高中数学直线方程练习题

合集下载

高中数学-直线的方程(一)练习

高中数学-直线的方程(一)练习

高中数学-直线的方程(一)练习基础达标(水平一 )1.直线的方程为ax+by+c=0,当a>0,b<0,c>0时,此直线一定不过().A.第一象限B.第二象限C.第三象限D.第四象限【解析】由题意知斜率->0,纵截距->0,故直线过第一、二、三象限.【答案】D2.过点(-1,3)且垂直于直线x-2y+3=0的直线方程为().A.2x+y-1=0B.2x+y-5=0C.x+2y-5=0D.x-2y+7=0【解析】由题意可知,所求直线的斜率为-2,故所求直线的方程为y-3=-2(x+1),即2x+y-1=0.【答案】A3.若直线(2m2+m-3)x+(m2-m)y=4m-1在x轴上的截距为1,则实数m是().A.1B.2C.-D.2或-【解析】当2m2+m-3≠0时,在x轴上的截距为=1,即2m2-3m-2=0,∴m=2或m=-.【答案】D4.与直线y=2x+1垂直,且在y轴上的截距为4的直线的斜截式方程是().A.y=x+4B.y=2x+4C.y=-2x+4D.y=-x+4【解析】∵直线y=2x+1的斜率为2,∴与其垂直的直线的斜率是-,∴直线的斜截式方程为y=-x+4,故选D.【答案】D5.过点P(,-)且倾斜角为45°的直线方程为.【解析】斜率k=tan 45°=1,由直线的点斜式方程可得y+=1×(x-),即x-y-2=0.【答案】x-y-2=06.已知△ABC的三个顶点为A(1,3),B(5,7),C(10,12),则BC边上的高所在直线的方程为.【解析】由k BC==1,知所求直线斜率为-1,设直线方程为y=-x+b,将点A代入,得b=4.故所求直线的方程为y=-x+4.【答案】y=-x+47.已知在△ABC中,A(0,0),B(3,1),C(1,3).(1)求AB边上的高所在直线的方程;(2)求BC边上的高所在直线的方程;(3)求过点A且与BC平行的直线方程.【解析】(1)直线AB的斜率k1==,AB边上的高所在直线的斜率为-3且过点C,所以AB边上的高所在直线的方程为y-3=-3(x-1),即y=-3x+6.(2)直线BC的斜率k2==-1,BC边上的高所在直线的斜率为1且过点A,所以BC边上的高所在直线的方程为y=x.(3)由(2)知过点A与BC平行的直线的斜率为-1,所以所求直线方程为y=-x.拓展提升(水平二)8.方程y=ax+表示的直线可能是().【解析】直线y=ax+的斜率是a,在y轴上的截距.当a>0时,斜率a>0,在y轴上的截距>0,则直线y=ax+过第一、二、三象限,四个选项都不符合;当a<0时,斜率a<0,在y轴上的截距<0,则直线y=ax+过第二、三、四象限,只有选项B符合.【答案】B9.直线mx+ny+3=0在y轴上的截距为-3,且倾斜角是直线x-y=3倾斜角的2倍,则().A.m=-,n=1B.m=-,n=-3C.m=,n=-3D.m=,n=1【解析】对于直线mx+ny+3=0,令x=0得y=-,即-=-3,∴n=1.∵x-y=3的倾斜角为60°,直线mx+ny+3=0的倾斜角是直线x-y=3的2倍, ∴直线mx+ny+3=0的倾斜角为120°,即-=-,∴m=.故选D.【答案】D10.在直线方程y=kx+b中,当x∈[-3,4]时,恰好y∈[-8,13],则此直线方程为.【解析】由一次函数的单调性知,当k>0时,函数y=kx+b为增函数,则解得即y=3x+1.当k<0时,函数y=kx+b为减函数,则解得即y=-3x+4.【答案】y=3x+1或y=-3x+411.已知过点(4,-3)的直线l在两坐标轴上的截距的绝对值相等,求直线l的方程.【解析】依条件设直线l的方程为y+3=k(x-4).令x=0,得y=-4k-3;令y=0,得x=.∵直线l在两坐标轴上的截距的绝对值相等,∴|-4k-3|=,即k(4k+3)=±(4k+3).解得k=1或k=-1或k=-.故所求直线l的方程为y=x-7或y=-x+1或y=-x.。

高中数学直线的方程(两点式、截距式)同步练习

高中数学直线的方程(两点式、截距式)同步练习

直线的方程(两点式、截距式) 同步练习一、选择题:1.过两点(2,5)和(2,-5)的直线方程为( )A .x=21 B .x=2 C .x+y=2 D .y=0 2.过两点(-1,1)和(3,9)的直线 在x 轴上的截距为( )A .-23B .-32C .52 D .2 3. 下列四个命题中的真命题是( )A.经过定点P 0(x 0,y 0)的直线都可以用方程y-y 0=k(x-x 0)表示;B.经过任意两个不同的点P 1(x 1,y 1)和P 2(x 2,y 2)的直线都可以用方程(y-y 1)(x 2-x 1)=(x-x 1)(y 2-y 1)表示;C.不经过原点的直线都可以用方程a x +by =1表示; D.经过定点A (0,b )的直线都可以用方程y=kx+b 表示.4.过点A (1,2)作直线 使它在两坐标轴上的截距的绝对值相等,满足条件的直线 的条数是( )A .1B .2C .3D .45. 直线2x-3y=6在x 轴、y 轴上的截距分别为( )A .3,2B .-3,2C .3,-2D .-3,-26.直线ax+by=1 (ab ≠0)与两坐标轴围成的面积是( )A .21ab B. 21|ab| C .ab 21 D .||21ab 7.若直线(m+2)x+(m 2-2m-3)y=2m 在x 轴上的截距是3,则m 的值是( )A .52B .6C .-52 D . -6 8.过点(5,2),且在x 轴上的截距是在y 轴上的截距的2倍的直线方程是( )A .2x+y-12=0B .2x+y-12=0 或2x-5y=0C .x-2y-1=0D .x+2y-9=0或2x-5y=0二.填充题 :9. 经过两点A(2,1), B(0,3)的直线方程是_______________.10.过点(2,4)且在两坐标轴上截距相等的直线方程_______________________ .11.直线3x-4y+k=0在两坐标轴上截距之和为2,则实数k=________.12.直线 过点(3,4),且在第一象限和两坐标轴围成的三角形的面积是24,则 的截距式方程是 _______________.三.解答题:13.已知∆ABC 的三个顶点为A (-3,0),B (2,1),C (-2,3),求BC 边上的中线AD 所在直线的方程.14.求过点A (-2,3),且在两坐标轴上的截距之和为2的直线方程。

高中数学《直线与方程》测试题

高中数学《直线与方程》测试题

高中数学《直线与方程》测试题1.直线x+6y+2=0在x轴和y轴上的截距分别是()A。

(2,0) B。

(-2.-1/3) C。

(-11/3,0) D。

(-2,-3/23)2.直线3x+y+1=0和直线6x+2y+1=0的位置关系是()A。

重合 B。

平行 C。

垂直 D。

相交但不垂直3.直线过点(-3,-2)且在两坐标轴上的截距相等,则这直线方程为()A。

2x-3y=0 B。

x+y+5=0 C。

2x-3y=5 D。

x+y+5或x-y+5=04.直线x=3的倾斜角是()A。

0 B。

π/2 C。

π D。

不存在5.点(-1,2)关于直线y=x-1的对称点的坐标是()A。

(3,2) B。

(-3,-2) C。

(-3,2) D。

(1,-2)6.点(2,1)到直线3x-4y+2=0的距离是()A。

4/5 B。

5/4 C。

4/25 D。

25/47.直线x-y+3=0的倾斜角是()A。

30° B。

45° C。

60° D。

90°8.与直线l: 3x-4y+5=0关于x轴对称的直线的方程为()A。

3x+4y-5=0 B。

3x+4y+5=0 C。

-3x+4y-5=0 D。

-3x+4y+5=09.设a、b、c分别为△ABC中∠A、∠B、∠C对边的边长,则直线xsinA+ay+c=0与直线bx-ysinB+sinC=0的位置关系是()A。

平行 B。

重合 C。

垂直 D。

相交但不垂直10.直线l沿x轴负方向平移3个单位,再沿y轴正方向平移1个单位后,又回到原来位置,那么l的斜率为()A。

-1/3 B。

-3 C。

1/3 D。

311.直线kx-y+1=3k,当k变动时,所有直线都通过定点()A。

(0,0) B。

(0,1) C。

(3,1) D。

(2,1)13.直线过原点且倾角的正弦值是4/5,则直线方程为y=4x/5.14.直线mx+ny=1(mn≠0)与两坐标轴围成的三角形面积为1/2|mn|.15.如果三条直线mx+y+3=0,x-y-2=0,2x-y+2=0不能成为一个三角形三边所在的直线,那么m的一个值是 -1/2.16.已知两条直线 (-∞,1).17.△ABC中,点A(4,-1),AB的中点为M(-1,2),直线CM 的方程为 3x+y-11=0.1.3,2为重心P,求边BC的长度。

高中数学直线的方程一般式同步练习 试题

高中数学直线的方程一般式同步练习 试题

直线的方程(一般式)同步练习一、选择题:1. 二元一次方程Ax+By+C=0表示为直线方程,下列不正确叙述是( )A .实数A 、B 必须不全为零 B .A 2+B 2≠0C .所有的直线均可用Ax+By+C=0 (A 2+B 2≠0)表示D .确定直线方程Ax+By+C=0须要三个点坐标待定A,B,C 三个变量2. 若pr<0,qr<0,则直线px+qy+r=0不经过()D.第四象限3. 下列结论正确的是( )A .Ax+By+C=0有横截距B .直线Ax+By+C=0有纵截距C .直线Ax+By+C=0既有横截距又有纵截距D .以上都不正确4. 若直线ax+by+c=0在第一、二、三象限,则()A.ab>0,bc>0B. ab>0,bc<0C. ab<0,bc>0D. ab<0,bc<05. 和直线3x-4y+5=0关于x 轴对称的直线方程是( )A.3x+4y-5=0B. 3x+4y+5=0C. -3x+4y-5=0D. -3x+4y+5=06.过点M (2,1)的直线l 与x 轴,y 轴分别相交于P ,Q 两点,且|MP|=|MQ|,则直线l 的方程是()A .x-2y+3=0B .2x-y-3=0C .2x+y-5=0D .x+2y-4=07. m ∈R,直线(m-1)x-y+2m+1=0过定点( )A .(1,21) B .(-2,0) C .(2,3) D .(-2,3)8. 若(m 2-4)x+(m 2-4m+3)y+1=0表示直线,则( )A .m ±≠2且m ≠1, m ≠3B .m ±≠ 2C.m≠1,且m≠3 D.m可取任意实数二.填充题:9.若方程Ax+By+C=0表示与两条坐标轴都相交的直线,则A,B,C应满足条件___________. 10.若直线ax-y+2=0与直线3x-y+b=0关于直线y=x对称,则a= ______________, b=___________.11. 设点P(x0,y)在直线Ax+By+C=0上,则这条直线的方程可以写成___________.12.若直线(2t-3)x+y+6=0,不经过第一象限,则t的取值X围是__________ .三.解答题:13. 过P(-2,2)点引一条直线l,使它与两坐标轴围成的三角形面积等于4(面积单位),求此直线l的方程。

完整版高中数学直线方程练习试题

完整版高中数学直线方程练习试题

高中数学直线方程练习题一.选择题(共12 小题)1.已知 A(﹣ 2,﹣ 1),B(2,﹣3),过点 P(1,5)的直线 l 与线段 AB 有交点,则 l 的斜率的范围是()A.(﹣∞,﹣ 8]B. [ 2,+∞)C.(﹣∞,﹣ 8] ∪[ 2,+∞)D.(﹣∞,﹣ 8)∪( 2,+∞)2.已知点 A(1,3),B(﹣ 2,﹣1).若直线 l:y=k(x﹣ 2) +1 与线段 AB订交,则 k 的取值范围是()A.[,+∞)B.(﹣∞,﹣ 2]C.(﹣∞,﹣ 2] ∪[,+∞)D. [ ﹣ 2,]3.已知点 A(﹣ 1, 1),B(2,﹣2),若直线 l:x+my+m=0 与线段 AB(含端点)订交,则实数 m 的取值范围是()A.(﹣∞, ] ∪[ 2, +∞) B.[,2] C.(﹣∞,﹣2]∪ [﹣,+∞)D.[﹣,﹣ 2]4.已知 M ( 1, 2),N(4,3)直线 l 过点 P(2,﹣ 1)且与线段 MN 订交,那么直线 l 的斜率 k 的取值范围是()A.(﹣∞,﹣ 3] ∪[ 2, +∞)B. [ ﹣,] C.[ ﹣ 3, 2]D.(﹣∞,﹣]∪ [,+∞)5.已知 M (﹣ 2,﹣ 3),N(3,0),直线 l 过点(﹣ 1,2)且与线段 MN 订交,则直线 l 的斜率 k 的取值范围是()A.或k≥ 5B.C.D.6.已知 A(﹣ 2,),B(2,),P(﹣1,1),若直线l过点P且与线段 AB 有公共点,则直线l 的倾斜角的范围是()A.B.C.D.∪第 1页(共 25页)7.已知点 A(2,3),B(﹣ 3,﹣2),若直线 l 过点 P(1,1)与线段 AB 一直没有交点,则直线l 的斜率 k 的取值范围是()A.<k<2B.k>2 或 k<C.k>D.k<28.已知 O 为△ ABC内一点,且,,若B,O,D三点共线,则 t 的值为()A.B.C.D.9.经过( 3,0),(0,4)两点的直线方程是()A.3x+4y﹣ 12=0B.3x﹣4y+12=0 C. 4x﹣3y+12=0 D.4x+3y﹣12=010.过点( 3,﹣ 6)且在两坐标轴上的截距相等的直线的方程是()A.2x+y=0 B.x+y+3=0C.x﹣y+3=0D. x+y+3=0 或 2x+y=011.经过点 M ( 1, 1)且在两轴上截距相等的直线是()A.x+y=2 B.x+y=1 C.x=1 或 y=1D.x+y=2 或 x﹣y=012.已知△ ABC的极点 A(2,3),且三条中线交于点G( 4, 1),则 BC 边上的中点坐标为()A.(5,0) B.(6,﹣ 1)C.(5,﹣ 3)D.(6,﹣ 3)二.填空题(共4 小题)13.已知直线 l1:ax+3y+1=0,l2:2x+( a+1)y+1=0,若 l1∥l2,则实数 a 的值是.14.直线 l1:(3+a)x+4y=5﹣3a 和直线 l2:2x+(5+a)y=8 平行,则 a=.15.设直线 l 1:x+my+6=0 和 l2:(m﹣ 2) x+3y+2m=0,当 m=时,l1∥ l2,当 m=时,l1⊥l2.16.假如直线( 2a+5)x+(a﹣2)y+4=0 与直线( 2﹣a) x+(a+3) y﹣ 1=0 相互垂直,则 a 的值等于.三.解答题(共11 小题)17.已知点 A(1,1),B(﹣ 2,2),直线 l 过点 P(﹣ 1,﹣ 1)且与线段 AB始终有交点,则直线l 的斜率 k 的取值范围为.第 2页(共 25页)18.已知 x, y 知足直线 l:x+2y=6.( 1)求原点 O 对于直线 l 的对称点 P 的坐标;( 2)当 x∈[ 1, 3] 时,求的取值范围.19.已知点 A(1,2)、B(5,﹣ 1),(1)若 A,B 两点到直线 l 的距离都为 2,求直线 l 的方程;(2)若 A,B 两点到直线 l 的距离都为 m(m> 0),试依据 m 的取值议论直线 l 存在的条数,不需写出直线方程.20.已知直线 l 的方程为 2x+( 1+m)y+2m=0,m∈R,点 P 的坐标为(﹣ 1,0).(1)求证:直线 l 恒过定点,并求出定点坐标;(2)求点 P 到直线 l 的距离的最大值.21.已知直线方程为( 2+m)x+( 1﹣ 2m) y+4﹣3m=0.(Ⅰ)证明:直线恒过定点M ;(Ⅱ)若直线分别与x 轴、 y 轴的负半轴交于A, B 两点,求△ AOB 面积的最小值及此时直线的方程.22.已知光芒经过已知直线 l1: 3x﹣y+7=0 和 l2:2x+y+3=0 的交点 M,且射到 x 轴上一点 N(1,0)后被 x 轴反射.(1)求点 M 对于 x 轴的对称点 P 的坐标;(2)求反射光芒所在的直线 l3的方程.( 3)求与 l3距离为的直线方程.23.已知直线 l :y=3x+3求( 1)点 P( 4, 5)对于 l 的对称点坐标;( 2)直线 y=x﹣ 2 对于 l 对称的直线的方程.24.已知点 M(3,5),在直线 l:x﹣ 2y+2=0 和 y 轴上各找一点 P 和 Q,使△ MPQ 的周长最小.25.已知直线 l 经过点 P(3,1),且被两平行直线 l1;x+y+1=0 和 l2:x+y+6=0 截得的线段之长为 5,求直线 l 的方程.26.已知直线 l:5x+2y+3=0,直线 l 经′过点 P(2,1)且与 l 的夹角等于 45,求直线 l'的一般方程.27.已知点 A(2,0),B(0, 6),O 为坐标原点.第 3页(共 25页)( 1)若点 C 在线段 OB 上,且∠ ACB=,求△ ABC的面积;(2)若原点 O 对于直线 AB 的对称点为 D,延伸 BD 到 P,且| PD| =2| BD| ,已知直线 L:ax+10y+84﹣108 =0 经过点 P,求直线 l 的倾斜角.第 4页(共 25页)高中数学直线方程练习题参照答案与试题分析一.选择题(共12 小题)1.(2016 秋?滑县期末)已知 A(﹣ 2,﹣ 1),B(2,﹣ 3),过点 P(1,5)的直线 l 与线段 AB 有交点,则 l 的斜率的范围是()A.(﹣∞,﹣ 8]B. [ 2,+∞)C.(﹣∞,﹣ 8] ∪[ 2,+∞) D.(﹣∞,﹣ 8)∪( 2,+∞)【剖析】利用斜率计算公式与斜率的意义即可得出.【解答】解: k PA=2, PB﹣,=k == 8∵直线 l 与线段 AB 有交点,∴ l 的斜率的范围是k≤﹣ 8,或 k≥ 2.应选: C.【评论】本题考察了斜率计算公式与斜率的意义,考察了推理能力与计算能力,属于中档题.2.(2016 秋?碑林区校级期末)已知点A(1,3),B(﹣ 2,﹣1).若直线 l:y=k ( x﹣2)+1 与线段 AB 订交,则 k 的取值范围是()A.[,+∞)B.(﹣∞,﹣ 2]C.(﹣∞,﹣ 2] ∪[,+∞)D. [ ﹣ 2,]【剖析】由直线系方程求出直线l 所过定点,由两点求斜率公式求得连结定点与线段 AB 上点的斜率的最小值和最大值得答案.【解答】解:∵直线 l:y=k(x﹣2)+1 过点 P( 2, 1),连结 P 与线段 AB 上的点 A( 1, 3)时直线 l 的斜率最小,为,连结 P 与线段 AB 上的点 B(﹣ 2,﹣ 1)时直线 l 的斜率最大,为.∴ k 的取值范围是.应选: D.第 5页(共 25页)【评论】本题考察了直线的斜率,考察了直线系方程,是基础题.3.(2016 秋?雅安期末)已知点A(﹣ 1,1),B(2,﹣2),若直线 l:x+my+m=0与线段 AB(含端点)订交,则实数m 的取值范围是()A.(﹣∞, ] ∪[ 2, +∞) B.[,2] C.(﹣∞,﹣2]∪ [﹣,+∞)D.[﹣,﹣ 2]【剖析】利用斜率计算公式、斜率与倾斜角的关系及其单一性即可得出.【解答】解:直线 l: x+my+m=0 经过定点 P(0,﹣ 1),k PA==﹣ 2, k PB==﹣.∵直线 l:x+my+m=0 与线段 AB(含端点)订交,∴≤≤﹣2,∴.应选: B.【评论】本题考察了斜率计算公式、斜率与倾斜角的关系及其单一性,考察了推理能力与计算能力,属于中档题.4.(2016 秋?庄河市校级期末)已知M( 1,2),N(4,3)直线 l 过点 P(2,﹣1)且与线段 MN 订交,那么直线 l 的斜率 k 的取值范围是()A.(﹣∞,﹣ 3] ∪[ 2, +∞)B. [ ﹣, ]C.[ ﹣ 3, 2]D.(﹣∞,﹣ ]∪ [ , +∞)【剖析】画出图形,由题意得所求直线 l 的斜率 k 知足 k≥k PN或 k≤k PM,用直线的斜率公式求出 k PN和PM的值,解不等式求出直线l 的斜率k的取值范围.k【解答】解:如下图:由题意得,所求直线 l 的斜率 k 知足 k≥k PN PM,或 k≤ k即 k≥=2,或 k≤=﹣3,∴k≥2,或k≤﹣3,应选: A.第 6页(共 25页)【评论】本题考察直线的斜率公式的应用,表现了数形联合的数学思想.5.( 2013 秋?迎泽区校级月考)已知M(﹣ 2,﹣ 3),N( 3,0),直线 l 过点(﹣1,2)且与线段 MN 订交,则直线 l 的斜率 k 的取值范围是()A.或k≥ 5B.C.D.【剖析】求出界限直线的斜率,作出图象,由直线的倾斜角和斜率的关系可得.【解答】解:(如图象)即 P(﹣ 1,2),由斜率公式可得 PM 的斜率 k1==5,直线 PN 的斜率 k2=,=当直线 l 与 x 轴垂直(红色线)时记为l ′,可知当直线介于l 和′ PM 之间时, k≥5,当直线介于 l 和′ PN 之间时, k≤﹣,故直线 l 的斜率 k 的取值范围是: k≤﹣,或 k≥ 5 应选 A第 7页(共 25页)【评论】本题考察直线的斜率公式,波及数形联合的思想和直线的倾斜角与斜率的关系,属中档题.6.(2004 秋?南通期末)已知 A(﹣ 2,),B(2,),P(﹣1,1),若直线 l 过点 P 且与线段 AB 有公共点,则直线l 的倾斜角的范围是()A.B.C.D.∪【剖析】先求出直线的斜率的取值范围,再依据斜率与倾斜角的关系以及倾斜角的范围求出倾斜角的详细范围.【解答】解:设直线 l 的斜率等于 k,直线的倾斜角为α由题意知, k PB﹣,或PA﹣==k ==设直线的倾斜角为α,则α∈[ 0,π),tanα=k,由图知 0°≤α≤120°或 150°≤α<180°应选: D.第 8页(共 25页)【评论】本题考察直线的倾斜角和斜率的关系,直线的斜率公式的应用,属于基础题.7.已知点 A(2,3),B(﹣ 3,﹣2),若直线 l 过点 P(1,1)与线段 AB 一直没有交点,则直线l 的斜率 k 的取值范围是()A.<k<2B.k>2 或 k<C.k>D.k<2【剖析】求出 PA,PB所在直线的斜率,数形联合得答案.【解答】解:点 A( 2,3),B(﹣ 3,﹣ 2),若直线 l 过点 P( 1, 1),∵直线 PA的斜率是=2,直线 PB 的斜率是=.如图,∵直线 l 与线段 AB 一直有公共点,∴斜率 k 的取值范围是(,2).应选: A.第 9页(共 25页)【评论】本题考察了直线的倾斜角和直线的斜率,考察了数形联合的解题思想方法,是基础题.8.(2017?成都模拟)已知 O 为△ ABC内一点,且,,若B,O,D 三点共线,则 t 的值为()A.B.C.D.【剖析】以 OB,OC 为邻边作平行四边形OBFC,连结 OF 与 BC 订交于点 E,E 为 BC 的中点.由,可得=2=2 ,点 O 是直线 AE 的中点.依据,B,O,D 三点共线,可得点 D 是 BO 与 AC的交点.过点 O 作OM∥ BC交 AC于点 M,则点 M 为 AC 的中点.即可得出.【解答】解:以 OB,OC为邻边作平行四边形OBFC,连结 OF 与 BC订交于点 E,E 为 BC的中点.∵,∴=2 =2,∴点 O 是直线 AE的中点.∵,B,O, D 三点共线,∴点 D 是 BO 与 AC的交点.过点 O 作 OM∥BC交 AC于点 M,则点 M 为 AC的中点.则OM= EC= BC, = ,∴ DM= MC,第10页(共 25页)∴AD= AM= AC,∴t= .应选: B.【评论】本题考察了向量共线定理、向量三角形与平行四边形法例、平行线的性质,考察了推理能力与计算能力,属于中档题.9.( 2016 秋?沙坪坝区校级期中)经过( 3,0),(0,4)两点的直线方程是()A.3x+4y﹣ 12=0B.3x﹣4y+12=0 C. 4x﹣3y+12=0 D.4x+3y﹣12=0【剖析】直接利用直线的截距式方程求解即可.【解答】解:由于直线经过(3,0),(0,4)两点,因此所求直线方程为:,即 4x+3y﹣12=0.应选 D.【评论】本题考察直线截距式方程的求法,考察计算能力.10.( 2016 秋?平遥县校级期中)过点(3,﹣ 6)且在两坐标轴上的截距相等的直线的方程是()A.2x+y=0 B.x+y+3=0C.x﹣y+3=0D. x+y+3=0 或 2x+y=0【剖析】当直线过原点时,用点斜式求得直线方程.当直线可是原点时,设直线的方程为 x+y=k,把点( 3,﹣ 6)代入直线的方程可得k 值,从而求得所求的直线方程,综合可得结论.【解答】解:当直线过原点时,方程为y=﹣2x,即 2x+y=0.当直线可是原点时,设直线的方程为x+y=k,把点( 3,﹣ 6)代入直线的方程可第11页(共 25页)得k=﹣3,故直线方程是 x+y+3=0.综上,所求的直线方程为x+y+3=0 或 2x+y=0,应选: D.【评论】本题考察用待定系数法求直线方程,表现了分类议论的数学思想,注意当直线过原点时的状况,这是解题的易错点,属于基础题.11.(2015 秋 ?运城期中)经过点 M(1,1)且在两轴上截距相等的直线是()A.x+y=2 B.x+y=1 C.x=1 或 y=1D.x+y=2 或 x﹣y=0【剖析】分两种状况考虑,第一:当所求直线与两坐标轴的截距不为0 时,设出该直线的方程为x+y=a,把已知点坐标代入即可求出a 的值,获得直线的方程;第二:当所求直线与两坐标轴的截距为0 时,设该直线的方程为y=kx,把已知点的坐标代入即可求出k 的值,获得直线的方程,综上,获得全部知足题意的直线的方程.【解答】解:①当所求的直线与两坐标轴的截距不为0 时,设该直线的方程为x+y=a,把( 1,1)代入所设的方程得: a=2,则所求直线的方程为 x+y=2;②当所求的直线与两坐标轴的截距为 0 时,设该直线的方程为 y=kx,把( 1,1)代入所求的方程得: k=1,则所求直线的方程为 y=x.综上,所求直线的方程为: x+y=2 或 x﹣y=0.应选: D.【评论】本题考察直线的一般方程和分类议论的数学思想,要注意对截距为0和不为 0 分类议论,是一道基础题.12.( 2013 春?泗县校级月考)已知△ ABC的极点 A( 2, 3),且三条中线交于点G(4,1),则 BC边上的中点坐标为()A.(5,0) B.(6,﹣ 1)C.(5,﹣ 3)D.(6,﹣ 3)【剖析】利用三角形三条中线的交点到对边的距离等于到所对极点的距离的一半,用向量表示即可求得结果.第12页(共 25页)【解答】解:如下图,;∵△ ABC的极点 A( 2, 3),三条中线交于点G(4,1),设BC边上的中点 D( x, y),则 =2 ,∴( 4﹣2,1﹣3)=2(x﹣4,y﹣1),即,解得,即所求的坐标为D(5,0);应选: A.【评论】本题考察了利用三角形三条中线的交点性质求边的中点坐标问题,是基础题.二.填空题(共 4 小题)13.( 2015?益阳校级模拟)已知直线l1: ax+3y+1=0, l2:2x+( a+1) y+1=0,若l1∥l2,则实数 a 的值是﹣3.【剖析】依据 l1∥2,列出方程()﹣×,求出a 的值,议论 a 能否满l a a+123=0足l1∥l2即可.【解答】解:∵ l1∥ l2,∴ a( a+1)﹣ 2×3=0,即 a2+a﹣ 6=0,解得 a=﹣3,或 a=2;当 a=﹣ 3 时, l1为:﹣ 3x+3y+1=0,第13页(共 25页)l2为: 2x﹣2y+1=0,知足 l1∥ l2;当a=2 时, l1为: 2x+3y+1=0,l2为: 2x+3y+1=0,l1与 l2重合;因此,实数 a 的值是﹣ 3.故答案为:﹣ 3.【评论】本题考察了两条直线平行,斜率相等,或许对应系数成比率的应用问题,是基础题目.14.( 2015 秋?天津校级期末)直线 l1:(3+a) x+4y=5﹣ 3a 和直线 l2: 2x+(5+a) y=8 平行,则 a= ﹣7 .【剖析】依据两直线平行的条件可知,(3+a)( 5+a)﹣4×2=0,且 5﹣3a≠8.从而可求出 a 的值.【解答】解:直线 l1:( 3+a)x+4y=5﹣3a 和直线 l2:2x+(5+a) y=8 平行,则( 3+a)(5+a)﹣ 4×2=0,即a2+8a+7=0.解得, a=﹣ 1 或 a=﹣7.又∵ 5﹣3a≠ 8,∴a≠﹣ 1.∴a=﹣7.故答案为:﹣ 7.【评论】本题考察两直线平行的条件,此中 5﹣ 3a≠8 是本题的易错点.属于基础题.15.( 2015 秋?台州期末)设直线l1:x+my+6=0 和 l2:( m﹣2)x+3y+2m=0,当m= ﹣ 1时,l1∥l2,当m=时,l1⊥l2.【剖析】利用直线平行、垂直的性质求解.【解答】解:∵直线 l1:x+my+6=0 和 l2:( m﹣2)x+3y+2m=0,l1∥l2,∴=≠,第14页(共 25页)解得 m=﹣1;∵直线 l1: x+my+6=0 和 l2:( m﹣2)x+3y+2m=0,l1⊥l2,∴1×( m﹣2)+3m=0,解得 m= ;故答案为:﹣ 1,.【评论】本题考察实数的取值范围的求法,是基础题,解题时要仔细审题,注意直线的地点关系的合理运用.16.( 2016 春?信阳月考)假如直线( 2a+5)x+(a﹣2)y+4=0 与直线( 2﹣ a)x+( a+3)y﹣ 1=0 相互垂直,则 a 的值等于a=2 或 a=﹣2.【剖析】利用两条直线相互垂直的充要条件,获得对于a 的方程可求.【解答】解:设直线(2a+5)x+(a﹣2)y+4=0 为直线M ;直线(2﹣a)x+(a+3)y﹣1=0 为直线 N①当直线 M 斜率不存在时,即直线M 的倾斜角为 90°,即 a﹣2=0,a=2 时,直线N 的斜率为 0,即直线 M 的倾斜角为 0°,故:直线 M 与直线 N 相互垂直,因此 a=2 时两直线相互垂直.②当直线 M 和 N 的斜率都存在时, k M(, N要使两直线相互垂直,=k =即让两直线的斜率相乘为﹣1,故: a=﹣2.③当直线 N 斜率不存在时,明显两直线不垂直.综上所述: a=2 或 a=﹣2故答案为: a=2 或 a=﹣2【评论】本题考察两直线垂直的充要条件,若利用斜率之积等于﹣ 1,应注意斜率不存在的状况.三.解答题(共11 小题)17.( 2016 秋?兴庆区校级期末)已知点A( 1, 1),B(﹣ 2,2),直线 l 过点 P (﹣ 1,﹣1)且与线段 AB 一直有交点,则直线l 的斜率 k 的取值范围为k≤﹣第15页(共 25页)3,或 k≥ 1.【剖析】由题意画出图形,数形联合得答案.【解答】解:如图,∵ A( 1, 1),B(﹣ 2, 2),直线 l 过点 P(﹣ 1,﹣ 1),又,∴直线 l 的斜率 k 的取值范围为 k≤﹣ 3,或 k≥1.故答案为: k≤﹣ 3,或 k≥ 1.【评论】本题考察直线的斜率,考察了数形联合的解题思想方法,是中档题.18.( 2015 春?乐清市校级期末)已知x,y 知足直线 l:x+2y=6.( 1)求原点 O 对于直线 l 的对称点 P 的坐标;( 2)当 x∈[ 1, 3] 时,求的取值范围.【剖析】(1)设对称后的点 P( a,b),依据点的对称即可求原点 O 对于直线 l 的对称点 P 的坐标.(2)依据斜率公式可知,表示的为动点( x, y)到定点( 2, 1)的两点的斜率的取值范围.【解答】解:(1)设原点 O 对于直线 l 的对称点 P 的坐标为( a, b),则知足,解得 a=,b=,故;( 2)当 x∈[ 1, 3] 时,的几何意义为到点C(2,1)的斜率的取值范围.当x=1 时, y= ,当 x=3 时, y= ,由可得 A( 1,), B( 3,),第16页(共 25页)从而 k BC=, AC﹣,=k ==∴ k 的范围为(﹣∞,﹣] ∪[ ,+∞)【评论】本试题主假如考察了直线的方程以及点对于直线对称点的坐标的求解和斜率几何意义的灵巧运用.19.( 2016 秋?浦东新区校级月考)已知点A( 1, 2)、B(5,﹣ 1),(1)若 A,B 两点到直线 l 的距离都为 2,求直线 l 的方程;(2)若 A,B 两点到直线 l 的距离都为 m(m> 0),试依据 m 的取值议论直线 l 存在的条数,不需写出直线方程.【剖析】(1)要分为两类来研究,一类是直线 L 与点 A(1,2)和点 B(5,﹣1)两点的连线平行,一类是线 L 过两点 A( 1, 2)和点 B( 5,﹣ 1)中点,分类解出直线的方程即可;(2)依据 A, B 两点与直线 l 的地点关系以及 m 与两点间距离 5 的一半比较,获得知足条件的直线.【解答】解:∵ | AB| ==5, | AB| >2,∴ A 与 B 可能在直线 l 的同侧,也可能直线 l 过线段 AB 中点,①当直线 l 平行直线 AB 时: k AB,可设直线l 的方程为﹣=y=x+b 依题意得:=2,解得: b=或b=,第17页(共 25页)故直线 l 的方程为: 3x+4y﹣1=0 或 3+4y﹣21=0;②当直线 l 过线段 AB 中点时:AB 的中点为(3,),可设直线 l 的方程为 y﹣=k (x﹣3)依题意得:=2,解得: k=,故直线 l 的方程为:x﹣2y﹣=0;(2)A,B 两点到直线 l 的距离都为 m(m> 0),AB 平行的直线,知足题意得必定有 2 条,经过 AB 中点的直线,若2m<| AB| ,则有 2 条;若2m=| AB| ,则有 1 条;若2m>| AB| ,则有 0 条,∵ | AB| =5,综上:当 m<2.5 时,有 4 条直线切合题意;当 m=2.5 时,有 3 条直线切合题意;当 m>2.5 时,有 2 条直线切合题意.【评论】本题考察点到直线的距离公式,求解本题重点是掌握好点到直线的距离公式与中点坐标公式,对空间想像能力要求较高,考察了对题目条件剖析转变的能力20.( 2015 秋?眉山校级期中)已知直线 l 的方程为 2x+( 1+m)y+2m=0,m∈R,点 P 的坐标为(﹣ 1, 0).(1)求证:直线 l 恒过定点,并求出定点坐标;(2)求点 P 到直线 l 的距离的最大值.【剖析】(1)把直线方程变形得,2x+y+m( y+2)=0,联立方程组,求得方程组的解即为直线l 恒过的定点.(2)设点 P 在直线 l 上的射影为点 M ,由题意可得 | PM| ≤ | PQ| ,再由两点间的距离公式求得点 P 到直线 l 的距离的最大值第18页(共 25页)【解答】(1)证明:由 2x+(1+m) y+2m=0,得 2x+y+m(y+2) =0,∴直线 l 恒过直线 2x+y=0 与直线 y+2=0 的交点 Q,解方程组,得 Q( 1,﹣ 2),∴直线 l 恒过定点,且定点为Q(1,﹣ 2).(2)解:设点 P 在直线 l 上的射影为点 M,则 | PM| ≤| PQ| ,当且仅当直线 l 与 PQ 垂直时,等号建立,∴点 P 到直线 l 的距离的最大值即为线段 PQ 的长度,等于=2 .【评论】本题考察了直线系方程问题,考察了点到直线的距离公式,正确理解题意是重点,是中档题.21.( 2010 秋?常熟市期中)已知直线方程为( 2+m) x+(1﹣2m)y+4﹣3m=0.(Ⅰ)证明:直线恒过定点 M ;(Ⅱ)若直线分别与 x 轴、 y 轴的负半轴交于 A, B 两点,求△ AOB 面积的最小值及此时直线的方程.【剖析】(Ⅰ )直线方程按m 集项,方程恒建立,获得方程组,求出点的坐标,即可证明:直线恒过定点 M ;(Ⅱ)若直线分别与 x 轴、y 轴的负半轴交于 A,B 两点,说明直线的斜率小于 0,设出斜率依据直线过的定点,写出直线方程,求出△ AOB面积的表达式,利用基本不等式求出头积的最小值,即可获得面积最小值的直线的方程.【解答】(Ⅰ)证明:(2+m)x+( 1﹣ 2m)y+4﹣ 3m=0 化为( x﹣2y﹣3)m=﹣2x ﹣y﹣ 4.(3 分)得∴直线必过定点(﹣ 1,﹣ 2).( 6 分)(Ⅱ)解:设直线的斜率为k(k<0),则其方程为y+2=k(x+1),∴OA=| ﹣1| , OB=| k﹣2| ,( 8 分)S= ?OA?OB= | (﹣1)(k﹣2)| = | ﹣| ..(10 分)△ AOB∵ k< 0,∴﹣ k>0,第19页(共 25页)∴ S△AOB= [] = [ 4+()+(k)]≥4.当且当= k,即 k= 2 取等号.(13 分)∴△ AOB的面最小是 4,( 14 分)直的方程 y+2= 2(x+1),即 y+2x+4=0.(15 分)【点】本是中档,考直恒定点的知,三角形面的最小的求法,基本不等式的用,考算能力,化思想的用.22.( 2016 秋?阳市校月考)已知光已知直l1:3x y+7=0 和 l2:2x+y+3=0 的交点 M,且射到 x 上一点 N(1,0)后被 x 反射.(1)求点 M 对于 x 的称点 P 的坐;(2)求反射光所在的直 l3的方程.( 3)求与 l3距离的直方程.【剖析】(1)立方程,求出 M 的坐,从而求出 P 的坐即可;( 2)法一:求出直的斜率,从而求出直方程即可;法二:求出直PN 的方程,依据称性求出直方程即可;( 3)出与 l3平行的直方程,依据平行的距离公式求出即可.【解答】解:(1)由得,∴ M( 2, 1).因此点 M 对于 x 的称点 P 的坐( 2, 1).⋯(4 分)( 2)因入射角等于反射角,因此∠ 1=∠ 2.直 MN 的斜角α,直 l3的斜斜角° α.,因此180直 l3的斜率.故反射光所在的直l3的方程:.即.⋯(9 分)解法二:因入射角等于反射角,因此∠1=∠2.依据称性∠ 1=∠3,∴∠ 2=∠3.因此反射光所在的直l3的方程就是直PN的方程.直 PN 的方程:,整理得:.第20页(共 25页)故反射光所在的直 l3的方程.⋯( 9 分)( 3)与 l3平行的直,依据两平行之的距离公式得:,解得 b=3,或,因此与 l3:,或.⋯(13分)【点】本考了点称、直称,考求直方程,是一道中档.23.( 2015 秋?嘉峪关校期末)已知直 l:y=3x+3求( 1)点 P( 4, 5)对于 l 的称点坐;( 2)直 y=x 2 对于 l 称的直的方程.【剖析】(1)点 P(4,5)对于直 y=3x+3 称点 P′的坐( m,n),获得对于 m, n 的方程,求得 m、n 的,可得 P′的坐;(2)求出交点坐,在直 y=x 2 上任取点( 2,0),获得称点坐,求出直方程即可.【解答】解:(1)点 P( 4, 5)对于直 y=3x+3 称点 P′的坐( m,n),由,求得 m= 2,n=7,故 P′( 2, 7).( 2)由,解得:交点,在直 y=x 2 上任取点( 2,0),获得称点,因此获得称的直方程7x+y+22=0【点】本主要考求一个点对于某直的称点的坐的方法,利用了垂直、和中点在称上两个条件,属于中档.24.( 2014 秋?宜秀区校期中)已知点M (3,5),在直l:x 2y+2=0 和 y 上各找一点 P 和 Q,使△ MPQ 的周最小.第21页(共 25页)【剖析】本题实质是求点M 对于 l 的对称点 M1,点 M 对于 y 轴的对称点 M 2,求得直线 M 1M 2的方程,与 y 轴交点为 Q,与直线 l:x﹣2y+2=0 的交点为 P.【解答】解:由点 M( 3,5)及直线 l,可求得点 M 对于 l 的对称点 M 1(5,1).相同简单求得点 M 对于 y 轴的对称点 M2(﹣ 3,5).据M 1及 M2两点可获得直线 M 1M2的方程为 x+2y﹣7=0.得交点 P(,).令 x=0,获得 M 1M 2 与y轴的交点(,).Q 0解方程组x+2y﹣7=0,x﹣2y+2=0,故点 P(,)、Q(0,)即为所求.【评论】本题考察直线对于直线对称的问题,三角形的几何性质,是中档题.25.(2010?广东模拟)已知直线 l 经过点 P(3,1),且被两平行直线 l1;x+y+1=0和 l2:x+y+6=0 截得的线段之长为 5,求直线 l 的方程.【剖析】法一如图,若直线l 的斜率不存在,直线l 的斜率存在,利用点斜式方程,分别与 l1、l2联立,求得两交点 A、 B 的坐标(用 k 表示),再利用 | AB| =5 可求出 k 的值,从而求得 l 的方程.法二:求出平行线之间的距离,联合| AB| =5,设直线 l 与直线 l1的夹角为θ,求出直线 l 的倾斜角为 0°或 90°,而后获得直线方程.就是用l1、l2之间的距离及 l 与 l1夹角的关系求解.法三:设直线 l1、 l2与 l 分别订交于 A( x1,y1),B(x2,y2),则经过求出 y1﹣ y2,x1﹣x2的值确立直线l 的斜率(或倾斜角),从而求得直线l 的方程.【解答】解:解法一:若直线l 的斜率不存在,则直线l 的方程为 x=3,第22页(共 25页)此时与 l1、 l2的交点分别为 A′(3,﹣ 4)或 B′(3,﹣9),截得的线段 AB 的长 | AB| =| ﹣4+9| =5,切合题意.若直线 l 的斜率存在,则设直线l 的方程为 y=k(x﹣3)+1.解方程组得A(,﹣).解方程组得B(,﹣).由| AB| =5.得(﹣)2+(﹣+)2=52.解之,得 k=0,直线方程为 y=1.综上可知,所求l 的方程为 x=3 或 y=1.解法二:由题意,直线l1、 l2之间的距离为 d==,且直线 L 被平行直线 l1、 2 所截得的线段AB 的长为,l5设直线 l 与直线 l1的夹角为θ,则sin θ==,故θ .°=45由直线 l1: x+y+1=0 的倾斜角为 135°,知直线 l 的倾斜角为 0°或 90°,又由直线 l 过点 P(3,1),故直线 l 的方程为: x=3 或 y=1.解法三:设直线 l 与 l1、l2分别订交 A(x1,y1)、B(x2,y2),则 x1+y1+1=0,x2+y2+6=0.两式相减,得( x1﹣ x2)+(y1﹣y2) =5.①又( x1﹣x2)2+(y1﹣y2)2=25.②联立①、②可得或由上可知,直线l 的倾斜角分别为0°或 90°.故所求的直线方程为x=3 或 y=1.第23页(共 25页)【点】本是中档,考直与直的地点关系,直与直所成的角,直的点斜式方程,斜率能否存在是简单出的地方,注意本的三种方法.26.( 2009 秋?重期末)已知直 l:5x+2y+3=0,直 l ′ 点 P(2,1)且与 l 的角等于45,求直 l'的一般方程.【剖析】出直 l ′斜率的 k′,通直的角公式求出直的斜率,而后求出直的方程.【解答】解:直 l ′斜率的 k′,,⋯( 7 分),⋯(10 分)直 l :′7x 3y 11=0 和 3x+7y 13=0;⋯( 13 分)【点】本是基,考直方程的求法,角公式的用,注意角公式与到角公式的区,考算能力.27.已知点 A(2,0),B(0, 6),O 坐原点.( 1)若点 C 在段 OB 上,且∠ ACB=,求△ ABC的面;(2)若原点 O 对于直 AB 的称点 D,延 BD 到 P,且| PD| =2| BD| ,已知直 L:ax+10y+84 108 =0 点 P,求直 l 的斜角.【剖析】(1)依照条件求出 AC 的斜率,可得点 C 的坐,即得 BC,点 A的横坐就是三角形的高,代入三角形的面公式行算.(2)利用称的特色,待定系数法求出原点 O 对于直 AB的称点 D 的坐,由意可得=2 ,把有关向量的坐代入,利用两个向量相等的条件求出点P 的坐,再把点P 的坐代入代入直l 的方程,求出 a,即得直 l 的斜率,第24页(共 25页)由斜率求直线 l 的倾斜角.【解答】解:( 1)∵点 C 在线段 OB 上,且∠ ACB=,∴∠ ACO=,故AC的倾斜角为,故 AC的斜率为﹣ 1,设点 C(0,b),由﹣ 1=得b=2,即点C(0,2),BC=4,点 A 到 BC的距离为 2,故△ ABC的面积为×4×2=4.(2)设 D(m, n),点 P(c,d),AB 的方程 + =1,即 3x+y﹣6=0,由得 m=, n= ,故 D(,),=(﹣ c,﹣d), =(﹣,),由题意知,=2 ,∴ ﹣ c=﹣,﹣ d=,解得 c=,d=﹣,故 P(,﹣),把 P(,﹣)代入直线 l:ax+10y+84﹣108=0,得a? +10?+84﹣ 108 =0,即得 a=10 .∴直线 l 的斜率为=﹣,故直线l的倾斜角为120°.【评论】本题考察直线的倾斜角的定义,倾斜角与斜率的关系;点对于直线的对称点的坐标求法,两个向量相等时向量坐标间的关系.第25页(共 25页)。

高中数学直线的方程练习题及讲解

高中数学直线的方程练习题及讲解

高中数学直线的方程练习题及讲解### 练习题1:点斜式方程题目:已知直线过点A(3,4),且斜率为-2,求该直线的方程。

解答:根据点斜式方程 \( y - y_1 = m(x - x_1) \),其中 \( m \) 是斜率,\( (x_1, y_1) \) 是已知点。

代入已知值:\( m = -2 \),\( (x_1, y_1) = (3, 4) \)。

得到方程:\( y - 4 = -2(x - 3) \)。

### 练习题2:斜截式方程题目:若直线的斜率为3,且在y轴上的截距为-5,求该直线的方程。

解答:斜截式方程为 \( y = mx + b \),其中 \( m \) 是斜率,\( b \) 是y轴截距。

代入已知值:\( m = 3 \),\( b = -5 \)。

得到方程:\( y = 3x - 5 \)。

### 练习题3:两点式方程题目:求经过点B(-1,6)和点C(4,-1)的直线方程。

解答:两点式方程为 \( \frac{y - y_1}{y_2 - y_1} = \frac{x -x_1}{x_2 - x_1} \)。

代入点B和点C的坐标:\( \frac{y - 6}{-1 - 6} = \frac{x - (-1)}{4 - (-1)} \)。

化简得到:\( 7(y - 6) = -5(x + 1) \)。

### 练习题4:截距式方程题目:若直线与x轴交于点(4,0),与y轴交于点(0,-3),求该直线的方程。

解答:截距式方程为 \( \frac{x}{a} + \frac{y}{b} = 1 \),其中 \( a \) 和 \( b \) 是x轴和y轴的截距。

代入截距:\( a = 4 \),\( b = -3 \)。

得到方程:\( \frac{x}{4} - \frac{y}{3} = 1 \)。

### 练习题5:一般式方程题目:将直线方程 \( 3x + 4y - 12 = 0 \) 转换为斜截式。

高中数学《直线与直线方程》练习题

高中数学《直线与直线方程》练习题

高中数学《直线与直线方程》练习题A 组——基础对点练1.直线x +3y +a =0(a 为实常数)的倾斜角的大小是( ) A .30° B .60° C .120°D .150°解析:直线x +3y +a =0(a 为实常数)的斜率为-33,令其倾斜角为θ,则tan θ=-33,解得θ=150°,故选D. 答案:D2.如果AB <0,且BC <0,那么直线Ax +By +C =0不通过( ) A .第一象限 B .第二象限 C .第三象限D .第四象限解析:直线Ax +By +C =0可化为y =-A B x -C B ,∵AB <0,BC <0,∴-A B >0,-CB >0.∴直线过第一、二、三象限,不过第四象限,故选D. 答案:D3.直线x +(a 2+1)y +1=0的倾斜角的取值范围是( ) A .[0,π4] B .[3π4,π) C .[0,π4]∪(π2,π)D .[π4,π2)∪[3π4,π)解析:由直线方程可得该直线的斜率为-1a 2+1,又-1≤-1a 2+1<0,所以倾斜角的取值范围是[3π4,π). 答案:B4.若方程(2m 2+m -3)x +(m 2-m )y -4m +1=0表示一条直线,则参数m 满足的条件是( )A .m ≠-32 B .m ≠0 C .m ≠0且m ≠1D .m ≠1解析:由⎩⎪⎨⎪⎧2m 2+m -3=0,m 2-m =0,解得m =1,故m ≠1时方程表示一条直线.答案:D5.设a ∈R ,则“a =1”是“直线l 1:ax +2y -1=0与直线l 2:x +2y +4=0平行”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分也不必要条件解析:由a =1可得l 1∥l 2,反之,由l 1∥l 2可得a =1,故选C. 答案:C6.设直线l 的方程为x +y cos θ+3=0(θ∈R),则直线l 的倾斜角α的取值范围是( ) A .[0,π) B .⎝ ⎛⎭⎪⎫π4,π2C.⎣⎢⎡⎦⎥⎤π4,3π4 D .⎝ ⎛⎭⎪⎫π4,π2∪⎝ ⎛⎭⎪⎫π2,3π4解析:当cos θ=0时,方程变为x +3=0,其倾斜角为π2; 当cos θ≠0时,由直线l 的方程,可得斜率k =-1cos θ. 因为cos θ∈[-1,1]且cos θ≠0, 所以k ∈(-∞,-1]∪[1,+∞), 即tan α∈(-∞,-1]∪[1,+∞), 又α∈[0,π),所以α∈⎣⎢⎡⎭⎪⎫π4,π2∪⎝ ⎛⎦⎥⎤π2,3π4,综上知,直线l 的倾斜角α的取值范围是⎣⎢⎡⎦⎥⎤π4,3π4.答案:C7.(2018·开封模拟)过点A (-1,-3),斜率是直线y =3x 的斜率的-14的直线方程为( ) A .3x +4y +15=0 B .4x +3y +6=0 C .3x +y +6=0D .3x -4y +10=0解析:设所求直线的斜率为k ,依题意k =-14×3=-34.又直线经过点A (-1,-3),因此所求直线方程为y +3=-34(x +1),即3x +4y +15=0. 答案:A8.直线(2m +1)x +(m +1)y -7m -4=0过定点( ) A .(1,-3) B .(4,3) C .(3,1)D .(2,3)解析:2mx +x +my +y -7m -4=0,即(2x +y -7)m +(x +y -4)=0,由⎩⎪⎨⎪⎧ 2x +y =7,x +y =4,解得⎩⎪⎨⎪⎧x =3,y =1.则直线过定点(3,1),故选C. 答案:C9.(2018·张家口模拟)直线l 经过A (2,1),B (1,-m 2)(m ∈R)两点,则直线l 的倾斜角α的取值范围是( ) A .0≤α≤π4 B .π2<α<π C.π4≤α<π2D .π2<α≤3π4解析:直线l 的斜率k =tan α=1+m 22-1=m 2+1≥1,所以π4≤α<π2.答案:C10.已知直线x +a 2y -a =0(a 是正常数),当此直线在x 轴,y 轴上的截距和最小时,正数a 的值是( ) A .0B .2 C.2 D .1解析:直线x +a 2y -a =0(a 是正常数)在x 轴,y 轴上的截距分别为a 和1a ,此直线在x 轴,y 轴上的截距和为a +1a ≥2,当且仅当a =1时,等号成立.故当直线x +a 2y -a =0在x 轴,y 轴上的截距和最小时,正数a 的值是1,故选D. 答案:D11.已知点M (0,-1),点N 在直线x -y +1=0上,若直线MN 垂直于直线x +2y -3=0, 则点N 的坐标是( ) A .(-2,-1) B .(2,3) C .(2,1)D .(-2,1)解析:∵点N 在直线x -y +1=0上, ∴可设点N 坐标为(x 0,x 0+1).根据经过两点的直线的斜率公式,得k MN =(x 0+1)+1x=x 0+2x 0.∵直线MN 垂直于直线x +2y -3=0,直线x +2y -3=0的斜率k =-12,∴k MN ×⎝ ⎛⎭⎪⎫-12=-1,即x 0+2x 0=2,解得x 0=2.因此点N 的坐标是(2,3),故选B.答案:B12.直线l 过点P (1,0),且与以A (2,1),B (0,3)为端点的线段有公共点,则直线l 斜率的取值范围为________. 解析:如图,因为k AP =1-02-1=1,k BP =3-00-1=-3,所以k ∈(-∞,-3]∪[1,+∞). 答案:(-∞,-3]∪[1,+∞)13.已知直线l :ax +y -2-a =0在x 轴和y 轴上的截距相等,则实数a =________. 解析:令x =0,则l 在y 轴上的截距为2+a ;令y =0,得直线l 在x 轴上的截距为1+2a .依题意2+a =1+2a ,解得a =1或a =-2. 答案:1或-214.(2018·武汉市模拟)若直线2x +y +m =0过圆x 2+y 2-2x +4y =0的圆心,则m 的值为________.解析:圆x 2+y 2-2x +4y =0可化为(x -1)2+(y +2)2=5,圆心为(1,-2),则直线2x +y +m =0过圆心(1,-2),故2-2+m =0,m =0. 答案:015.设点A (-1,0),B (1,0),直线2x +y -b =0与线段AB 相交,求b 的取值范围. 解析:b 为直线y =-2x +b 在y 轴上的截距,当直线y =-2x +b 过点A (-1,0)和点B (1,0)时,b 分别取得最小值和最大值.∴b 的取值范围是[-2,2].B 组——能力提升练1.已知f (x )=a sin x -b cos x ,若f ⎝ ⎛⎭⎪⎫π4-x =f ⎝ ⎛⎭⎪⎫π4+x ,则直线ax -by +c =0的倾斜角为( ) A.π3 B .π6 C.π4D .3π4解析:令x =π4,则f (0)=f ⎝ ⎛⎭⎪⎫π2,即-b =a ,则直线ax -by +c =0的斜率k =a b =-1,其倾斜角为3π4.故选D. 答案:D2.过点P (1,1)的直线,将圆形区域{(x ,y )|x 2+y 2≤4}分为两部分,使得这两部分的面积之差最大,则该直线的方程为( ) A .x +y -2=0 B .y -1=0 C .x -y =0D .x +3y -4=0解析:两部分面积之差最大,即弦长最短,此时直线垂直于过该点的直径.因为过点P (1,1)的直径所在直线的斜率为1,所以所求直线的斜率为-1,方程为x +y -2=0. 答案:A3.过点(3,1)作圆(x -1)2+y 2=1的两条切线,切点分别为A ,B ,则直线AB 的方A .2x +y -3=0B .2x -y -3=0C .4x -y -3=0D .4x +y -3=0解析:根据平面几何知识,直线AB 一定与点(3,1),(1,0)的连线垂直,而这两点连线所在直线的斜率为12,故直线AB 的斜率一定是-2,只有选项A 中直线的斜率为-2,故选A. 答案:A4.已知点A (-1,0),B (1,0),C (0,1),直线y =ax +b (a >0)将△ABC 分割为面积相等的两部分,则b 的取值范围是( ) A .(0,1) B .(1-22,12) C .(1-22,13]D .[13,12)解析:由⎩⎪⎨⎪⎧x +y =1y =ax +b 消去x ,得y =a +b a +1,当a >0时,直线y =ax +b 与x 轴交于点(-b a ,0),结合图形(图略)知12×a +b a +1×(1+b a )=12,化简得(a +b )2=a (a +1),则a =b 21-2b .∵a >0,∴b 21-2b >0,解得b <12.考虑极限位置,即a =0,此时易得b=1-22,故选B. 答案:B5.已知p :“直线l 的倾斜角α>π4”;q :“直线l 的斜率k >1”,则p 是q 的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件解析:当π2<α≤π时,tan α≤0,即k ≤0,而当k >1时,即tan α>1,则π4<α<π2,所以p 是q 的必要不充分条件,故选B.6.若经过点(1,0)的直线l 的倾斜角是直线x -2y -2=0的倾斜角的2倍,则直线l 的方程为( ) A .4x -3y -4=0 B .3x -4y -3=0 C .3x +4y -3=0D .4x +3y -4=0解析:设直线x -2y -2=0的倾斜角为α,则其斜率tan α=12,直线l 的斜率tan 2α=2tan α1-tan 2α=43.又因为l 经过点(1,0),所以其方程为4x -3y -4=0,故选A. 答案:A7.一条光线从点(-2,-3)射出,经y 轴反射后与圆(x +3)2+(y -2)2=1相切,则反射光线所在直线的斜率为( ) A .-53或-35 B .-32或-23 C .-54或-45D .-43或-34解析:由题知,反射光线所在直线过点(2,-3),设反射光线所在直线的方程为y +3=k (x -2),即kx -y -2k -3=0.∵圆(x +3)2+(y -2)2=1的圆心为(-3,2),半径为1,且反射光线与该圆相切, ∴|-3k -2-2k -3|k 2+1=1,化简得12k 2+25k +12=0,解得k =-43或k =-34.答案:D8.已知倾斜角为θ的直线与直线x -3y +1=0垂直,则23sin 2θ-cos 2θ=( )A.103 B .-103 C.1013D .-1013解析:依题意,tan θ=-3(θ∈[0,π)),所以23sin 2θ-cos 2θ=2(sin 2θ+cos 2θ)3sin 2θ-cos 2θ=2(tan 2θ+1)3tan 2θ-1=1013,故选C. 答案:C9.(2018·天津模拟)已知m ,n 为正整数,且直线2x +(n -1)y -2=0与直线mx +ny +3=0互相平行,则2m +n 的最小值为( ) A .7 B .9 C .11 D .16解析:∵直线2x +(n -1)y -2=0与直线mx +ny +3=0互相平行,∴2n =m (n -1),∴m +2n =mn ,两边同除以mn 可得2m +1n =1,∵m ,n 为正整数, ∴2m +n =(2m +n )⎝ ⎛⎭⎪⎫2m +1n =5+2n m +2m n ≥5+22n m ·2m n =9.当且仅当2n m =2mn 时取等号.故选B. 答案:B10.直线x cos θ-y -1=0(θ∈R)的倾斜角α的取值范围为________.解析:直线的斜率为k =cos θ∈[-1,1],即tan α∈[-1,1],所以α∈[0,π4]∪[34π,π).答案:[0,π4]∪[34π,π)11.过点A (1,2)且与直线x -2y +3=0垂直的直线方程为________.解析:直线x -2y +3=0的斜率为12,所以由垂直关系可得要求直线的斜率为-2,所以所求方程为y -2=-2(x -1),即2x +y -4=0. 答案:2x +y -4=012.设m ∈R ,过定点A 的动直线x +my =0和过定点B 的动直线mx -y -m +3=0交于点P (x ,y ),则|P A |·|PB |的最大值是________.解析:动直线x +my =0(m ≠0)过定点A (0,0),动直线mx -y -m +3=0过定点B (1,3).由题意易得直线x +my =0与直线mx -y -m +3=0垂直,即P A ⊥PB .所以|P A |·|PB |≤|P A |2+|PB |22=|AB |22=12+322=5,即|P A |·|PB |的最大值为5.答案:513.已知直线x =π4是函数f (x )=a sin x -b cos x (ab ≠0)图象的一条对称轴,求直线ax +by +c =0的倾斜角. 解析:f (x )=a 2+b 2sin(x -φ),其中tan φ=b a ,将x =π4代入,得sin(π4-φ)=±1,即π4-φ=k π+π2,k ∈Z ,解得φ=-k π-π4,k ∈Z.所以tan φ=tan ⎝ ⎛⎭⎪⎫-k π-π4=-1=b a ,所以直线ax +by +c =0的斜率为-a b =1,故倾斜角为π4.高中语文《椭圆》练习题 A 组——基础对点练1.已知椭圆x 225+y 2m 2=1(m >0)的左焦点为F 1(-4,0),则m =( ) A .2 B .3 C .4 D .9 解析:由4=25-m 2(m >0)⇒m =3,故选B.答案:B2.方程kx 2+4y 2=4k 表示焦点在x 轴上的椭圆,则实数k 的取值范围是( ) A .k >4 B .k =4 C .k <4D .0<k <4解析:方程kx 2+4y 2=4k 表示焦点在x 轴上的椭圆,即方程x 24+y 2k =1表示焦点在x 轴上的椭圆,可得0<k <4,故选D. 答案:D3.已知椭圆的中心在原点,离心率e =12,且它的一个焦点与抛物线y 2=-4x 的焦点重合,则此椭圆方程为( ) A.x 24+y 23=1 B .x 28+y 26=1 C.x 22+y 2=1D .x 24+y 2=1解析:依题意,可设椭圆的标准方程为x 2a 2+y 2b 2=1(a >b >0),由已知可得抛物线的焦点为(-1,0),所以c =1,又离心率e =c a =12,解得a =2,b 2=a 2-c 2=3,所以椭圆方程为x 24+y 23=1,故选A. 答案:A4.椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右顶点分别为A ,B ,左、右焦点分别为F 1,F 2,若|AF 1|,|F 1F 2|,|F 1B |成等差数列,则此椭圆的离心率为( ) A.12 B .55 C.14D .5-2解析:由题意可得2|F 1F 2|=|AF 1|+|F 1B |,即4c =a -c +a +c =2a ,故e =c a =12. 答案:A5.已知F 1,F 2是椭圆和双曲线的公共焦点,P 是它们的一个公共点,且∠F 1PF 2=π4,则椭圆和双曲线的离心率乘积的最小值为( )A.12 B .22 C .1D . 2解析:如图,假设F 1,F 2分别是椭圆和双曲线的左、右焦点,P 是第一象限的点,设椭圆的长半轴长为a 1,双曲线的实半轴长为a 2,则根据椭圆及双曲线的定义得|PF 1|+|PF 2|=2a 1,|PF 1|-|PF 2|=2a 2,∴|PF 1|=a 1+a 2,|PF 2|=a 1-a 2.设|F 1F 2|=2c ,又∠F 1PF 2=π4,则在△PF 1F 2中,由余弦定理得,4c 2=(a 1+a 2)2+(a 1-a 2)2-2(a 1+a 2)(a 1-a 2)cos π4,化简得,(2-2)a 21+(2+2)a 22=4c 2,设椭圆的离心率为e 1,双曲线的离心率为e 2,∴2-2e 21+2+2e 22=4,又2-2e 21+2+2e 22≥22-2e 21·2+2e 22=22e 1·e 2,∴22e 1·e 2≤4,即e 1·e 2≥22,即椭圆和双曲线的离心率乘积的最小值为22.故选B. 答案:B6.若x 2+ky 2=2表示焦点在y 轴上的椭圆,则实数k 的取值范围是________. 解析:将椭圆的方程化为标准形式得y 22k +x 22=1,因为x 2+ky 2=2表示焦点在y轴上的椭圆,所以2k >2,解得0<k <1. 答案:(0,1)7.若椭圆的方程为x 210-a +y 2a -2=1,且此椭圆的焦距为4,则实数a =________.解析:由题可知c =2.①当焦点在x 轴上时,10-a -(a -2)=22,解得a =4.②当焦点在y 轴上时,a -2-(10-a )=22,解得a =8.故实数a =4或8. 答案:4或88.已知椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率等于13,其焦点分别为A ,B .C 为椭圆上异于长轴端点的任意一点,则在△ABC 中,sin A +sin Bsin C 的值等于________.解析:在△ABC 中,由正弦定理得sin A +sin B sin C =|CB |+|CA ||AB |,因为点C 在椭圆上,所以由椭圆定义知|CA |+|CB |=2a ,而|AB |=2c ,所以sin A +sin B sin C =2a 2c =1e =3. 答案:39.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左,右焦点分别为F 1(-c,0),F 2(c,0),过F 2作垂直于x 轴的直线l 交椭圆C 于A ,B 两点,满足|AF 2|=36c . (1)求椭圆C 的离心率;(2)M ,N 是椭圆C 短轴的两个端点,设点P 是椭圆C 上一点(异于椭圆C 的顶点),直线MP ,NP 分别和x 轴相交于R ,Q 两点,O 为坐标原点.若|OR →|·|OQ →|=4,求椭圆C 的方程.解析:(1)∵点A 的横坐标为c , 代入椭圆,得c 2a 2+y 2b 2=1. 解得|y |=b 2a =|AF 2|,即b 2a =36c , ∴a 2-c 2=36ac .∴e 2+36e -1=0,解得e =32. (2)设M (0,b ),N (0,-b ),P (x 0,y 0), 则直线MP 的方程为y =y 0-bx 0x +b .令y =0,得点R 的横坐标为bx 0b -y 0.直线NP 的方程为y =y 0+bx 0x -b .令y =0,得点Q 的横坐标为bx 0b +y 0. ∴|OR →|·|OQ →|=⎪⎪⎪⎪⎪⎪b 2x 20b 2-y 20=⎪⎪⎪⎪⎪⎪⎪⎪a 2b 2-a 2y 20b 2-y 20=a 2=4,∴c 2=3,b 2=1,∴椭圆C 的方程为x 24+y 2=1.10.(2018·沈阳模拟)椭圆C :x 2a 2+y 2b 2=1(a >b >0),其中e =12,焦距为2,过点M (4,0)的直线l 与椭圆C 交于点A ,B ,点B 在A ,M 之间.又线段AB 的中点的横坐标为47,且AM →=λMB →. (1)求椭圆C 的标准方程. (2)求实数λ的值.解析:(1)由条件可知,c =1,a =2,故b 2=a 2-c 2=3,椭圆的标准方程为x 24+y 23=1.(2)由题意可知A ,B ,M 三点共线, 设点A (x 1,y 1),点B (x 2,y 2).若直线AB ⊥x 轴,则x 1=x 2=4,不合题意. 则AB 所在直线l 的斜率存在,设为k , 则直线l 的方程为y =k (x -4).由⎩⎨⎧y =k (x -4),x 24+y 23=1,消去y 得(3+4k 2)x 2-32k 2x +64k 2-12=0.①由①的判别式Δ=322k 4-4(4k 2+3)·(64k 2-12)=144(1-4k 2)>0,解得k 2<14,且⎩⎪⎨⎪⎧x 1+x 2=32k 24k 2+3,x 1x 2=64k 2-124k 2+3.由x 1+x 22=16k 23+4k 2=47, 可得k 2=18,将k 2=18代入方程①,得7x 2-8x -8=0. 则x 1=4-627,x 2=4+627.又因为AM →=(4-x 1,-y 1),MB →=(x 2-4,y 2), AM →=λMB →,所以λ=4-x 1x 2-4,所以λ=-9-427.B 组——能力提升练1.(2018·合肥市质检)已知椭圆M :x 2a 2+y 2=1,圆C :x 2+y 2=6-a 2在第一象限有公共点P ,设圆C 在点P 处的切线斜率为k 1,椭圆M 在点P 处的切线斜率为k 2,则k 1k 2的取值范围为( )A .(1,6)B .(1,5)C .(3,6)D .(3,5)解析:由于椭圆M :x 2a2+y 2=1,圆C :x 2+y 2=6-a 2在第一象限有公共点P ,所以⎩⎪⎨⎪⎧a 2>6-a 2,6-a 2>1,解得3<a 2<5.设椭圆M :x 2a 2+y 2=1与圆C :x 2+y 2=6-a 2在第一象限的公共点P (x 0,y 0),则椭圆M 在点P 处的切线方程为x 0xa 2+y 0y =1,圆C 在P 处的切线方程为x 0x +y 0y =6-a 2,所以k 1=-x 0y 0,k 2=-x 0a 2y 0,k 1k 2=a 2,所以k 1k 2∈(3,5),故选D. 答案:D2.已知椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,且|F 1F 2|=2c ,若椭圆上存在点M 使得sin ∠MF 1F 2a =sin ∠MF 2F 1c,则该椭圆离心率的取值范围为( )A .(0,2-1)B .(22,1) C .(0,22)D .(2-1,1)解析:在△MF 1F 2中,|MF 2|sin ∠MF 1F 2=|MF 1|sin ∠MF 2F 1,而sin ∠MF 1F 2a =sin ∠MF 2F 1c ,∴|MF 2||MF 1|=sin ∠MF 1F 2sin ∠MF 2F 1=ac .①又M 是椭圆x 2a 2+y 2b 2=1上一点, F 1,F 2是该椭圆的焦点, ∴|MF 1|+|MF 2|=2a .②由①②得,|MF 1|=2ac a +c ,|MF 2|=2a 2a +c .显然,|MF 2|>|MF 1|,∴a -c <|MF 2|<a +c ,即a -c <2a 2a +c <a +c ,整理得c 2+2ac -a 2>0, ∴e 2+2e -1>0, 解得e >2-1,又e <1,∴2-1<e <1,故选D. 答案:D3.已知P (1,1)为椭圆x 24+y 22=1内一定点,经过P 引一条弦,使此弦被P 点平分,则此弦所在的直线方程为________.解析:易知此弦所在直线的斜率存在,所以设斜率为k ,弦的端点坐标为(x 1,y 1),(x 2,y 2), 则x 214+y 212=1,① x 224+y 222=1,②①-②得(x 1+x 2)(x 1-x 2)4+(y 1+y 2)(y 1-y 2)2=0,∵x 1+x 2=2,y 1+y 2=2, ∴x 1-x 22+y 1-y 2=0, ∴k =y 1-y 2x 1-x 2=-12.∴此弦所在的直线方程为y -1=-12(x -1), 即x +2y -3=0. 答案:x +2y -3=04.已知椭圆C :x 22+y 2=1的两焦点为F 1,F 2,点P (x 0,y 0)满足0<x 202+y 20<1,则|PF 1|+|PF 2|的取值范围是________.解析:由点P (x 0,y 0)满足0<x 202+y 20<1,可知P (x 0,y 0)一定在椭圆内(不包括原点),因为a =2,b =1,所以由椭圆的定义可知|PF 1|+|PF 2|<2a =22,当P (x 0,y 0)与F 1或F 2重合时,|PF 1|+|PF 2|=2,又|PF 1|+|PF 2|≥|F 1F 2|=2,故|PF 1|+|PF 2|的取值范围是[2,22). 答案:[2,22)5.(2018·保定模拟)椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率e =32,a +b =3.(1)求椭圆C 的方程.(2)如图,A ,B ,D 是椭圆C 的顶点,P 是椭圆C 上除顶点外的任意一点,直线DP 交x 轴于点N ,直线AD 交BP 于点M ,设BP 的斜率为k ,MN 的斜率为m .证明:2m -k 为定值. 解析:(1)因为e =32=c a , 所以a =23c ,b =13c .代入a +b =3得,c =3,a =2,b =1. 故椭圆C 的方程为x 24+y 2=1.(2)证明:因为B (2,0),P 不为椭圆顶点,则直线BP 的方程为y =k (x -2)⎝ ⎛⎭⎪⎫k ≠0,k ≠±12,① 把①代入x 24+y 2=1, 解得P ⎝ ⎛⎭⎪⎪⎫8k 2-24k 2+1,-4k 4k 2+1. 直线AD 的方程为y =12x +1.② ①与②联立解得M ⎝ ⎛⎭⎪⎪⎫4k +22k -1,4k 2k -1.由D (0,1),P ⎝ ⎛⎭⎪⎪⎫8k 2-24k 2+1,-4k 4k 2+1,N (x,0)三点共线知-4k4k 2+1-18k 2-24k 2+1-0=0-1x -0,得N ⎝ ⎛⎭⎪⎪⎫4k -22k +1,0. 所以MN 的斜率为m =4k2k -1-04k +22k -1-4k -22k +1=4k (2k +1)2(2k +1)2-2(2k -1)2=2k +14,则2m -k =2k +12-k =12(定值).。

高中数学直线方程相关试题(含答案)

高中数学直线方程相关试题(含答案)

高中数学直线练习题一、选择题1.已知点M (0,-1),点N 在直线x -y +1=0上,若直线MN 垂直于直线x +2y -3=0,则点N 的坐标是( )A.(-2,-1)B.(2,3)C.(2,1)D.(-2,1) 答案 B解析 由题意知,直线MN 的方程为2x -y -1=0.又∵点N 在直线x -y +1=0上,∴⎩⎪⎨⎪⎧ x -y +1=0,2x -y -1=0,解得⎩⎪⎨⎪⎧x =2,y =3. 2.三点A (3,1),B (-2,k ),C (8,11)在一条直线上,则k 的值为( )A.-8B.-9C.-6D.-7答案 B解析 ∵三点A (3,1),B (-2,k ),C (8,11)在一条直线上,∴k AB =k AC ,∴k -1-2-3=11-18-3, 解得k =-9.故选B.3.若三条直线y =2x ,x +y =3,mx +ny +5=0相交于同一点,则点(m ,n )可能是( )A.(1,-3)B.(3,-1)C.(-3,1)D.(-1,3)考点 两条直线的交点题点 求两条直线的交点坐标答案 A解析 由已知可得直线y =2x ,x +y =3的交点为(1,2),此点也在直线mx +ny +5=0上, ∴m +2n +5=0,再将四个选项代入,只有A 满足此式.4.与直线l :x -y +1=0关于y 轴对称的直线的方程为( )A.x +y -1=0B.x -y +1=0C.x +y +1=0D.x -y -1=0 考点 对称问题的求法题点 直线关于直线的对称问题答案 A解析 直线l :x -y +1=0与两坐标轴的交点分别为(-1,0)和(0,1),因为这两点关于y 轴的对称点分别为(1,0)和(0,1),所以直线l :x -y +1=0关于y 轴对称的直线方程为x +y -1=0.5.已知A (2,3),B (-4,a ),P (-3,1),Q (-1,2),若直线AB ∥PQ ,则a 的值为( )A.0B.1C.2D.3答案 A解析 ∵直线AB 的斜率k AB =3-a 6,直线PQ 的斜率k PQ =2-1-1-(-3)=12,直线AB ∥PQ ,∴3-a 6=12,解得a =0,故选A. 6.如果AB >0,BC >0,则直线Ax -By -C =0不经过的象限是( )A.第一象限B.第二象限C.第三象限D.第四象限考点 直线的一般式方程题点 直线的一般式方程的概念答案 B解析 直线Ax -By -C =0化成斜截式方程y =A B x -C B, ∵AB >0,BC >0,∴斜率大于0,纵截距小于0,∴直线不经过第二象限.7.已知点P (2,-3),Q (3,2),直线ax -y +2=0与线段PQ 相交,则a 的取值范围是( )A.a ≥43B.a ≤-43C.-52≤a ≤0D.a ≤-43或a ≥12 考点 直线的图象特征与倾斜角、斜率的关系题点 倾斜角、斜率的变化趋势及其应用答案 C解析 直线ax -y +2=0可化为y =ax +2,斜率k =a ,恒过定点A (0,2),如图,直线与线段PQ 相交,则k AP ≤k ≤0,即-52≤a ≤0,故选C. 8.过点A (3,-1)且在两坐标轴上截距的绝对值相等的直线有( )A.2条B.3条C.4条D.无数多条答案 B解析 由题意知,直线的斜率存在,设所求直线的方程为y =k (x -3)-1.当y =0时,得横截距x =3+1k; 当x =0时,得纵截距y =-1-3k .由题意得⎪⎪⎪⎪3+1k =|-1-3k |, ∴-1-3k =3+1k 或-1-3k =-1k-3, ∴k =-1或k =-13或k =1, ∴所求直线有3条.故选B.二、填空题9.若直线l 的斜率是过点(1,6),(-1,2)的直线的斜率的2倍,则直线l 的斜率为________. 答案 4解析 过点(1,6),(-1,2)的直线的斜率为6-21-(-1)=2,∴l 的斜率为k =2×2=4. 10.若无论m 为何值,直线l :(2m +1)x +(m +1)y -7m -4=0恒过一定点P ,则点P 的坐标为________.答案 (3,1)解析 特殊值法:令m =-1,得-x +3=0;令m =0,得x +y -4=0.联立⎩⎪⎨⎪⎧ x =3,x +y -4=0,解得⎩⎪⎨⎪⎧x =3,y =1. 故点P 的坐标为(3,1).11.设直线l 经过点(-1,1),则当点(2,-1)与直线l 的距离最远时,直线l 的方程为________. 答案 3x -2y +5=0解析 数形结合(图略)可知,当直线l 与过两点的直线垂直时,点(2,-1)与直线l 的距离最远,因此所求直线的方程为y -1=-2-(-1)-1-1·(x +1),即3x -2y +5=0. 三、解答题12.已知直线l 的倾斜角为135°,且经过点P (1,1).(1)求直线l 的方程;(2)求点A (3,4)关于直线l 的对称点A ′的坐标.解 (1)∵k =tan 135°=-1,∴由直线的点斜式方程得直线l 的方程为y -1=-(x -1),即x +y -2=0.(2)设点A ′的坐标为(a ,b ),则根据题意有⎩⎪⎨⎪⎧ b -4a -3×(-1)=-1,a +32+b +42-2=0,故a =-2,b =-1.∴A ′的坐标为(-2,-1).13.在平面直角坐标系中,已知A (-1,2),B (2,1),C (1,0).(1)判定△ABC 的形状;(2)求过点A 且在x 轴和y 轴上的截距互为倒数的直线方程;(3)已知l 是过点A 的直线,点C 到直线l 的距离为2,求直线l 的方程.考点 分类讨论思想的应用题点 分类讨论思想的应用解 (1)k AC =-1,k BC =1,k AC ·k BC =-1,且|AC |≠|BC |,∴△ABC 为直角三角形.(2)设所求直线方程为x a+ay =1(a ≠0), 则-1a +2a =1,即a =-12或a =1, ∴-2x -12y =1或x +y =1, ∴所求直线方程为-2x -12y =1或x +y =1,即4x +y +2=0或x +y -1=0. (3)①当直线l 的斜率不存在时,l 的方程为x =-1,此时点C 到直线l 的距离为2,符合题意;②当直线l 的斜率存在时,设斜率为k ,则直线l 的方程为y -2=k (x +1),即kx -y +k +2=0,则点C 到直线l 的距离d =|2k +2|k 2+1=2,解得k =0, ∴直线l 的方程为y -2=0.综上可知,直线l 的方程为x +1=0或y -2=0.14.已知平面上一点M (5,0),若直线上存在点P 使|PM |=4,则称该直线为“切割型直线”.下列直线中是“切割型直线”的是( )①y =x +1;②y =2;③y =43x ;④y =2x +1. A.①③B.①④C.②③D.③④ 考点 点到直线的距离题点 与点到直线的距离有关的最值问题 答案 C解析 设点M 到下列4条直线的距离分别为d 1,d 2,d 3,d 4,对于①,d 1=|5-0+1|2=32>4; 对于②,d 2=2<4;对于③,d 3=|5×4-3×0|5=4; 对于④,d 4=|5×2-0+1|5=115>4, 所以符合条件的有②③.15.已知一束光线经过直线l 1:3x -y +7=0和l 2:2x +y +3=0的交点M ,且射到x 轴上一点N (1,0)后被x 轴反射.(1)求点M 关于x 轴的对称点P 的坐标;(2)求反射光线所在的直线l 3的方程.考点 对称问题的求法题点 关于对称的综合应用解 (1)由⎩⎪⎨⎪⎧ 3x -y +7=0,2x +y +3=0,得⎩⎪⎨⎪⎧x =-2,y =1,∴M (-2,1). ∴点M 关于x 轴的对称点P 的坐标为(-2,-1).(2)易知l 3经过点P 与点N , ∴l 3的方程为y -0-1-0=x -1-2-1, 即x -3y -1=0.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.已知点
(1,2),(3,1)A B ,则线段AB 的垂直平分线的方程是( ) A .524=+y x B .524=-y x
C .52=+y x
D .52=-y x
2.若
1
(2,3),(3,2),(,)2
A B C m --三点共线 则m 的值为(

A.21 B.21
- C.2- D.2
3.直线x a y
b
221-=在y 轴上的截距是( )
A .
b
B .2b -
C .b 2
D .±b
4.直线13kx y k -+=,当k 变动时,所有直线都通过定点( )
A .(0,0)
B .(0,1)
C .(3,1)
D .(2,1)
5.直线cos sin 0x y a θ
θ++=与sin cos 0x y b θθ-+=的位置关系是( )
A .平行
B .垂直
C .斜交
D .与,,a b θ的值有关 6.两直线330x y +
-=与610x my ++=平行,则它们之间的距离为( )
A .4
B
C
D 7.已知点
(2,3),(3,2)A B --,若直线l 过点(1,1)P 与线段AB 相交,则直线l 的
斜率k 的取值范围是( )
A .3
4
k ≥
B .
324k ≤≤ C .324
k k ≥≤或 D .2k ≤
二、填空题 1.方程
1=+y x 所表示的图形的面积为_________。

2.与直线5247=+y
x 平行,并且距离等于3的直线方程是____________。

3.已知点(,)M a b 在直线1543=+y
x 上,则2
2b a +的最小值为
4.将一张坐标纸折叠一次,使点(0,2)与点(4,0)重合,且点(7,3)与点(,)m n 重合,则n m +的值是___________________。

5.设),0(为常数k k k b a ≠=+,则直线1=+by ax 恒过定点 .
三、解答题 1.求经过点(2,2)A -并且和两个坐标轴围成的三角形的面积是1的直线方程。

2.一直线被两直线0653:,064:21
=--=++y x l y x l 截得线段的中点是P 点,当P 点
分别为(0,0),(0,1)时,求此直线方程。

2.
把函数
()y f x =在x a =及x b =之间的一段图象近似地看作直线,设
a c
b ≤≤,
证明:
()f c 的近似值是:()()()[]f a c a
b a
f b f a +
---.
4.直线
3
1y x =-
+和x 轴,y 轴分别交于点,A B ,在线段AB 为边在第一象限内作等边△ABC ,如果在第一象限内有一点1
(,)2
P m 使得△ABP 和△ABC 的面积相等,
求m 的值。

一、选择题
1.如果直线l 沿x 轴负方向平移3个单位再沿
y 轴正方向平移1个单位后,
又回到原来的位置,那么直线l 的斜率是( ) A .-
13
B .3-
C .
13
D .3
2.若
()()P a b Q c d ,、,都在直线y mx k =+上,则PQ
用a c m 、、表示为( )
A .()a
c m ++12
B .()m
a c - C .
a c m
-+12
D .
a c m -+12
3.直线l 与两直线1y =和70x y --=分别交于,A B 两点,若线段AB 的中点为 (1,1)M -,则直线l 的斜率为( )
A .
23 B .32 C .32- D . 23- 4.△ABC 中,点(4,1)A -,AB 的中点为(3,2)M ,重心为(4,2)P ,则边BC 的长为( )
A .5
B .4
C .10
D .8
5.下列说法的正确的是 ( )
A .经过定点()P x y 00
,的直线都可以用方程()y y
k x x -=-0
0表示
B .经过定点
()b A ,0的直线都可以用方程y kx b =+表示
C .不经过原点的直线都可以用方程x a y
b
+=1表示 D .经过任意两个不同的点()()222111
y x P y x P ,、,的直线都可以用方程
()()()()y y x x x x y y --=--121121表示
6.若动点P 到点(1,1)F 和直线340x y +-=的距离相等,则点P 的轨迹方程为( )
A .360x y +
-= B .320x y -+=
C .320x y +-=
D .320x y -+=
二、填空题 1.已知直线,32:1
+=x y l 2l 与1l 关于直线x y -=对称,直线3l ⊥2l ,则3l 的斜率是______.
2.直线10x y -
+=上一点P 的横坐标是3,若该直线绕点P 逆时针旋转090得直线l ,
则直线l 的方程是 .
3.一直线过点(3,4)M -,并且在两坐标轴上截距之和为12,这条直线方程是__________. 4.若方程02222
=++-y x my x 表示两条直线,则m 的取值是 .
5.当2
1
0<
<
k 时,两条直线1-=-k y kx 、k x ky 2=-的交点在 象限.
三、解答题
1.经过点(3,5)M 的所有直线中距离原点最远的直线方程是什么 2.求经过点(1,2)P 的直线,且使(2,3)A ,(0,5)B -到它的距离相等的直线方程
3.已知点
(1,1)A ,(2,2)B ,点P 在直线x y 2
1=
上,求2
2PB PA +取得 最小值时P 点的坐标。

4.求函数
()f x =的最小值。

相关文档
最新文档