尺寸(单位:cm),可得这个几 何体的体积是( )
【答案】:B 【分析】:如图,设正三棱锥 P ABE 的各棱长为 a , 则四棱锥 P ABCD 的各棱长也为 a ,
2 2 2 2 于是 h1 a ( a) a, 2 2 3 2 6 h2 a 2 ( a )2 a h, 2 3 2 h1 : h2 : h 3 : 2 : 2.
16.某校安排 5 个班到 4 个工厂进行社会实践,每个班去一个工厂,每个工厂至少安排 一个班,不同的安排方法共有 种.(用数字作答) 【答案】:240 【分析】:由题意可知有一个工厂安排 2 个班,另外三个工厂每厂一个班, 共有 C4 C5 A3 240. 种安排方法。
2007年高考数学试题宁夏、海南卷(理科)2

样本数据1x ,2x ,,n x 的标准差锥体体积公式(n s x x =++-13V Sh =其中x 为样本平均数 其中S 为底面面积、h 为高 柱体体积公式 球的表面积、体积公式V Sh =24πS R =,34π3V R =其中S 为底面面积,h 为高其中R 为球的半径第I 卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知命题:p x ∀∈R ,sin 1x ≤,则( ) A.:p x ⌝∃∈R ,sin 1x ≥ B.:p x ⌝∀∈R ,sin 1x ≥ C.:p x ⌝∃∈R ,sin 1x >D.:p x ⌝∀∈R ,sin 1x >【答案】:C【分析】:p ⌝是对p 的否定,故有:,x ∃∈R sin 1.x > 2.已知平面向量(11)(11)==-,,,a b ,则向量1322-=a b ( ) A.(21)--, B.(21)-,C.(10)-,D.(12)-,【答案】:D 【分析】:1322-=a b (12).-,3.函数πsin 23y x ⎛⎫=- ⎪⎝⎭在区间ππ2⎡⎤-⎢⎥⎣⎦,的简图是( )20,A.B.4.已知{}n a是等差数列,1010a=,其前10项和1070S=,则其公差d=()A.23-B.13-C.13D.23【答案】:D【分析】:1101011()105(10)70 4.2a aS a a+⨯==+=⇒=1012.93a ad-∴==5.如果执行右面的程序框图,那么输出的S=()A.2450 B.2500C.2550 D.2652【答案】:C【分析】:由程序知,15021222502502550.2S+=⨯+⨯++⨯=⨯⨯=6.已知抛物线22(0)y px p=>的焦点为F,点111222()()P x y P x y,,,,333()P x y,在抛物线上,且2132x x x=+,则有()A.123FP FP FP+=B.222123FP FP FP+=C.2132FP FP FP=+D.2213FP FP FP=·【答案】:C【分析】:由抛物线定义,2132()()(),222p p px x x+=+++即:2132FP FP FP=+.7.已知0x>,0y>,x a b y,,,成等差数列,x c d y,,,成等比数列,则2()a bcd+的最小值是()A.0B.1C.2D.4【答案】:D【分析】:,,a b x y cd xy+=+=22()()4.a b x ycd xy++∴=≥=8.已知某个几何体的三视图如下,根据图中正视图侧视图BA 标出 的尺寸(单位:cm ),可得这个几 何体的体积是( )A.34000cm 3B.38000cm 3C.32000cmD.34000cm 【答案】:B 【分析】:如图,18000202020.33V =⨯⨯⨯= 9.若cos 2π2sin 4αα=-⎛⎫- ⎪⎝⎭,则cos sinαα+的值为( ) A.B.12-C.12【答案】:C【分析】:22cos 2cos )πsin 42αααα==+=⎛⎫- ⎪⎝⎭1cos sin .2αα⇒+= 10.曲线12e x y =在点2(4e ),处的切线与坐标轴所围三角形的面积为( ) A.29e 2B.24eC.22eD.2e【答案】:D【分析】:11221(),2x x y e e ''⇒==曲线在点2(4e ),处的切线斜率为212e ,因此切线方程为221(4),2y e e x -=-则切线与坐标轴交点为2(2,0),(0,),A B e -所以: 221||2.2AOB S e e ∆=-⨯=123s s s ,,分别表示甲、乙、丙三名运动员这次测试成绩的标准差,则有( )AEA.312s s s >> B.213s s s >> C.123s s s >> D.231s s s >>【答案】:B 【分析】:(78910)58.5,20x +++⨯==甲2222215[(78.5)(88.5)(98.5)(108.5)]1.25,20s ⨯-+-+-+-== (710)6(89)48.5,20x +⨯++⨯==乙2222226[(78.5)(108.5)]4[(88.5)(98.5)]1.45,20s ⨯-+-+⨯-+-== (710)4(89)68.5,20x +⨯++⨯==丙2222234[(78.5)(108.5)]6[(88.5)(98.5)]1.05,20s ⨯-+-+⨯-+-== 22213213.s s s s s s >>>>2由得12.一个四棱锥和一个三棱锥恰好可以拼接成一个三棱柱.这个四棱锥的底面为正方形,且底面边长与各侧棱长相等,这个三棱锥的底面边长与各侧棱长也都相等.设四棱锥、三棱锥、三棱柱的高分别为1h ,2h ,h ,则12::h h h =()2:22:2:【答案】:B 【分析】:如图,设正三棱锥P ABE -的各棱长为a ,则四棱锥P ABCD -的各棱长也为a ,于是1,2ha ==2,h h === 12::2:2.h h h ∴=第II 卷C B FA O y x本卷包括必考题和选考题两部分,第13题-第21题为必考题,每个试题考生都必须做答,第22题为选考题,考生根据要求做答. 二、填空题:本大题共4小题,每小题5分.13.已知双曲线的顶点到渐近线的距离为2,焦点到渐近线的距离为6,则该双曲线的离心率为 .【答案】:3 【分析】:如图,过双曲线的顶点A 、焦点F 分别 向其渐近线作垂线,垂足分别为B 、C ,则:||||63.||||2OF FC c OA AB a =⇒== 14.设函数(1)()()x x a f x x++=为奇函数,则a = .【答案】:-1 【分析】:(1)(1)02(1)00, 1.f f a a +-=⇒++=∴=-15.i 是虚数单位,51034ii-+=+ .(用a bi +的形式表示,a b ∈R ,) 【答案】:12i + 【分析】:510(510)(34)255012.34(34)(34)25i i i ii i i i -+-+-+===+++-16.某校安排5个班到4个工厂进行社会实践,每个班去一个工厂,每个工厂至少安排一个班,不同的安排方法共有 种.(用数字作答) 【答案】:240 【分析】:由题意可知有一个工厂安排2个班,另外三个工厂每厂一个班,共有123453240.C C A ⋅⋅=种安排方法。
2007年普通高等学校招生考试宁夏海南理

2007年普通高等学校招生全国统一考试理科数学(宁夏、 海南卷)本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分.第II 卷第22题为选考题,其他题为必考题.考生作答时,将答案答在答题卡上,在本试卷上答题无效.考试结束后,将本试卷和答题卡一并交回. 注意事项: 1.答题前,考生先将自己的姓名、准考证号填写在答题卡上,认真核对条形码上的准考证号、姓名,并将条形码粘贴在指定位置上.3.请按照题号在各题的答题区域(黑色线框)内作答,超出答题区域书写的答案无效. 4.保持卡面清洁,不折叠,不破损.5.作选考题时,考生按照题目要求作答,并用2B 铅笔在答题卡上把所选题目对应的标号涂黑.参考公式: 样本数据1x ,2x ,,n x 的标准差锥体体积公式其中x 为样本平均数 其中S 为底面面积、h 为高 柱体体积公式 球的表面积、体积公式V Sh =24πS R =,34π3V R =其中S 为底面面积,h 为高其中R 为球的半径第I 卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知命题:p x ∀∈R ,sin 1x ≤,则( ) A.:p x ⌝∃∈R ,sin 1x ≥ B.:p x ⌝∀∈R ,sin 1x ≥ C.:p x ⌝∃∈R ,sin 1x >D.:p x ⌝∀∈R ,sin 1x >【答案】:C【分析】:p ⌝是对p 的否定,故有:,x ∃∈R sin 1.x >2.已知平面向量(11)(11)==-,,,a b ,则向量1322-=a b ( ) A.(21)--,B.(21)-,C.(10)-,D.(12)-, 【答案】:D【分析】:1322-=a b (12).-,3.函数πsin 23y x ⎛⎫=- ⎪⎝⎭在区间ππ2⎡⎤-⎢⎥⎣⎦,的简图是( )0,4.已知10A.23-D.23110)a +=5S =A.C.6F ,点1(P 3)y 在抛物线上, 且2132x x x =+, 则有( ) A.123FP FP FP +=B.222123FP FP FP +=C.2132FP FP FP =+ D.2213FP FP FP =·【答案】:C【分析】:由抛物线定义,2132()()(),222p p px x x +=+++即:2132FP FP FP =+.BA7.已知0x>,0y>,x a b y,,,成等差数列,x c d y,,,成等比数列,则2()a bcd+的最小值是()A.0B.1C.2D.4【答案】:D【分析】:,,a b x y cd xy+=+=8.已知某个几何体的三视图如下,根据图中标出的尺寸(单位:cm),可得这个几何体的体积是()A.34000cm3B.38000cm3C.32000cmD.34000cm【答案】:B【分析】:如图,18000202020.33V=⨯⨯⨯=9.若cos2πsin4αα=⎛⎫-⎪⎝⎭,则cos sinαα+的值为()A.B.12-C.12【答案】:C【分析】:22cos2cos)π2sin4αααα==+=-⎛⎫-⎪⎝⎭10.曲线12e xy=在点2(4e),处的切线与坐标轴所围三角形的面积为()A.29e2B.24eC.22eD.2e【答案】:D【分析】:11221(),2x xy e e''⇒==曲线在点2(4e),处的切线斜率为212e,因此切线方程正视图侧视图为221(4),2y e e x -=-则切线与坐标轴交点为2(2,0),(0,),A B e -所以:123s s s ,,分别表示甲、乙、丙三名运动员这次测试成绩的标准差,则有( )A.312s s s >> B.213s s s >> C.123s s s >> D.231s s s >>【答案】:B 【分析】:(78910)58.5,20x +++⨯==甲12.一个四棱锥和一个三棱锥恰好可以拼接成一个三棱柱.这个四棱锥的底面为正方形,且底面边长与各侧棱长相等,这个三棱锥的底面边长与各侧棱长也都相等.设四棱锥、三棱锥、三棱柱的高分别为1h ,2h ,h ,则12::h h h =( )2:222【答案】:B【分析】:如图,设正三棱锥P ABE -的各棱长为a ,则四棱锥P ABCD -的各棱长也为a , 于是1,2h a == 第II 卷本卷包括必考题和选考题两部分,第13题-第21必考题,每个试题考生都必须做答,第22生根据要求做答.二、填空题:本大题共4小题,每小题5分.13.已知双曲线的顶点到渐近线的距离为2的距离为6,则该双曲线的离心率为 . 【答案】:3【分析】:如图,过双曲线的顶点A 、焦点F 分别向其渐近线作垂线,垂足分别为B 、C ,则:||||63.||||2OF FC c OA AB a =⇒== 14.设函数(1)()()x x a f x x++=为奇函数,则a = .【答案】:-1【分析】:(1)(1)02(1)00, 1.f f a a +-=⇒++=∴=-15.i 是虚数单位,51034ii-+=+ .(用a bi +的形式表示,a b ∈R ,)【答案】:12i + 【分析】:510(510)(34)255012.34(34)(34)25i i i ii i i i -+-+-+===+++-16.某校安排5个班到4个工厂进行社会实践,每个班去一个工厂,每个工厂至少安排一个班,不同的安排方法共有 种.(用数字作答) 【答案】:240【分析】:由题意可知有一个工厂安排2个班,另外三个工厂每厂一个班,共有123453240.C C A ⋅⋅=种安排方法。
高考试题——数学理(宁夏卷)

2007年普通高等学校招生全国统一考试理科数学(宁夏)本试卷分第I卷(选择题)和第II卷(非选择题)两部分.第II卷第22题为选考题,其他题为必考题.考生作答时,将答案答在答题卡上,在本试卷上答题无效.考试结束后,将本试卷和答题卡一并交回.注意事项:1.答题前,考生先将自己的姓名、准考证号填写在答题卡上,认真核对条形码上的准考证号、姓名,并将条形码粘贴在指定位置上.2.选择题答案使用2B铅笔填涂,如需改动,用橡皮擦干净后,再选涂其他答案标号;非选择题答案使用0.5毫M的黑色中性(签字)笔或炭素笔书写,字体工整,笔迹清楚.3.请按照题号在各题的答题区域(黑色线框)内作答,超出答题区域书写的答案无效.4.保持卡面清洁,不折叠,不破损.5.作选考题时,考生按照题目要求作答,并用2B铅笔在答题卡上把所选题目对应的标号涂黑.参考公式:样本数据,,,的标准差锥体体积公式其中为样本平均数其中为底面面积、为高柱体体积公式球的表面积、体积公式,其中为底面面积,为高其中为球的半径第I卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知命题,,则()A.,B.,C., D.,2.已知平面向量,则向量( )A. B.C.D.3.函数在区间的简图是( )4.已知是等差数列,,其前10项和其公差( )A.B.C.D.5.如果执行右面的程序框图,那么输出的A.2450 B.2500 C.2550 D.2652 6.已知抛物线的焦点为,点,且, 则有( )A.B.AB. C.. 输出C. D.7.已知,,成等差数列,成等比数列,则的最小值是( ) A. B. C. D.8.已知某个几何体的三视图如下,根据图中标出的尺寸(单位:cm ),可得这个几何体的体积是( ) A.B. C. D.9.若,则的值为( ) A.B.C. D.10.曲线在点处的切线与坐标轴所围三角形的面积为( ) A.B.C.D.分别表示甲、乙、丙三名运动员这次测试成绩的标准差,则有( )A.B.正视图侧视图俯视图C.D.12.一个四棱锥和一个三棱锥恰好可以拼接成一个三棱柱,这个四棱锥的底面为正方形,且底面边长与各侧棱长相等,这个三棱锥的底面边长与各侧棱长也都相等.设四棱锥、三棱锥、三棱柱的高分别为,,,则()A.B.C.D.第II卷本卷包括必考题和选考题两部分,第13题-第21题为必考题,每个试卷考生都必须做答,第22题为选考题,考生根据要求做答.二、填空题:本大题共4小题,每小题5分.13.已知双曲线的顶点到渐近线的距离为2,焦点到渐近线的距离为6,则该双曲线的离心率为.14.设函数为奇函数,则.15.是虚数单位,.(用的形式表示,)16.某校安排5个班到4个工厂进行社会实践,每个班去一个工厂,每个工厂至少安排一个班,不同的安排方法共有种.(用数字作答)三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(本小题满分12分)如图,测量河对岸的塔高时,可以选与塔底在同一水平面内的两个测点与.现测得,并在点测得塔顶的仰角为,求塔高.18.(本小题满分12分)如图,在三棱锥中,侧面与侧面均为等边三角形,,为中点.(Ⅰ)证明:平面;(Ⅱ)求二面角的余弦值.19.(本小题满分12分)在平面直角坐标系中,经过点且斜率为的直线与椭圆有两个不同的交点和.(I )求的取值范围; (II )设椭圆与轴正半轴、轴正半轴的交点分别为,是否存在常数,使得向量与共线?如果存在,求值;如果不存在,请说明理由.20.(本小题满分12分)如图,面积为的正方形中有一个不规则的图形,可按下面方法估计的面积:在正方形中随机投掷个点,若个点中有个点落入中,则的面积的估计值为,假设正方形的边长为2,的面积为1,并向正方形中随机投掷个点,以表示落入中的点的数目.(I )求的均值; (II )求用以上方法估计的面积时,的面积的估计值与实际值之差在区间内的概率.附表:21.(本小题满分12分)设函数 (I )若当时,取得极值,求的值,并讨论的单调性;(II )若存在极值,求的取值范围,并证明所有极值之和大于.22.请考生在三题中任选一题作答,如果多做,则按所做的第一题记分.作答时,用2B 铅笔在答题卡上把所选题目对应的标号涂黑.22.A(本小题满分10分)选修4-1:几何证明选讲如图,已知是的切线,为切点,是的割线,与交于两点,圆心在的内部,点是的中点.(Ⅰ)证明四点共圆;(Ⅱ)求的大小.22.B(本小题满分10分)选修4-4:坐标系与参数方程和的极坐标方程分别为.(Ⅰ)把和的极坐标方程化为直角坐标方程;(Ⅱ)求经过,交点的直线的直角坐标方程.22.C(本小题满分10分)选修;不等式选讲设函数.(I )解不等式; (II )求函数的最小值.2007年普通高等学校招生全国统一考试理科数学试卷参考答案(宁夏)一、选择题1.C2.D3.A4.D5.C6.C7.D8.B9.C10.D11.B12.B二、填空题13.14.15.16.240三、解答题17.解:在中,.由正弦定理得.所以.在中,.18.证明:(Ⅰ)由题设,连结,为等腰直角三角形,所以,且,又为等腰三角形,故,且,从而.所以为直角三角形,.又.所以平面.(Ⅱ)解法一:取中点,连结,由(Ⅰ)知,得.为二面角的平面角.由得平面.所以,又,故.所以二面角的余弦值为.解法二: 以为坐标原点,射线分别为轴、轴的正半轴,建立如图的空间直角坐标系.设,则.的中点,..故等于二面角的平面角.,所以二面角的余弦值为.19.解:(Ⅰ)由已知条件,直线的方程为,代入椭圆方程得.整理得 ①直线与椭圆有两个不同的交点和等价于,解得或.即的取值范围为.(Ⅱ)设,则,由方程①,.②又.③而.所以与共线等价于,将②③代入上式,解得.由(Ⅰ)知或,故没有符合题意的常数.20.解:每个点落入中的概率均为.依题意知.(Ⅰ).(Ⅱ)依题意所求概率为,.21.解:(Ⅰ),依题意有,故.从而.的定义域为,当时,;当时,;当时,.从而,分别在区间单调增加,在区间单调减少.(Ⅱ)的定义域为,.方程的判别式.(ⅰ)若,即,在的定义域内,故的极值.(ⅱ)若,则或.若,,.当时,,当时,,所以无极值.若,,,也无极值.(ⅲ)若,即或,则有两个不同的实根,.当时,,从而有的定义域内没有零点,故无极值.当时,,,在的定义域内有两个不同的零点,由根值判别方法知在取得极值.综上,存在极值时,的取值范围为.的极值之和为. 22.A(Ⅰ)证明:连结. 因为与相切于点,所以.因为是的弦的中点,所以.于是.由圆心在的内部,可知四边形的对角互补,所以四点共圆.(Ⅱ)解:由(Ⅰ)得四点共圆,所以.由(Ⅰ)得. 由圆心在的内部,可知. 所以. 22.B解:以极点为原点,极轴为轴正半轴,建立平面直角坐标系,两坐标系中取相同的长度单位. (Ⅰ),,由得.所以. 即为的直角坐标方程. 同理为的直角坐标方程.(Ⅱ)由解得.即,交于点和.过交点的直线的直角坐标方程为.22.C解: (Ⅰ)令,则...............3分作出函数的图象,它与直线的交点为和.所以的解集为.(Ⅱ)由函数的图像可知,当时,取得最小值.。
2007年全国各地高考数学试卷及答案(37套)word--完整版

2007年普通高等学校招生全国统一考试数学卷(四川.文)含答案
2007年普通高等学校招生全国统一考试数学卷(天津.理)含答案
2007年普通高等学校招生全国统一考试数学卷(天津.文)含答案
2007年普通高等学校招生全国统一考试数学卷(浙江.理)含答案
2007年普通高等学校招生全国统一考试数学卷(湖南.理)含答案
2007年普通高等学校招生全国统一考试数学卷(湖南.文)含答案
2007年普通高等学校招生全国统一考试数学卷(江西.理)含答案
2007年普通高等学校招生全国统一考试数学卷(江西.文)含答案
2007年普通高等学校招生全国统一考试数学卷(山东.理)含答案
2007年全国各地高考数学试卷及答案(37套)--完整版
2007年普通高等学校招生全国统一考试数学卷(全国卷Ⅰ.理)含答案
2007年普通高等学校招生全国统一考试数学卷(全国卷Ⅰ.文)含答案
2007年普通高等学校招生全国统一考试数学卷(全国卷Ⅱ.理)含答案
2007年普通高等学校招生全国统一考试数学卷(全国卷Ⅱ.文)含答案
宁夏和海南都是新课标教材,使用的是同一套数学题。
பைடு நூலகம் 四川省蓬安中学校 张万建 整理 zwjozwj@
2007年普通高等学校招生全国统一考试数学卷 (宁夏.海南.理) 含答案
2007年普通高等学校招生全国统一考试数学卷 (宁夏.海南.文) 含答案
2007年普通高等学校招生全国统一考试数学卷(江苏卷不分文理)含答案
注:使用全国卷Ⅰ的省份:河北 河南 山西 广西 ;
使用全国卷Ⅱ的省份:吉林 黑龙江 云南 贵州 新疆 青海 甘肃 内蒙 西藏
2007年普通高等学校招生全国统一考试(宁夏卷)数学(理科)参考答案

2007年普通高等学校招生全国统一考试(宁夏卷)数 学(理科)参考答案一、选择题1.C 2.D 3.A 4.D 5.C 6.C 7.D 8.B 9.C 10.D 11.B 12.B二、填空题13.3 14.1- 15.12i + 16.240三、解答题17.解:在BCD △中,πCBD αβ∠=-- 由正弦定理得sin sin BC CDBDC CBD=∠∠ 所以sin sin sin sin()CD BDC s BC CBD βαβ∠⋅==∠+在ABC Rt △中,tan sin tan sin()s AB BC ACB θβαβ⋅=∠=+18.证明:(Ⅰ)由题设AB AC SB SC ====SA ,连结OA ,ABC △为等腰直角三角形,所以2OA OB OC SA ===,且AO BC ⊥,又SBC △为等腰三角形,故SO BC ⊥,且2SO SA =,从而222OA SO SA +- 所以SOA △为直角三角形,SO AO ⊥ 又AOBO O =.所以SO ⊥平面ABC (Ⅱ) 解法一:取SC 中点M ,连结AM OM ,,由(Ⅰ)知SO OC SA AC ==,,得O M S C A M SC ⊥⊥, OMA ∠∴为二面角A SC B --的平面角.由AO BC AO SO SO BC O ⊥⊥=,,得AO ⊥平面SBC所以AO OM ⊥,又2AM SA =,故sin AO AMO AM ∠===所以二面角A SC B --的余弦值为3解法二:以O 为坐标原点,射线OB OA ,分别为x 轴、y 轴的正半轴,建立如图的空间直角坐标系O xyz -.设(100)B ,,,则(100)(010)(001)C A S -,,,,,,,,SC 的中点11022M ⎛⎫- ⎪⎝⎭,,, 111101(101)2222MO MA SC ⎛⎫⎛⎫=-=-=-- ⎪ ⎪⎝⎭⎝⎭,,,,,,,,00MO SC MA SC ==,∴··故,MO SC MA SC MO MA ⊥⊥>,,<等于二面角A SCB --的平面角.3cos 3MO MA MO MA MO MA<>==,··,所以二面角A SC B --的余弦值为319.解:(Ⅰ)由已知条件,直线l 的方程为y kx =+代入椭圆方程得22(12x kx +=整理得 221102k x ⎛⎫+++=⎪⎝⎭① 直线l 与椭圆有两个不同的交点P 和Q 等价于2221844202k k k ⎛⎫∆=-+=-> ⎪⎝⎭,解得k <k >k 的取值范围为2⎛⎛⎫--+ ⎪ ⎪⎝⎭⎝⎭,,∞∞ (Ⅱ)设1122()()P x y Q x y ,,,,则1212()OP OQ x x y y +=++,,由方程①,12212x x k+=-+ ②又 1212()y y k x x +=++ ③而(01)(A B AB =,,所以OP OQ +与AB 共线等价于1212)x x y y +=+,将②③代入上式,解得k =由(Ⅰ)知k <k >,故没有符合题意的常数k 20.解:每个点落入M 中的概率均为14p =依题意知1~100004X B ⎛⎫ ⎪⎝⎭, (Ⅰ)11000025004EX =⨯= (Ⅱ)依题意所求概率为0.03410.0310000X P ⎛⎫-<⨯-< ⎪⎝⎭,0.03410.03(24252575)10000X P P X ⎛⎫-<⨯-<=<< ⎪⎝⎭2574100001000024260.250.75tt t t C-==⨯⨯∑ 25742425100001000011000010000242600.250.750.250.75ttttt t t CC --===⨯⨯-⨯⨯∑∑ =0.9570-0.0423 =0.914721.解:(Ⅰ)1()2f x x x a'=++, 依题意有(1)0f '-=,故32a =从而2231(21)(1)()3322x x x x f x x x ++++'==++ ()f x 的定义域为32⎛⎫-+ ⎪⎝⎭,∞,当312x -<<-时,()0f x '>; 当112x -<<-时,()0f x '<; 当12x >-时,()0f x '> 从而,()f x 分别在区间31122⎛⎫⎛⎫---+ ⎪ ⎪⎝⎭⎝⎭,,,∞单调增加,在区间112⎛⎫-- ⎪⎝⎭,单调减少(Ⅱ)()f x 的定义域为()a -+,∞,2221()x ax f x x a++'=+方程22210x ax ++=的判别式248a ∆=- (ⅰ)若0∆<,即a <<,在()f x 的定义域内()0f x '>,故()f x 的极值(ⅱ)若0∆=,则a -a =若a =()x ∈+∞,2()f x '=当2x =-时,()0f x '=,当222x ⎛⎛⎫∈--+ ⎪ ⎪⎝⎭⎝⎭,∞时,()0f x '>,所以()f x 无极值若a =)x ∈+∞,2()0f x '=>,()f x 也无极值(ⅲ)若0∆>,即a>或a <,则22210xax ++=有两个不同的实根1x=,2x =当a <12x a x a <-<-,,从而()f x '有()f x 的定义域内没有零点,故()f x 无极值当a >1x a >-,2x a >-,()f x '在()f x 的定义域内有两个不同的零点,由根值判别方法知()f x 在12x x x x ==,取得极值.综上,()f x 存在极值时,a 的取值范围为)+∞ ()f x 的极值之和为22121122()()ln()ln()f x f x x a x x a x +=+++++21ln 11ln 2ln 22ea =+->-=22. A 解:(Ⅰ)证明:连结OPOM , 因为AP 与⊙O 相切于点P ,所以OP AP ⊥因为M 是⊙O 的弦BC 的中点,所以OM BC ⊥A于是180OPA OMA ∠+∠=°,由圆心O 在PAC ∠的内部,可知四边形APOM 的对角互补,所以A P O M ,,,四点共圆(Ⅱ)解:由(Ⅰ)得A P O M ,,,四点共圆,所以OAM OPM ∠=∠. 由(Ⅰ)得OP AP ⊥由圆心O 在PAC ∠的内部,可知90OPM APM ∠+∠=° 所以90OAM APM ∠+∠=° B 解:解:以极点为原点,极轴为x 轴正半轴,建立平面直角坐标系,两坐标系中取相同的长度单位。
2007年普通高等学校招生全国统一考试(宁夏、海南卷)理科数学

2007年普通高等学校招生全国统一考试(宁夏、海南卷)理科
数学
佚名
【期刊名称】《上海中学数学》
【年(卷),期】2007(000)007
【摘要】无
【总页数】6页(P32-33,22,94-96)
【正文语种】中文
【相关文献】
1.2009年普通高等学校招生全国统一考试宁夏卷(理科数学) [J],
2.2008年普通高等学校招生全国统一考试(宁夏、海南卷)理科数学 [J], 田彦武
3.2007年普通高等学校招生全国统一考试 (四川卷)理科数学 [J], 毛仕理
4.2007年普通高等学校招生全国统一考试 (江西卷)理科数学 [J], 龚晓洛
5.2007年普通高等学校招生全国统一考试 (宁夏、海南卷)理科数学 [J], 田彦武因版权原因,仅展示原文概要,查看原文内容请购买。
宁夏海南理科2007年普通高等学校招生全国统一考试(高考数学试卷)

2007年普通高等学校招生全国统一考试理科数学(宁夏、 海南卷)本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分.第II 卷第22题为选考题,其他题为必考题.考生作答时,将答案答在答题卡上,在本试卷上答题无效.考试结束后,将本试卷和答题卡一并交回. 注意事项: 1.答题前,考生先将自己的姓名、准考证号填写在答题卡上,认真核对条形码上的准考证号、姓名,并将条形码粘贴在指定位置上.2.选择题答案使用2B 铅笔填涂,如需改动,用橡皮擦干净后,再选涂其他答案标号;非选择题答案使用0.5毫米的黑色中性(签字)笔或炭素笔书写,字体工整,笔迹清楚. 3.请按照题号在各题的答题区域(黑色线框)内作答,超出答题区域书写的答案无效. 4.保持卡面清洁,不折叠,不破损.5.作选考题时,考生按照题目要求作答,并用2B 铅笔在答题卡上把所选题目对应的标号涂黑.参考公式:样本数据1x ,2x ,L ,n x 的标准差锥体体积公式s =13V Sh =其中x 为样本平均数 其中S 为底面面积、h 为高 柱体体积公式 球的表面积、体积公式V Sh =24πS R =,34π3V R =其中S 为底面面积,h 为高其中R 为球的半径第I 卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知命题:p x ∀∈R ,sin 1x ≤,则( ) A.:p x ⌝∃∈R ,sin 1x ≥ B.:p x ⌝∀∈R ,sin 1x ≥ C.:p x ⌝∃∈R ,sin 1x >D.:p x ⌝∀∈R ,sin 1x >【答案】:C【分析】:p ⌝是对p 的否定,故有:,x ∃∈R sin 1.x >2.已知平面向量(11)(11)==-,,,a b ,则向量1322-=a b ( ) A.(21)--, B.(21)-,C.(10)-,D.(12)-,【答案】:D 【分析】:1322-=a b (12).-,3.函数πsin 23y x ⎛⎫=-⎪⎝⎭在区间ππ2⎡⎤-⎢⎥⎣⎦,的简图是( )【答案】:A【分析】:π()sin 23f ππ⎛⎫=-= ⎪⎝⎭排除B、D, π()sin 20,663f ππ⎛⎫=⨯-= ⎪⎝⎭排除C。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2007年普通高等学校招生全国统一考试(宁夏卷)数学(理科)试卷本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分。
第II 卷第22题为选考题,其他题为必考题。
考生作答时,将答案答在答题卡上,在本试卷上答题无效。
考试结束后,将本试卷和答题卡一并交回。
注意事项:1.答题前,考生先将自己的姓名、准考证号填写在答题卡上,认真核对条形码上的准考证号、姓名,并将条形码粘贴在指定位置上。
2.选择题答案使用2B 铅笔填涂,如需改动,用橡皮擦干净后,再选涂其他答案标号;非选择题答案使用0.5毫米的黑色中性(签字)笔或炭素笔书写,字体工整,笔迹清楚。
3.请按照题号在各题的答题区域(黑色线框)内作答,超出答题区域书写的答案无效。
4.保持卡面清洁,不折叠,不破损。
5.作选考题时,考生按照题目要求作答,并用2B 铅笔在答题卡上把所选题目对应的标号涂黑。
参考公式: 样本数据1x ,2x ,,n x 的标准差锥体体积公式(n s x x =++-13V Sh =其中x 为样本平均数 其中S 为底面面积、h 为高 柱体体积公式球的表面积、体积公式V=Sh24πS R =,34π3V R =其中S 为底面面积,h 为高其中R 为球的半径第I 卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知命题:p x∀∈R,sin x≤1,则()A.:p x⌝∃∈R,sin x≥1B.:p x⌝∀∈R,sin x≥1C.:p x⌝∃∈R,sin x>1D.:p x⌝∀∈R,sin x>12.已知平面向量a=(1,1),b(1,-1),则向量1322-=a b()A.(-2,-1)B.(-2,1)C.(-1,0)D.(-1,2)3.函数πsin23y x⎛⎫=-⎪⎝⎭在区间ππ2⎡⎤-⎢⎥⎣⎦,的简图是()4.已知{a n }是等差数列,a 10=10,其前10项和S 10=70,则其公差d =( )A .23-B .13-C .13 D .235.如果执行右面的程序框图,那么输出的S=( )A .2450B .2500C .2550D .26526.已知抛物线22(0)y px p =>的焦点为F ,点P 1(x 1,y 1),P 2(x 2,y 2),P 3(x 3,y 3)在抛物线上,且2x 2=x 1+x 3, 则有( )A .123FP FP FP +=B .222123FP FP FP +=C .2132FP FP FP =+D .2213FP FP FP =·7.已知x >0,y >0,x ,a ,b ,y 成等差数列,x ,c ,d ,y 成等比数列,则2()a b cd+的最小值是( )A .0B .1C .2D .48.已知某个几何体的三视图如下,根据图中标出的尺寸(单位:cm ),可得这个几何体的体积是( )A .34000cm 3 B .38000cm 3C .2000cm 3D .4000cm 39.若cos 22π2sin 4αα=-⎛⎫- ⎪⎝⎭,则cos sin αα+的值为( ) A .7-B .12-C .12D 7 10.曲线12ex y =在点(4,e 2)处的切线与坐标轴所围三角形的面积为( )A .29e 2B .4e 2C .2e 2D .e 211.甲、乙、丙三名射箭运动员在某次测试中各射箭20次,三人的测试成绩如下表s 1,s 2,s 3分别表示甲、乙、丙三名运动员这次测试成绩的标准差,则有( )A .s 3>s 1>s 2B .s 2>s 1>s 3C .s 1>s 2>s 3D .s 2>s 3>s 112.一个四棱锥和一个三棱锥恰好可以拼接成一个三棱柱,这个四棱锥的底面为正方形,且底面边长与各侧棱长相等,这个三棱锥的底面边长与各侧棱长也都相等。
设四棱锥、三棱锥、三棱柱的高分别为1h ,2h ,h ,则12::h h h =( )AB2:2 C2:D2第II 卷本卷包括必考题和选考题两部分,第13题-第21题为必考题,每个试题考生都必须做答,第22题为选考题,考生根据要求做答。
二、填空题:本大题共4小题,每小题5分。
13.已知双曲线的顶点到渐近线的距离为2,焦点到渐近线的距离为6,则该双曲线的离心率为 。
14.设函数(1)()()x x a f x x++=为奇函数,则a = 。
15.i 是虚数单位,51034ii-+=+ 。
(用a +b i 的形式表示,a b ∈R ,)16.某校安排5个班到4个工厂进行社会实践,每个班去一个工厂,每个工厂至少安排一个班,不同的安排方法共有 种。
(用数字作答)三、解答题:解答应写出文字说明,证明过程或演算步骤。
17.(本小题满分12分)如图,测量河对岸的塔高AB 时,可以选与塔底B 在同一水平面内的两个测点C 与D 。
现测得BCD BDC αβ∠=∠=,,CD=s ,并在点C 测得塔顶A 的仰角为θ,求塔高AB 。
18.(本小题满分12分)如图,在三棱锥S —ABC 中,侧面SAB 与侧面SAC 均为等边三角形,90BAC ∠=°,O 为BC 中点。
(Ⅰ)证明:SO ⊥平面ABC ; (Ⅱ)求二面角A —SC —B 的余弦值。
19.(本小题满分12分)在平面直角坐标系x O y 中,经过点(02),且斜率为k 的直线l 与椭圆2212x y +=有两个不同的交点P 和Q 。
(Ⅰ)求k 的取值范围;(Ⅱ)设椭圆与x 轴正半轴、y 轴正半轴的交点分别为A 、B ,是否存在常数k ,使得向量OP OQ +与AB 共线?如果存在,求k 值;如果不存在,请说明理由。
20.(本小题满分12分)如图,面积为S 的正方形ABCD 中有一个不规则的图形M ,可按下面方法估计M 的面积:在正方形ABCD 中随机投掷n 个点,若n 个点中有m 个点落入M 中,则M 的面积的估计值为mS n,假设正方形ABCD 的边长为2,M 的面积为1,并向正方形ABCD 中随机投掷10000个点,以X 表示落入M 中的点的数目。
(Ⅰ)求X 的均值EX ;(Ⅱ)求用以上方法估计M 的面积时,M 的面积的估计值与实际值之差在区间(-0.03,,0.03)内的概率。
附表:1000010000()0.250.75ktt t t P k C-==⨯⨯∑K 2424 2425 2574 2575 P (k ) 0.04030.04230.95700.959021.(本小题满分12分)设函数2()ln()f x x a x =++(Ⅰ)若当x =-1时,f (x )取得极值,求a 的值,并讨论f (x )的单调性; (Ⅱ)若f (x )存在极值,求a 的取值范围,并证明所有极值之和大于eln 2。
22.请考生在A 、B 、C 三题中任选一题作答,如果多做,则按所做的第一题记分。
作答时,用2B 铅笔在答题卡上把所选题目对应的标号涂黑。
A (本小题满分10分)选修4-1:几何证明选讲如图,已知AP 是⊙O 的切线,P 为切点,AC 是⊙O 的割线,与⊙O 交于B 、C 两点,圆心O 在PAC ∠的内部,点M 是BC 的中点。
(Ⅰ)证明A ,P ,O ,M 四点共圆; (Ⅱ)求OAM APM ∠+∠的大小。
B (本小题满分10分)选修4-4:坐标系与参数方程⊙O 1和⊙O 2的极坐标方程分别为4cos 4sin ρθρθ==-,。
(Ⅰ)把⊙O 1和⊙O 2的极坐标方程化为直角坐标方程; (Ⅱ)求经过⊙O 1,⊙O 2交点的直线的直角坐标方程。
C (本小题满分10分)选修4-5;不等式选讲设函数()214f x x x =+--。
(Ⅰ)解不等式f (x )>2; (Ⅱ)求函数y = f (x )的最小值。
2007年普通高等学校招生全国统一考试(宁夏卷)数 学(理科)参考答案一、选择题1.C 2.D 3.A 4.D 5.C 6.C7.D 8.B 9.C 10.D 11.B 12.B二、填空题13.3 14.1- 15.12i + 16.240三、解答题17.解:在BCD △中,πCBD αβ∠=-- 由正弦定理得sin sin BC CDBDC CBD=∠∠ 所以sin sin sin sin()CD BDC s BC CBD βαβ∠⋅==∠+在ABC Rt △中,tan sin tan sin()s AB BC ACB θβαβ⋅=∠=+18.证明:(Ⅰ)由题设AB AC SB SC ====SA ,连结OA ,ABC △为等腰直角三角形,所以22OA OB OC SA ===,且AO BC ⊥,又SBC △为等腰三角形,故SO BC ⊥, 且22SO SA =,从而222OA SO SA +- 所以SOA △为直角三角形,SO AO ⊥又AO BO O =.所以SO ⊥平面ABC (Ⅱ) 解法一:取SC 中点M ,连结AM OM ,,由(Ⅰ)知SO OC SA AC ==,,得OM SC AM SC ⊥⊥,OMA ∠∴为二面角A SC B --的平面角.由AO BC AO SO SOBC O ⊥⊥=,,得AO ⊥平面SBC所以AO OM ⊥,又2AM SA =,故sin AO AMO AM ∠===所以二面角A SC B --解法二:以O 为坐标原点,射线OB OA ,分别为x 轴、y 轴的正半轴,建立如图的空间直角坐标系O xyz -.设(100)B ,,,则(100)(010)(001)C A S -,,,,,,,,SC 的中点11022M ⎛⎫- ⎪⎝⎭,,, 111101(101)2222MO MA SC ⎛⎫⎛⎫=-=-=-- ⎪ ⎪⎝⎭⎝⎭,,,,,,,,00MO SC MA SC ==,∴··故,MO SC MA SC MO MA ⊥⊥>,,<等于二面角A SCB --的平面角.3cos MO MA MO MA MO MA<>==,··,所以二面角A SC B -- 19.解:(Ⅰ)由已知条件,直线l 的方程为y kx =+代入椭圆方程得22(12x kx +=整理得 221102k x ⎛⎫+++=⎪⎝⎭① 直线l 与椭圆有两个不同的交点P 和Q 等价于2221844202k k k ⎛⎫∆=-+=-> ⎪⎝⎭,解得k <k >k 的取值范围为222⎛⎛⎫--+ ⎪ ⎪⎝⎭⎝⎭,,∞∞ (Ⅱ)设1122()()P x y Q x y ,,,,则1212()OP OQ x x y y +=++,,由方程①,12212x x k +=-+ ②又 1212()y y k x x +=++ ③而(01)(A B AB =-,,所以OP OQ +与AB 共线等价于1212)x x y y +=+,将②③代入上式,解得2k =由(Ⅰ)知k <k >,故没有符合题意的常数k 20.解:每个点落入M 中的概率均为14p =依题意知1~100004X B ⎛⎫ ⎪⎝⎭,(Ⅰ)11000025004EX =⨯= (Ⅱ)依题意所求概率为0.03410.0310000X P ⎛⎫-<⨯-< ⎪⎝⎭,0.03410.03(24252575)10000X P P X ⎛⎫-<⨯-<=<< ⎪⎝⎭2574100001000024260.250.75tt t t C-==⨯⨯∑2574242510000100001100001000024260.250.750.250.75tt ttt t t CC --===⨯⨯-⨯⨯∑∑ =0.9570-0.0423 =0.914721.解:(Ⅰ)1()2f x x x a'=++, 依题意有(1)0f '-=,故32a =从而2231(21)(1)()3322x x x x f x x x ++++'==++ ()f x 的定义域为32⎛⎫-+ ⎪⎝⎭,∞,当312x -<<-时,()0f x '>; 当112x -<<-时,()0f x '<; 当12x >-时,()0f x '> 从而,()f x 分别在区间31122⎛⎫⎛⎫---+ ⎪ ⎪⎝⎭⎝⎭,,,∞单调增加,在区间112⎛⎫-- ⎪⎝⎭,单调减少 (Ⅱ)()f x 的定义域为()a -+,∞,2221()x ax f x x a++'=+ 方程22210x ax ++=的判别式248a ∆=- (ⅰ)若0∆<,即a <,在()f x 的定义域内()0f x '>,故()f x 的极值(ⅱ)若0∆=,则a -a =若a =()x ∈+∞,2()f x '=当2x =-时,()0f x '=,当222x ⎛⎛⎫∈--+ ⎪ ⎪⎝⎭⎝⎭,∞时,()0f x '>,所以()f x 无极值若a =)x ∈+∞,2()0f x '=>,()f x 也无极值(ⅲ)若0∆>,即a>或a <,则22210xax ++=有两个不同的实根12a x -=,22a x -=当a <12x a x a <-<-,,从而()f x '有()f x 的定义域内没有零点,故()f x 无极值当a >1x a >-,2x a >-,()f x '在()f x 的定义域内有两个不同的零点,由根值判别方法知()f x 在12x x x x ==,取得极值.综上,()f x 存在极值时,a的取值范围为)+∞ ()f x 的极值之和为22121122()()ln()ln()f x f x x a x x a x +=+++++21ln 11ln 2ln 22ea =+->-=22. A 解:(Ⅰ)证明:连结OP OM , 因为AP 与⊙O 相切于点P ,所以OP AP ⊥因为M 是⊙O 的弦BC 的中点,所以OM BC ⊥于是180OPA OMA ∠+∠=°,由圆心O 在PAC ∠的内部,可知四边形APOM 的对角互补,所以AP O M ,,,四点共圆 (Ⅱ)解:由(Ⅰ)得AP O M ,,,四点共圆,所以OAM OPM ∠=∠. 由(Ⅰ)得OP AP ⊥由圆心O 在PAC ∠的内部,可知90OPM APM ∠+∠=° 所以90OAM APM ∠+∠=° B 解:解:以极点为原点,极轴为x 轴正半轴,建立平面直角坐标系,两坐标系中取相同的长度单位。