2016版《一点一练》高考数学(理科)专题演练:第八章 解析几何(含两年高考一年模拟)

合集下载

2016版《一点一练》高考数学(理科)专题演练:第四章 平面向量(含两年高考一年模拟)

2016版《一点一练》高考数学(理科)专题演练:第四章 平面向量(含两年高考一年模拟)

60°,则BD→·CD →=( ) A .-32a 2 B .-34a 2 C.34a 2 D.32a 22.(2015·新课标全国Ⅰ)设D 为△ABC 所在平面内一点,BC →=3CD→,则( ) A.AD →=-13AB →+43AC → B.AD →=13AB →-43AC → C.AD →=43AB →+13AC → D.AD →=43AB →-13AC →3.(2015·陕西)对任意向量a ,b ,下列关系式中不恒成立的是( )A .|a ·b |≤|a ||b |B .|a -b |≤||a |-|b ||C .(a +b )2=|a +b |2D .(a +b )(a -b )=a 2-b 24.(2015·重庆)若非零向量a ,b 满足|a |=223|b |,且(a -b )⊥(3a +2b ),则a 与b 的夹角为( )A.π4B.π2C.3π4 D .π5.(2014·新课标全国Ⅰ)设D ,E ,F 分别为△ABC 的三边BC ,CA ,AB 的中点,则EB→+FC →=( )A.AD →B.12AD →C.BC →D.12BC →6.(2014·福建)设M 为平行四边形ABCD 对角线的交点,O 为平行四边形ABCD 所在平面内任意一点,则OA →+OB →+OC →+OD →等于( )A.OM→ B .2OM → C .3OM → D .4OM → 7.(2014·浙江)设θ为两个非零向量a ,b 的夹角.已知对任意实数t ,|b +t a |的最小值为1.( )A .若θ确定,则|a |唯一确定B .若θ确定,则|b |唯一确定C .若|a |确定,则θ唯一确定D .若|b |确定,则θ唯一确定8.(2014·浙江)记max{x ,y }=⎩⎪⎨⎪⎧x ,x ≥y ,y ,x <y ,min{x ,y }=⎩⎪⎨⎪⎧y ,x ≥y ,x ,x <y ,设a ,b 为平面向量,则( )A .min{|a +b |,|a -b |}≤min{|a|,|b |}B .min{|a +b |,|a -b |}≥min{|a |,|b |}C .max{|a +b |2,|a -b |2}≤|a |2+|b |2D .max{|a +b |2,|a -b |2}≥|a |2+|b |29.(2014·山东)已知向量a =(1,3),b =(3,m ),若向量a ,b 的夹角为π6,则实数m =( )A .2 3 B. 3 C .0 D .- 310.(2014·广东)已知向量a =(1,2),b =(3,1),则b -a =( ) A .(-2,1) B .(2,-1) C .(2,0) D .(4,3)11.(2014·福建)在下列向量组中,可以把向量a =(3,2)表示出来的是( )A .e 1=(0,0),e 2=(1,2)B .e 1=(-1,2),e 2=(5,-2)C .e 1=(3,5),e 2=(6,10)D .e 1=(2,-3),e 2=(-2,3)12.(2014·北京)已知向量a =(2,4),b =(-1,1),则2a -b =( ) A .(5,7) B .(5,9) C .(3,7) D .(3,9)13.(2014·安徽)设a ,b 为非零向量,|b |=2|a |,两组向量x 1,x 2,x 3,x 4和y 1,y 2,y 3,y 4均由2个a 和2个b 排列而成.若x 1·y 1+x 2·y 2+x 3·y 3+x 4·y 4所有可能取值中的最小值为4|a |2,则a 与b 的夹角为( )A.2π3B.π3C.π6 D .014.(2014·新课标全国Ⅱ)设向量a ,b 满足|a +b |=10,|a -b |=6,则a ·b =( )A .1B .2C .3D .515.(2014·新课标全国Ⅰ)已知A ,B ,C 为圆O 上的三点,若AO →=12(AB →+AC →),则AB→与AC →的夹角为________. 16.(2014·北京)已知向量a ,b 满足|a |=1,b =(2,1),且λa +b =0(λ∈R ),则|λ|=________.17.(2014·江西)已知单位向量e 1与e 2的夹角为α,且cos α=13,向量a =3e 1-2e 2与b =3e 1-e 2的夹角为β,则cos β=________.1.,|a -b |<|a |+|b |,则綈p 为( )A .∀平面向量a 和b ,|a -b |≥|a |+|b |B .∃平面向量a 和b ,|a -b |<|a |+|b |C .∃平面向量a 和b ,|a -b |>|a |+|b |D .∃平面向量a 和b ,|a -b |≥|a |+|b |2.(2015·北京四中模拟)设x ,y ∈R ,向量a =(x ,1),b =(1,y ),c =(2,-4),且a ⊥c, b ∥c ,则|a +b |=( )A. 5B.10 C .2 5 D .103.(2015·朝阳区模拟)设a ,b 是两个非零的平面向量,下列说法正确的是( )①若a ·b =0,则有|a +b |=|a -b |; ②|a ·b |=|a ||b |;③若存在实数λ,使得a =λb ,则|a +b |=|a |+|b |; ④若|a +b |=|a |-|b |,则存在实数λ,使得a =λb . A .①③ B .①④ C .②③ D .②④4.(2015·吉林长春模拟)已知平面向量a ,b 满足|a |=3,|b |=2,a ·b =-3,则|a +2b |=( )A .1 B.7 C .4+ 3 D .275.(2015·甘肃模拟)已知平面向量a 与b 的夹角为π3,且|b |=1,|a +2b |=23,则|a |=( )A .1 B. 3 C .3 D .26.(2015·广东三门模拟)若非零向量a ,b 满足|a +b |=|b |,则( ) A .|2a |>|2a +b | B .|2a |<|2a +b | C .|2b |<|a +2b | D .|2b |>|a +2b |7.(2015·四川雅安模拟)已知向量a 是与单位向量b 夹角为60°的任意向量,则对任意的正实数t ,|t a -b |的最小值是( )A .0 B.12 C.32 D .18.(2015·安徽安庆模拟)已知a 、b 为平面向量,若a +b 与a 的夹角为π3,a +b 与b 的夹角为π4,则|a ||b |=( )A.33B.64C.53D.639.(2015·江南十校模拟)已知点A (1,-1),B (4,0),C (2,2)平面区域D 是由所有满足AP →=λAB →+μAC →(1≤λ≤a ,1≤μ≤b )的点P (x ,y )组成的区域,若区域D 的面积为8,则4a +b 的最小值为( )A .5B .4 2C .9D .5+4 210.(2015·湖南常德模拟)已知AB →=(2,1),CD →=(5,5),则向量AB→在CD →方向上的投影为________. 11.(2015·江苏启东模拟)已知平面上四个互异的点A 、B 、C 、D 满足:(AB →-AC →)·(2AD →-BD →-CD →)=0,则△ABC 的形状是________.12.(2015·皖江名校模拟)在△ABC 中,D 为BC 边上的中点,P 0是边AB 上的一个定点,P 0B =14AB ,且对于AB 上任一点P ,恒有PB →·PC →≥P 0B →·P 0C →,则下列结论中正确的是________(填上所有正确命题的序号).①当P 与A ,B 不重合时,PB →+PC →与PD →共线; ②PB→·PC →=PD 2→-DB 2→; ③存在点P ,使|PD →|<|P 0D →|; ④P 0C →·AB →=0; ⑤AC =BC .13.(2015·江苏四市模拟)在平面直角坐标系xOy 中,设向量a =(1,2sin θ),b =⎝ ⎛⎭⎪⎫sin ⎝⎛⎭⎪⎫θ+π3,1,θ∈R .(1)若a ⊥b ,求tan θ的值;(2)若a ∥b ,且θ∈⎝⎛⎭⎪⎫0,π2,求θ的值.1.(2015·四川)设四边形ABCD 为平行四边形,|AB |=6,|AD →|=4,若点M ,N 满足BM→=3MC →,DN →=2NC →,则AM →·NM →=( ) A .20 B. 15 C .9 D .62.(2015·安徽)△ABC 是边长为2的等边三角形,已知向量a ,b 满足AB→=2a ,AC →=2a +b ,则下列结论正确的是( ) A .|b |=1 B .a ⊥b C .a ·b =1 D .(4a +b )⊥BC→ 3.(2015·福建)已知AB →⊥AC →,|AB →|=1t ,|AC →|=t ,若点P 是△ABC 所在平面内的一点,且AP →=AB →|AB→|+4AC →|AC →|,则PB →·PC→的最大值等于( ) A .13 B .15 C .19 D .214.(2014·天津)已知菱形ABCD 的边长为2,∠BAD =120°,点E ,F 分别在边BC ,DC 上,BE =λBC ,DF =μDC ,若AE →·AF →=1,CE →·CF →=-23,则λ+μ=( ) A.12 B.23 C.56 D.7125.(2014·四川)已知F 为抛物线y 2=x 的焦点,点A ,B 在该抛物线上且位于x 轴的两侧,OA →·OB →=2(其中O 为坐标原点),则△ABO 与△AFO 面积之和的最小值是( )A .2B .3 C.1728 D.106.(2014·安徽)在平面直角坐标系xOy 中,已知向量a ,b ,|a |=|b |=1,a ·b =0,点Q 满足OQ →=2(a +b ).曲线C ={P |OP →=a cos θ+b sin θ,0≤θ<2π},区域Ω={P |0<r ≤|PQ →|≤R ,r <R }.若C ∩Ω为两段分离的曲线,则( )A .1<r <R <3B .1<r <3≤RC .r ≤1<R <3D .1<r <3<R7.(2015·天津)在等腰梯形ABCD 中,已知AB ∥DC ,AB =2,BC =1,∠ABC =60°,动点E 和F 分别在线段BC 和DC 上,且BE →=λBC →,DF →=19λDC →,则|AE →|·|AF→|的最小值为________. 8.(2015·浙江)已知e 1,e 2是空间单位向量,e 1·e 2=12,若空间向量b 满足b ·e 1=2,b ·e 2=52,且对于任意x ,y ∈R ,|b -(x e 1+ye 2)|≥|b -(x 0e 1+y 0e 2)|=1(x 0,y 0∈R ),则x 0=________,y 0=________,|b |=________.9.(2014·天津)已知菱形ABCD 的边长为2,∠BAD =120°,点E ,F 分别在边BC ,DC 上,BC =3BE ,DC =λDF ,若AE →·AF →=1,则λ的值为________.10.(2014·江苏)如图,在平行四边形ABCD 中, 已知AB =8,AD =5,CP →=3 PD →,AP →·BP →=2,则AB→·AD →的值是________.11.(2014·山东)在△ABC 中,已知AB →·AC →=tan A ,当A =π6时,△ABC 的面积为________.12.(2014·陕西)在直角坐标系xOy 中,已知点A (1,1),B (2,3),C (3,2),点P (x ,y )在△ABC 三边围成的区域(含边界)上,且OP →=mAB →+nAC→(m ,n ∈R ). (1)若m =n =23,求|OP→|; (2)用x ,y 表示m -n ,并求m -n 的最大值.1.(2015·沈阳质检)已知平行四边形ABCD 中,AD =(2,8),AB →=(-3,4),对角线AC 与BD 相交于点M ,则AM→的坐标为( ) A.⎝ ⎛⎭⎪⎫-12,-6 B.⎝ ⎛⎭⎪⎫-12,6 C.⎝ ⎛⎭⎪⎫12,-6 D.⎝ ⎛⎭⎪⎫12,6 2.(2015·辽宁五校联考)已知直角坐标系内的两个向量a =(1,3),b =(m ,2m -3)使平面内的任意一个向量c 都可以唯一地表示成c =λa +μb ,则m 的取值范围是( )A .(-∞,0)∪(0,+∞)B .(-∞,-3)∪(-3,+∞)C .(-∞,3)∪(3,+∞)D .[-3,3)3.(2015·广东肇庆模拟)已知向量a =(1,-cos θ),b =(1,2cos θ)且a ⊥b ,则cos 2θ等于( )A .-1B .0 C.12 D.224.(2015·天津一中模拟)已知向量a ,b ,c 中任意两个都不共线,且a +b 与c 共线,b +c 与a 共线, 则向量a +b +c =( )A .aB .bC .cD .0 5.(2015·上海市浦东新区模拟)如图所示,点A ,B ,C 是圆O 上的三点,线段OC 与线段AB交于圆内一点,若OC→=mOA →+nOB →,则( ) A .0<m +n <1 B .m +n >1 C .m +n <-1 D .-1<m +n <06.(2015·天津市滨海新区模拟)在平行四边形ABCD 中,AE →=EB →,CF→=2FB →,连接CE 、DF 相交于点M ,若AM →=λAB →+μAD →,则实数λ与μ的乘积为( )A.14B.38C.34D.437.(2015·广东肇庆市模拟)定义空间两个向量的一种运算a ⊗b =|a |·|b |sin 〈a ,b 〉,则关于空间向量上述运算的以下结论中,①a ⊗b =b ⊗a ,②λ(a ⊗b )=(λa )⊗b ,③(a +b )⊗c =(a ⊗c )+(b ⊗c ),④若a =(x 1,y 1),b =(x 2,y 2),则a ⊗b =|x 1y 2-x 2y 1|.恒成立的有( )A .1个B .2个C .3个D .4个 8.(2015·山东济宁模拟)如图,在矩形ABCD 中,AB =2,BC =2,点E 为BC 的中点,点F 在边CD 上,若AB→·AF →=2,则AE →·BF →的值是________. 9.(2015·湖北宜昌模拟)△ABC 的三个角A ,B ,C 所对的边分别为a ,b ,c ,向量m =(2,-1),n =(sin B sin C ,3+2cos B cos C ),且m ⊥n .(1)求角A的大小;(2)现给出以下三个条件:①B=45°;②2sin C-(3-1)·sin B =0;③a=2 .试从中再选择两个条件以确定△ABC,并求出所确定的△ABC的面积.第四章 平面向量 考点13 平面向量的概念与运算【两年高考真题演练】 1.D [如图所示,由题意,得BC =a ,CD =a ,∠BCD =120°.BD 2=BC 2+CD 2-2BC ·CD ·cos 120°=a 2+a 2-2a ·a ×⎝ ⎛⎭⎪⎫-12=3a 2,∴BD =3a .∴BD →·CD →=|BD →||CD →|cos 30°=3a 2×32=32a 2.]2.A [∵BC →=3CD →,∴AC →-AB →=3(AD →-AC →),即4AC →-AB →=3AD→, ∴AD →=-13AB →+43AC →.] 3.B4.A [由题意(a -b )·(3a +2b )=3a 2-a·b -2b 2=0,即3|a |2-|a |·|b |cos θ-2|b |2=0,所以3×⎝⎛⎭⎪⎫2232-223cos θ-2=0,cos θ=22,θ=π4,选A.]5.A [EB →+FC →=12(AB →+CB →)+12(AC →+BC →)=12(AB →+AC →)=AD →,故选A.]6.D [依题意知,点M 是线段AC 的中点,也是线段BD 的中点,所以OA →+OC →=2OM →,OB →+OD →=2OM →,所以OA →+OC →+OB →+OD →=4OM→,故选D.] 7.B [|b +t a |2=|a |2t 2+2a·b ·t +|b |2 =|a |2t 2+2|a||b|cos θ·t +|b |2, 设f (t )=|a |2t 2+2|a||b|cos θ·t +|b |2, 则二次函数f (t )的最小值为1, 即4|a|2|b|2-4|a|2|b|2cos 2θ4|a|2=1,化简得|b |2sin 2θ=1.∵|b |>0,0≤θ≤π,∴|b |sin θ=1, 若θ确定,则|b |唯一确定, 而|b|确定,θ不确定,故选B.]8.D [由三角形法则知min{|a +b |,|a -b|}与min{|a|,|b|}的大小不确定,由平行四边形法则知,max{|a +b |,|a -b|}所对角大于或等于90°,由余弦定理知max{|a +b|2,|a -b|2}≥|a|2+|b |2,故选D.]9.B [根据平面向量的夹角公式可得1×3+3m 2×9+m 2=32,即3+3m =3×9+m 2,两边平方并化简得63m =18,解得m =3,经检验符合题意.]10.B [由于a =(1,2),b =(3,1),于是b -a =(3,1)-(1,2)=(2,-1),选B.]11.B [若e 1=(0,0),e 2=(1,2),则e 1∥e 2,而a 不能由e 1,e 2表示,排除A ;若e 1=(-1,2),e 2=(5,-2),因为-15≠2-2,所以e 1,e 2不共线,根据共面向量的基本定理,可以把向量a =(3,2)表示出来,故选B.]12.A [因为a =(2,4),b =(-1,1),所以2a -b =(2×2-(-1),2×4-1)=(5,7),选A.]13.B [设S =x 1·y 1+x 2·y 2+x 3·y 3+x 4·y 4,若S 的表达式中有0个a ·b ,则S =2a 2+2b 2,记为S 1,若S 的表达式中有2个a ·b ,则S =a 2+b 2+2a·b ,记为S 2,若S 的表达式中有4个a ·b ,则S =4a ·b ,记为S 3.又|b |=2|a |,所以S 1-S 3=2a 2+2b 2-4a ·b =2(a -b )2>0,S 1-S 2=a 2+b 2-2a ·b =(a -b )2>0,S 2-S 3=(a -b )2>0,所以S 3<S 2<S 1,故S min =S 3=4a ·b ,设a ,b 的夹角为θ,则S min =4a ·b =8|a |2cos θ=4|a |2,即cos θ=12,又θ∈[0,π],所以θ=π3.]14.A [∵|a +b |=10,∴(a +b )2=10, 即a 2+b 2+2a ·b =10.① ∵|a -b |=6,∴(a -b )2=6, 即a 2+b 2-2a ·b =6.② 由①②可得a ·b =1.故选A.]15.90° [由AO →=12(AB →+AC →)可知O 为BC 的中点,即BC 为圆O 的直径,又因为直径所对的圆周角为直角,所以∠BAC =90°,所以AB→与AC →的夹角为90°.] 16.5 [∵|a |=1,∴可令a =(cos θ,sin θ),∵λa +b =0, ∴⎩⎪⎨⎪⎧λcos θ+2=0,λsin θ+1=0,即⎩⎪⎨⎪⎧cos θ=-2λ,sin θ=-1λ,由sin 2θ+cos 2θ=1得λ2=5,得|λ|= 5.]17.223 [因为a 2=(3e 1-2e 2)2=9-2×3×2×cos α+4=9,所以|a |=3,b 2=(3e 1-e 2)2=9-2×3×1×cos α+1=8,所以|b |=22,a ·b =(3e 1-2e 2)·(3e 1-e 2)=9e 21-9e 1·e 2+2e 22=9-9×1×1×13+2=8,所以cos β=a ·b |a |·|b |=83×22=223.]【一年模拟试题精练】1.D [根据全称命题的否定是特称命题,故选D.]2.B [因为a ⊥c ,b ∥c ,所以x =2,y =-2,a +b =(3,1),所以|a +b |=10,故选B.]3.B [①中利用平行四边形法则,可以得到以a ,b 为邻边的平行四边形为矩形,故|a +b |=|a -b |;②直接利用数量积公式,不正确;③中只有a ,b 同向时才成立;④|a +b |=|a |-|b |,则a ,b 反向,故正确,故选B.]4.B [|a +2b |=a 2+4a ·b +4b 2=7,故选B.]5.D [|a +2b |2=a 2+4a ·b +4b 2=12,所以a 2+2|a |-8=0,所以|a |=2,故选D.]6.D [因为|a +b |=|b |,则|a +b |2=|b |2,即a 2+2a ·b =0,所以a ·b <0,因为|a +2b |2-|2b |2=a 2+4a ·b <0,故选D.]7.C [|t a -b |2=t 2a 2-t |a |+1=⎝ ⎛⎭⎪⎫t |a |-122+34,所以|t a -b |的最小值是32,故选C.]8.D [利用向量加法的几何意义,可以得到|a |,|b |为邻边的三角形的内角分别为π4和π3由正弦定理得到|a ||b |=63.]9.C [如图,延长AB 至点N ,延长AC 至点M ,使得|AN |=a |AB |,|AM |=b |AC |,作CH ∥AN ,BF ∥AM ,NG ∥AM ,MG ∥AN ,则四边形ABEC ,ANGM ,EHGF 均为平行四边形.由题意知,点P (x ,y )组成的区域D 为图中的阴影部分, 即四边形EHGF .∵AB→=(3,1),AC →=(1,3),BC →=(-2,2), ∴|AB→|=10,|AC →|=10,|BC →|=2 2. 则cos ∠CAB =10+10-82×10×10=35,sin ∠CAB =45.∴四边形EHGF 的面积为(a -1)10×(b -1)10×45=8. ∴(a -1)(b -1)=1,即1a +1b =1,故4a +b =(4a +b )⎝ ⎛⎭⎪⎫1a +1b =5+b a +4a b ≥5+2b a ·4ab =9.当且仅当b a =4a b ,即a =32,b =3时,等号成立,故4a +b 取得最小值为9.]10.322 [向量AB →在CD →方向上的投影为AB →·CD →|CD →|=1552=322.] 11.等腰三角形12.①②⑤ [因为D 为BC 边的中点,所以PB→+PC →=2PD →,所以①正确;PB →·PC →=(PD →+DB →)·(PD →+DC →)=PD →2-DB →2,所以②正确;同理可得P 0B →·P 0C →=P 0D →2-DB →2,由已知PB →·PC →≥P 0B →·P 0C →恒成立,得PD →2≥P 0D →2,即|PD →|≥|P 0D →|恒成立,所以故③错误;注意到P 0,D是定点,所以P 0D 是点D 与直线上各点距离的最小值,所以P 0D ⊥AB ,故P 0D →·AB →=0,设AB 中点为O ,则CO ∥P 0D ,所以④错误;再由D 为BC 的中点,易得CO 为底边AB 的中线,故△ABC 是等腰三角形,有AC =BC ,所以⑤正确.综上可知,①②⑤正确.]13.解 (1)因为a ⊥b ,所以a ·b =0,所以2sin θ+sin ⎝⎛⎭⎪⎫θ+π3=0,即52sin θ+32cos θ=0.因为cos θ≠0,所以tan θ=-35.(2)由a ∥b ,得2sin θsin ⎝⎛⎭⎪⎫θ+π3=1,即2sin 2θcos π3+2sin θcos θsin π3=1, 即12(1-cos 2θ)+32sin 2θ=1,整理得,sin ⎝⎛⎭⎪⎫2θ-π6=12,又θ∈⎝ ⎛⎭⎪⎫0,π2,所以2θ-π6∈⎝ ⎛⎭⎪⎫-π6,5π6,所以2θ-π6=π6,即θ=π6.考点14 平面向量的应用【两年高考真题演练】1.C [AM →=AB →+34AD →,NM →=CM →-CN →=-14AD →+13AB → ∴AM →·NM →=14(4AB →+3AD →)·112(4AB →-3AD →)=148(16AB →2-9AD →2)=148(16×62-9×42)=9,选C.]2.D [由于△ABC 是边长为2的等边三角形;∴(AB →+AC →)·(AB →-AC →)=0,即(AB →+AC →)·CB →=0,∴(4a +b )⊥CB →,即(4a +b )⊥BC →,故选D.]3.A [建立如图所示坐标系,则B ⎝⎛⎭⎪⎫1t ,0,C (0,t ),AB →=⎝⎛⎭⎪⎫1t,0,AC →=(0,t ),AP →=AB →|AB→|+4AC →|AC →|=t ⎝⎛⎭⎪⎫1t ,0+4t (0,t )=(1,4),∴P (1,4),PB→·PC →=⎝ ⎛⎭⎪⎫1t -1,-4·(-1,t -4)=17-⎝ ⎛⎭⎪⎫1t +4t ≤17-21t ·4t =13,故选A.]4.C 5.B 6.A [由于|a |=|b |=1,a ·b =0,所以|OQ →|=2(a +b )=2·|a |2+|b |2+2a ·b =2,因此点Q 在以原点为圆心,半径等于2的圆上,又|OP→|=|a cos θ+b sin θ| =(a cos θ+b sin θ)2=|a |2cos 2θ+|b |2sin 2θ+a ·b sin 2θ=1,因此曲线C 是以原点为圆心,半径等于1的圆.又区域Ω={P |0<r ≤|PQ |≤R ,r <R },所以区域Ω是以点Q 为圆心,半径分别为r 和R 的两个圆之间的圆环,由图形可知,要使曲线C 与该圆环的公共部分是两段分离的曲线,应有1<r <R <3.]7.2918 [在梯形ABCD 中,AB =2,BC =1,∠ABC =60°,可得DC =1,AE →=AB →+λBC →,AF →=AD →+19λDC →,∴AE →·AF →=(AB →+λBC →)·(AD →+19λDC →)=AB→·AD →+AB →·19λDC →+λBC →·AD →+λBC →·19λDC →=2×1×cos 60°+2×19λ+λ×1×cos 60°+λ·19λ×cos 120°=29λ+λ2+1718≥229λ·λ2+1718=2918,当且仅当29λ=λ2,即λ=23时,取得最小值为2918.]8.1 2 22 [∵e 1·e 2=|e 1|·|e 2|cos 〈e 1,e 2〉=12,∴〈e 1,e 2〉=π3.不妨设e 1=⎝ ⎛⎭⎪⎫12,32,0,e 2=(1,0,0),b =(m ,n ,t ).由题意知⎩⎨⎧b ·e 1=12m +32n =2,b ·e 2=m =52,解得n =32,m =52,∴b =⎝ ⎛⎭⎪⎫52,32,t .∵b -(x e 1+y e 2)=⎝ ⎛⎭⎪⎫52-12x -y ,32-32x ,t ,∴|b -(x e 1+y e 2)|2=⎝ ⎛⎭⎪⎫52-x 2-y 2+⎝ ⎛⎭⎪⎫32-32x 2+t 2=x 2+xy +y 2-4x -5y +t 2+7=⎝⎛⎭⎪⎫x +y -422+34(y -2)2+t 2.由题意知,当x =x 0=1,y =y 0=2时,⎝⎛⎭⎪⎫x +y -422+34(y -2)2+t 2取到最小值.此时t 2=1,故|b |=⎝ ⎛⎭⎪⎫522+⎝ ⎛⎭⎪⎫322+t 2=2 2.] 9.2 [∵四边形ABCD 为菱形,且边长为2,∠BAD =120°,∴BC→=AD →,DC →=AB →.由题意得AE →=AB →+BE →=AB →+13AD →, AF →=AD →+DF →=AD →+1λAB →.∴AE →·AF →=⎝⎛⎭⎪⎫AB →+13AD →·⎝⎛⎭⎪⎫1λAB →+AD →=1λ×4+AB →·AD →+13λAB →·AD →+13×4=4λ+⎝ ⎛⎭⎪⎫1+13λ×2×2×⎝ ⎛⎭⎪⎫-12+43=1.∴4λ-2-23λ+43=1.∴1λ⎝ ⎛⎭⎪⎫4-23=3-43,∴λ=2.]10.22 [由题意知,AP →=AD →+DP →=AD →+14AB →, BP →=BC →+CP →=BC →+34CD →=AD →-34AB →,所以AP →·BP →=⎝⎛⎭⎪⎫AD →+14AB →·⎝⎛⎭⎪⎫AD →-34AB →=AD →2-12AD →·AB →-316AB→2,即2=25-12AD →·AB →-316×64,解得AB→·AD →=22.] 11.16 [由AB→·AC →=tan A ,可得|AB →|·|AC →|cos A =tan A ,因为A =π6,所以|AB →|·|AC →|·32=33,即|AB →|·|AC →|=23.所以S △ABC=12|AB →|·|AC →|·sin A =12×23×12=16.]12.解 (1)∵m =n =23,AB →=(1,2),AC →=(1,2), ∴OP →=23(1,2)+23(2,1)=(2,2),∴|OP→|=22+22=2 2. (2)∵OP→=m (1,2)+n (2,1)=(m +2n ,2m +n ), ∴⎩⎪⎨⎪⎧x =m +2n ,y =2m +n ,两式相减,得m -n =y -x .令y -x =t ,由图知,当直线y =x +t 过点B (2,3)时,t 取得最大值1,故m -n 的最大值为1.【一年模拟试题精练】1.B [由题意可知,AM →=12(AB →+AD →)=⎝⎛⎭⎪⎫-12,6,故选B.] 2.B [由题意可知,向量a 与b 为基底,所以不共线,m 1≠2m -33,得m ≠-3,故选B.]3.B [a ⊥b ⇔-1+2cos 2θ=0⇔cos 2θ=0.]4.D [因为a +b 与c 共线,所以有a +b =m c ,又b +c 与a 共线,所以有b +c =n a ,即b =m c -a 且b =-c +n a ,因为a ,b ,c 中任意两个都不共线,则有⎩⎪⎨⎪⎧m =-1,n =-1,所以b =m c -a =-c -a ,即a +b +c =0,选D.]5.B [如果记得结论,“A ,B ,D 三点共线,O 是直线AB 外一点,OD →=xOA →+yOB →,A ,B ,D 三点共线⇔x +y =1,”则本题可很快得出结论,设D 是OC 与AB 的交点,且OD→=xOA →+yOB →,则x +y =1,而OC→=λOD →=λx OA →+λy OB →,显然λ>1, 又m =λx ,n =λy ,故m +n =λ(x +y )=λ>1,如果记不得这个结论,则直线从等式OC →=mOA →+nOB→入手,OC →2=(mOA →+nOB →)2=m 2+n 2+2mnOA →·OB →,而 OA →·OB →<|OA →||OB →|=1,因此1=OC →2<m 2+n 2+2mn ,所以m +n >1.]6.B [因为E ,M ,C 三点共线,所以设AM →=xAE →+(1-x )AC →, 则AM→=x 2AB →+(1-x )(AB →+AD →)=⎝⎛⎭⎪⎫1-x 2AB →+(1-x )AD →. 同理D ,M ,F 三点共线,所以设AM→=yAF →+(1-y )AD →,则AM →=yAB →+⎝ ⎛⎭⎪⎫1-2y 3AD →,所以有⎩⎪⎨⎪⎧1-x 2=y ,1-x =1-2y3,解得y =34,即AM →=34AB →+12AD →,所以λ=34,μ=12,即λμ=34×12=38,选B.]7.B [①恒成立;②λ(a ⊗b )=λ|a |·|b |sin 〈a ,b 〉,(λa )⊗b =|λa |·|b |sin 〈a ,b 〉,当λ<0时,λ(a ⊗b )=(λa )⊗b 不成立;③当a ,b ,c 不共面时,(a +b )⊗c =(a ⊗c )+(b ⊗c )不成立,例如取a ,b ,c 为两两垂直的单位向量,易得(a +b )⊗c =2,(a ⊗c )+(b ⊗c )=2;④由a ⊗b =|a |·|b |sin 〈a ,b 〉,a ·b =|a ||b |cos 〈a ,b 〉,可知(a ⊗b )2+(a ·b )2=|a |2·|b |2(a ⊗b )2=|a |2·|b |2-(a ·b )2=(x 21+y 21)(x 22+y 22)=(x 1x 2+y 1y 2)2=(x 1y 2-x 2y 1)2,故a ⊗b =|x 1y 2-x 2y 1|恒成立.]8.2 [将矩形放入平面直角坐标系,如图,因为AB =2,BC =2,E 为BC 的中点,所以B (2,0),D (0,2),C (2,2),E (2,1),设F (x ,2)则AF →=(x ,2),AB →=(2,0),所以AF →·AB →=(x ,2)·(2,0)=2x =2, 所以x =1.所以AE→=(2,1),BF →=(x -2,2)=(1-2,2),所以AE →·BF →=(2,1)·(1-2,2)= 2.]9.解 (1)∵m ⊥n ,∴2sin B sin C -2cos B cos C -3=0,∴cos(B +C )=-32,∴cos A =32,又0<A <π,∴A =30°, (2)选择①,③∵A =30°,B =45°,C =105°,a =2且sin 105°=sin(45°+60°)=6+24,c =a sin Csin A =6+2, ∴S △ABC =12ac sin B =3+1,选②③∵A =30°,a =2,∴2sin C =(3+1)sin B ⇒2c =(3+1)b ,由余弦定理:a 2=4=b 2+⎝ ⎛⎭⎪⎫3+12b 2-2b ×3+12b ×32⇒b 2=8b =22,c =3+12b =6+2,∴S △ABC =3+1(选①,②不能).。

2016年浙江省数学高考模拟精彩题选——解析几何小题 Word版含答案

2016年浙江省数学高考模拟精彩题选——解析几何小题 Word版含答案

2016浙江精彩题选——解析几何小题1.(2016丽水一模7)已知1F ,2F 分别为双曲线C :12222=-by a x 的左、右焦点, 若存在过1F 的直线分别交双曲线C 的左、右支于A ,B 两点,使得122F BF BAF ∠=∠,则双曲线C 的离心率e 的取值范围是 ( C )A .()+∞,3B .()521+,C .()523+, D .()31, 解:由三角形相似,222112BF AF AB k BF BF F F ===,则1122122AB BF AF kBF BF kBF AF k c =-=⎧⎪=⎨⎪=⋅⎩,1211122(1)2BF BF aBF kBF a k BF a-=⎧⎪-=⎨⎪-=⎩112BF AF kBF -=,112AF BF kBF =-,22112AF a BF k BF -=-21,3ak e c a∴=<∴>- 12(1)2a BF a c a -=-,12()3a c a BF c a c a-=≥+-,2e ∴≤+ 此题为2016离心率难度之最2.(2016宁波十校 14) 已知双曲线22221(0,0)x y a b a b-=>>的左、右焦点分别是12,F F ,过2F 的直线交双曲线的右支于,P Q 两点,若112||||PF F F =,且223||2||PF QF =,则该双曲线的离心率为 75.3(2016嘉兴二模7).如图,双曲线)0,(12222>=-b a by a x 的右顶点为A ,左右焦点分别为21,F F ,点P 是双曲线右支上一点,1PF 交左支于点Q ,交渐近线x aby =于点R .M 是PQ 的中点,若12PF RF ⊥,且1PF AM ⊥,则双曲线的离心率是 ( C ) A .2B .3C .2D .5分析:由222b y x a x y c ⎧=⎪⎨⎪+=⎩得,(,)R a b ,2F R b k a c =-,1F Rb k ac =+, 由1MF A ∆与12RF F ∆相似得,1122M R y F A a c y F F c +==,2M a cy b c+=⋅,由R 、M 、F 1三点共线(第7题)可求M 的横坐标,再由点差法122F R OM b k k a⋅=建立等量关系。

2016年《创新教程》高考数学(理科)大一轮(人教A新课标)课时冲关第8章解析几何6

2016年《创新教程》高考数学(理科)大一轮(人教A新课标)课时冲关第8章解析几何6

第八章 第6节对应学生用书课时冲关 理(四十五)/第319页文(四十二)/第283页一、选择题1.已知抛物线y =-x 2+3上存在关于直线x +y =0对称的相异两点A ,B ,则|AB |等于( )A .3B .4C .3 2D .4 2解析:设直线AB 的方程为y =x +b ,A (x 1,y 1), B (x 2,y 2),由⎩⎪⎨⎪⎧y =-x 2+3,y =x +b ⇒x 2+x +b -3=0⇒x 1+x 2=-1, 得AB 的中点M ⎝⎛⎭⎫-12,-12+b . 又M ⎝⎛⎭⎫-12,-12+b 在直线x +y =0上,可求出b =1, 则|AB |= 1+12·(-1)2-4×(-2)=3 2.答案:C2.(2015·泰安模拟)斜率为3的直线与双曲线x 2a 2-y 2b 2=1(a >0,b >0)恒有两个公共点,则双曲线离心率的取值范围是( )A .[2,+∞)B .(2,+∞)C .(1,3)D .(3,+∞)解析:因为斜率为3的直线与双曲线x 2a 2-y 2b 2=1恒有两个公共点,所以ba >3,所以e =ca=1+b 2a2> 1+(3)2=2.所以双曲线离心率的取值范围是(2,+∞). 答案:B3.(2015·西安模拟)已知任意k ∈R ,直线y -kx -1=0与椭圆x 25+y 2m =1(m >0)恒有公共点,则实数m 的取值范围是( )A .(0,1)B .(0,5)C .[1,5)∪(5,+∞)D .[1,5)解析:直线y =kx +1过定点(0,1),只要(0,1)在椭圆x 25+y 2m =1上或其内部即可.从而m ≥1,又因为椭圆x 25+y 2m=1中m ≠5,所以m 的取值范围是[1,5)∪(5,+∞).答案:C4.(2015·衡水模拟)若双曲线x 2a 2-y 2b 2=1(a >0,b >0)与椭圆x 2m 2+y 2b 2=1(m >b >0)的离心率之积等于1,则以a ,b ,m 为边长的三角形一定是( )A .等腰三角形B .直角三角形C .锐角三角形D .钝角三角形解析:设双曲线离心率为e 1,椭圆离心率为e 2, 所以e 1= a 2+b 2a 2,e 2= m 2-b 2m 2, 故e 1·e 2=(a 2+b 2)(m 2-b 2)a 2m2=1,⇒(m 2-a 2-b 2)b 2=0, 即a 2+b 2-m 2=0,所以,以a ,b ,m 为边长的三角形为直角三角形. 答案:B5.(2015·嘉定模拟)过点P (1,1)作直线与双曲线x 2-y 22=1交于A ,B 两点,使点P 为AB中点,则这样的直线( )A .存在一条,且方程为2x -y -1=0B .存在无数条C .存在两条,方程为2x ±(y +1)=0D .不存在解析:设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=2,y 1+y 2=2, 则x 21-12y 21=1,x 22-12y 22=1, 两式相减得(x 1-x 2)(x 1+x 2)-12(y 1-y 2)(y 1+y 2)=0,所以x 1-x 2=12(y 1-y 2),即k AB =2,故所求直线方程为y -1=2(x -1),即2x -y -1=0.联立⎩⎪⎨⎪⎧y =2x -1,x 2-12y 2=1可得2x 2-4x +3=0,但此方程没有实数解,故这样的直线不存在.故选D. 答案:D6.(2015·杭州模拟)F 为椭圆x 25+y 2=1的右焦点,第一象限内的点M 在椭圆上,若MF⊥x 轴,直线MN 与圆x 2+y 2=1相切于第四象限内的点N ,则|NF |等于( )A.213 B.45 C.214 D.35解析:因为MF ⊥x 轴,F 为椭圆x 25+y 2=1的右焦点,所以F (2,0),M ⎝⎛⎭⎫2,55,设l MN :y -55=k (x -2), N (x ,y ),则O 到l MN 的距离d =⎪⎪⎪⎪-2k +55k 2+1=1,解得k =255(负值舍去).又因为⎩⎪⎨⎪⎧x 2+y 2=1,y -55=255(x -2)⇒⎩⎨⎧x =23,y =-53,即N ⎝⎛⎭⎫23,-53,所以|NF |= ⎝⎛⎭⎫2-232+⎝⎛⎭⎫532=213. 答案:A 二、填空题7.已知两定点M (-2,0),N (2,0),若直线上存在点P ,使得|PM |-|PN |=2,则称该直线为“A 型直线”,给出下列直线:①y =x +1;②y =3x +2;③y =-x +3;④y =-2x .其中是“A 型直线”的序号是________.解析:由条件知考虑给出直线与双曲线x 2-y 23=1右支的交点情况,作图易知①③直线与双曲线右支有交点,故填①③.答案:①③8.(2015·无锡模拟)若直线mx +ny =4与☉O :x 2+y 2=4没有交点,则过点P (m ,n )的直线与椭圆x 29+y 24=1的交点个数是________.解析:由题意知:4m 2+n 2>2,即m 2+n 2<2,所以点P (m ,n )在椭圆x 29+y 24=1的内部,故所求交点个数是2个.答案:29.已知双曲线左、右焦点分别为F 1,F 2,点P 为其右支上一点,∠F 1PF 2=60°,且S△F 1PF 2=23,若|PF 1|,14|F 1F 2|2,|PF 2|成等差数列,则该双曲线的离心率为________.解析:设|PF 1|=m ,|PF 2|=n (m >n ),双曲线方程为x 2a 2-y 2b 2=1(a >0,b >0),因此有m -n=2a ,|F 1F 2|=2c ,S △PF 1F 2=12·m ·n ·32=23,m ·n =8.又m +n =12×4c 2=2c 2⇒(m +n )2=4c 4.①由余弦定理cos ∠F 1PF 2=PF 21+PF 22-F 1F 222PF 1·|PF 2|=m 2+n 2-4c 22mn =12⇒m 2+n 2=8+4c 2⇒(m +n )2=4c 2+24. ②①②两式联立解得c 2=3⇒c =3,所以⎩⎪⎨⎪⎧m ·n =8,m +n =6,m >n⇒⎩⎪⎨⎪⎧m =4,n =2,⇒2a =2,a =1,e =c a = 3.答案: 3 三、解答题10.(2015·衡水模拟)在平面直角坐标系xOy 中,已知椭圆C :x 2a 2+y 2b 2=1(a >b ≥1)的离心率e =32,且椭圆C 上一点N 到点Q (0,3)的距离最大值为4,过点M (3,0)的直线交椭圆C 于点A ,B .(1)求椭圆C 的方程;(2)设P 为椭圆上一点,且满足OA →+OB →=tOP →(O 为坐标原点),当|AB |<3时,求实数t 的取值范围.解析:(1)因为e 2=c 2a 2=a 2-b 2a 2=34,所以a 2=4b 2,则椭圆方程为x 24b 2+y 2b 2=1,即x 2+4y 2=4b 2.设N (x ,y ),则|NQ |= (x -0)2+(y -3)2= 4b 2-4y 2+(y -3)2 = -3y 2-6y +4b 2+9 =-3(y +1)2+4b 2+12.当y =-1时,|NQ |有最大值为4b 2+12=4, 解得b 2=1,所以a 2=4,椭圆方程是x 24+y 2=1.(2)设A (x 1,y 1),B (x 2,y 2),P (x 0,y 0), AB 方程为y =k (x -3),由⎩⎪⎨⎪⎧y =k (x -3),x 24+y 2=1,整理得(1+4k 2)x 2-24k 2x +36k 2-4=0. 由Δ=(24k 2)2-16(9k 2-1)(1+4k 2)>0,得k 2<15.x 1+x 2=24k 21+4k 2,x 1·x 2=36k 2-41+4k 2.所以OA →+OB →=(x 1+x 2,y 1+y 2)=t (x 0,y 0), 则x 0=1t (x 1+x 2)=24k 2t (1+4k 2),y 0=1t (y 1+y 2) =1t [k (x 1+x 2)-6k ]=-6k t (1+4k 2). 由点P 在椭圆上,得(24k 2)2t 2(1+4k 2)2+144k 2t 2(1+4k 2)2=4,化简得36k 2=t 2(1+4k 2) ①又由|AB |=1+k 2|x 1-x 2|<3,即(1+k 2)[(x 1+x 2)2-4x 1x 2]<3,将x 1+x 2,x 1x 2代入得(1+k 2)⎣⎢⎡⎦⎥⎤242k 4(1+4k 2)2-4(36k 2-4)1+4k 2<3, 化简,得(8k 2-1)(16k 2+13)>0, 则8k 2-1>0,k 2>18,所以18<k 2<15②由①,得t 2=36k 21+4k 2=9-91+4k 2, 联立②,解得3<t 2<4, 所以-2<t <-3或3<t <2.11.(2015·石家庄模拟)椭圆x 2b 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1(-1,0)、F 2(1,0),过F 1作与x 轴不重合的直线l 交椭圆于A 、B 两点.(1)若△ABF 2为正三角形,求椭圆的离心率; (2)若椭圆的离心率满足0<e <5-12,O 为坐标原点,求证:|OA |2+|OB |2<|AB |2.(1)解:由椭圆的定义知|AF 1|+|AF 2|= |BF 1|+|BF 2|,∵|AF 2|=|BF 2|,∴|AF 1|=|BF 1|,即F 1F 2 为边AB 上的中线, ∴F 1F 2⊥AB .在Rt △AF 1F 2中,cos 30°=2c4a 3, 则c a =33,∴椭圆的离心率为33. (2)证明:设A (x 1,y 1),B (x 2,y 2),∵0<e <5-12,c =1,∴a >1+52. ①当直线AB 与x 轴垂直时,1a 2+y 2b 2=1,y 2=b 4a 2, OA →·OB →=x 1x 2+y 1y 2=1-b 4a 2=-a 4+3a 2-1a 2=-⎝⎛⎭⎫a 2-322+54a 2,∵a 2>3+52,∴OA →·OB →<0,∴∠AOB 恒为钝角,∴|OA |2+|OB |2<|AB |2.②当直线AB 不与x 轴垂直时,设直线AB 的方程为: y =k (x +1),代入x 2a 2+y 2b2=1,整理得,(b 2+a 2k 2)x 2+2k 2a 2x +a 2k 2-a 2b 2=0, ∴x 1+x 2=-2a 2k 2b 2+a 2k 2,x 1x 2=a 2k 2-a 2b 2b 2+a 2k 2,OA →·OB →=x 1x 2+y 1y 2 =x 1x 2+k 2(x 1+1)(x 2+1) =x 1x 2(1+k 2)+k 2(x 1+x 2)+k 2=(a 2k 2-a 2b 2)(1+k 2)-2a 2k 4+k 2(b 2+a 2k 2)b 2+a 2k 2=k 2(a 2+b 2-a 2b 2)-a 2b 2b 2+a 2k 2=k 2(-a 4+3a 2-1)-a 2b 2b 2+a 2k 2令m (a )=-a 4+3a 2-1,由①可知m (a )<0, ∴∠AOB 恒为钝角,∴恒有|OA |2+|OB |2<|AB |2. 12.(2015·长春三校调研)在直角坐标系xOy 中,点M ⎝⎛⎭⎫2,-12,点F 为抛物线C :y =mx 2(m >0)的焦点,线段MF 恰被抛物线C 平分. (1)求m 的值;(2)过点M 作直线l 交抛物线C 于A ,B 两点,设直线F A ,FM ,FB 的斜率分别为k 1,k 2,k 3,问k 1,k 2,k 3能否成公差不为零的等差数列?若能,求直线l 的方程;若不能,请说明理由.解:(1)由题得抛物线C 的焦点F 的坐标为⎝⎛⎭⎫0,14m ,线段MF 的中点N ⎝⎛⎭⎫1,18m -14在抛物线C 上,∴18m -14=m,8m 2+2m -1=0, ∴m =14⎝⎛⎭⎫m =-12舍去. (2)由(1)知抛物线C :x 2=4y ,F (0,1). 设直线l 的方程为y +12=k (x -2),A (x 1,y 1),B (x 2,y 2),由⎩⎪⎨⎪⎧y +12=k (x -2),x 2=4y ,得x 2-4kx +8k +2=0, Δ=16k 2-4(8k +2)>0, ∴k <2-62或k >2+62.由根与系数的关系得⎩⎪⎨⎪⎧x 1+x 2=4k ,x 1x 2=8k +2,假设k 1,k 2,k 3能成公差不为零的等差数列,则k 1+k 3=2k 2.而k 1+k 3=y 1-1x 1+y 2-1x 2=x 2y 1+x 1y 2-x 2-x 1x 1x 2=x 2x 214+x 1x 224-x 2-x 1x 1x 2=⎝⎛⎭⎫x 1x 24-1(x 1+x 2)x 1x 2=⎝⎛⎭⎫8k +24-1·4k 8k +2=4k 2-k4k +1,k 2=-12-12-0=-34,∴4k 2-k 4k +1=-32,8k 2+10k +3=0,解得k =-12(符合题意)或k =-34(不合题意,舍去).∴直线l 的方程为y +12=-12(x -2),即x +2y -1=0.∴k 1,k 2,k 3能成公差不为零的等差数列,此时直线l 的方程为x +2y -1=0.[备课札记]。

数学导航2016届高考数学大一轮复习 第八章 解析几何同步练习 文.

数学导航2016届高考数学大一轮复习 第八章 解析几何同步练习 文.

【数学导航】2016届高考数学大一轮复习 第八章 解析几何同步练习 文第一节 直线的倾斜角与斜率、直线的方程1.理解直线的倾斜角和斜率的概念,掌握过两点的直线斜率的计算公式. 2.掌握确定直线位置的几何要素.3.掌握直线方程的几种形式(点斜式,两点式及一般式等),了解斜截式与一次函数的关系.1.直线的倾斜角与斜率 (1)直线的倾斜角①定义:当直线l 与x 轴相交时,我们取x 轴作为基准,x 轴正方向与直线l 向上方向之间所成的角α叫做直线l 的倾斜角;②规定:当直线l 与x 轴平行或重合时,规定它的倾斜角为0°;③范围:直线的倾斜角α的取值范围是[0,π).(2)直线的斜率①定义:当直线l 的倾斜角α≠π2时,其倾斜角α的正切值tan α叫做这条斜线的斜率,斜率通常用小写字母k 表示,即k =tan_α;②斜率公式:经过两点P 1(x 1,y 1),P 2(x 2,y 2)(x 1≠x 2)的直线的斜率公式为k =y 2-y 1x 2-x 1.2.直线方程的五种形式 名称 几何条件 方程适用条件 斜截式 纵截距、斜率 y =kx +b 与x 轴不垂直的直线点斜式 过一点、斜率 y -y 0=k (x -x 0) 两点式过两点y -y 1y 2-y 1=x -x 1x 2-x 1与两坐标轴均不垂直的直线 截距式 纵、横截距x a +y b =1 不过原点且与两坐标轴均不垂直的直线 一般式Ax +By +C =0(A 2+B 2≠0)所有直线3.线段的中点坐标公式若点P 1,P 2的坐标分别为(x 1,y 1),(x 2,y 2),线段P 1P 2的中点M 的坐标为(x ,y ),则⎩⎪⎨⎪⎧x =x 1+x 22,y =y 1+y 22,此公式为线段P 1P 2的中点坐标公式.1.明确直线方程各种形式的适用条件点斜式、斜截式方程适用于不垂直于x 轴的直线;两点式方程不能表示垂直于x 、y 轴的直线;截距式方程不能表示垂直于坐标轴和过原点的直线.2.求直线方程的一般方法(1)直接法:根据已知条件,选择适当的直线方程形式,直接写出直线方程,选择时,应注意各种形式的方程的适用范围,必要时要分类讨论.(2)待定系数法,具体步骤为: ①设所求直线方程的某种形式; ②由条件建立所求参数的方程(组); ③解这个方程(组)求出参数; ④把参数的值代入所设直线方程.1.判断下面结论是否正确(请在括号中打“√”或“×”) (1)根据直线的倾斜角的大小不能确定直线的位置.( ) (2)坐标平面内的任何一条直线均有倾斜角与斜率.( ) (3)直线的倾斜角越大,其斜率就越大.( ) (4)直线的斜率为tan α,则其倾斜角为α.( ) (5)斜率相等的两直线的倾斜角不一定相等.( )(6)经过定点A (0,b )的直线都可以用方程y =kx +b 表示.( ) (7)不经过原点的直线都可以用x a +yb=1表示.( )(8)经过任意两个不同的点P 1(x 1,y 1),P 2(x 2,y 2)的直线都可以用方程(y -y 1)(x 2-x 1)=(x -x 1)(y 2-y 1)表示.( )答案: (1)√ (2)× (3)× (4)× (5)× (6)× (7)× (8)√ 2.过点M (-2,m ),N (m,4)的直线的斜率等于1,则m 的值为( ) A .1 B .4 C .1或3D .1或4解析: ∵k MN =m -4-2-m=1,∴m =1.答案: A3.直线3x -y +a =0(a 为常数)的倾斜角为( ) A .30° B .60° C .150°D .120°解析: 由直线方程得y =3x +a ,所以斜率k =3, 设倾斜角为α,所以tan α=3,又因为0°≤α<180°, 所以α=60°. 答案: B4.已知直线l 的倾斜角α满足3sin α=cos α,且它在x 轴上的截距为2,则直线l 的方程是________.解析: 由3sin α=cos α,得tan α=13,∴直线l 的斜率为13.又直线l 在x 轴上的截距为2,∴直线l 与x 轴的交点为(2,0),∴直线l 的方程为y -0=13(x -2),即x -3y-2=0.答案: x -3y -2=05.经过两点M (1,-2),N (-3,4)的直线方程为________.解析: 经过两点M (1,-2),N (-3,4)的直线方程为y +24+2=x -1-3-1,即3x +2y +1=0.答案: 3x +2y +1=0直线的倾斜角与斜率自主练透型1.若经过两点A (4,2y +1),B (2,-3)的直线的倾斜角为3π4,则y 等于( )A .-1B .-3C .0D .2解析: 由k =-3-2y -12-4=tan 3π4=-1.得-4-2y =2,∴y =-3. 答案: B2.(2015·青岛模拟)若ab <0,则过点P ⎝ ⎛⎭⎪⎫0,-1b 与Q ⎝ ⎛⎭⎪⎫1a ,0的直线PQ 的倾斜角的取值范围是________.解析: k PQ =-1b -00-1a=ab <0,又倾斜角的取值范围为[0,π),故直线PQ 的倾斜角的取值范围为⎝ ⎛⎭⎪⎫π2,π. 答案: ⎝ ⎛⎭⎪⎫π2,π1.在解决斜率或倾斜角的取值范围问题时,应先考虑斜率是否存在或倾斜角是否为π2这一特殊情形.2.求倾斜角α的取值范围的一般步骤是: (1)求出斜率k =tan α的取值范围;(2)利用三角函数的单调性,借助图象,数形结合,确定倾斜角α的取值范围.直线的方程分层深化型 根据所给条件求直线的方程: (1)直线过点(-4,0),倾斜角的正弦值为1010; (2)直线过点(-3,4),且在两坐标轴上的截距之和为12; (3)直线过点(5,10),且到原点的距离为5.解析: (1)由题设知,该直线的斜率存在,故可采用点斜式. 设倾斜角为α,则sin α=1010(0<α<π), k =tan α=±13.故所求直线方程为y =±13(x +4).即x +3y +4=0或x -3y +4=0. (2)由题设知截距不为0,设直线方程为x a +y12-a=1,又直线过点(-3,4),从而-3a +412-a =1,解得a =-4或a =9.故所求直线方程为4x -y +16=0或x +3y -9=0.(3)当斜率不存在时,所求直线方程为x -5=0,适合题意;当斜率存在时,设斜率为k , 则所求直线方程为y -10=k (x -5), 即kx -y +(10-5k )=0. 由点到直线的距离公式,得|10-5k |k 2+1=5,解得k =34.故所求直线方程为3x -4y +25=0.综上知,所求直线方程为x -5=0或3x -4y +25=0.1.求适合下列条件的直线方程.(1)经过点P (3,2),且在两坐标轴上的截距相等; (2)过点A (-1,-3),斜率是直线y =3x 的斜率的-14倍.解析: (1)由题意,所求直线的斜率k 存在且k ≠0, 设直线方程为y -2=k (x -3),令y =0,得x =3-2k,令x =0,得y =2-3k ,由已知3-2k=2-3k ,解得k =-1或k =23,∴直线l 的方程为y -2=-(x -3)或y -2=23(x -3),即x +y -5=0或2x -3y =0. (2)设所求直线的斜率为k ,依题意k =-14×3=-34.又直线经过点A (-1,-3),因此所求直线方程为y +3=-34(x +1),即3x +4y +15=0.2.求过点A (1,-1)与直线l 1:2x +y -6=0相交于点B 且|AB |=5的直线方程. 解析: 过点A (1,-1)与y 轴平行的直线为x =1.解方程组⎩⎪⎨⎪⎧x =1,2x +y -6=0,求得B 点的坐标为(1,4),此时|AB |=5, 即x =1为所求.设过A (1,-1)且与y 轴不平行的直线为y +1=k (x -1),解方程组⎩⎪⎨⎪⎧2x +y -6=0,y +1=k x -,得两直线交点为⎩⎪⎨⎪⎧x =k +7k +2,y =4k -2k +2.(k ≠-2,否则与已知直线平行) 则B 点坐标为⎝ ⎛⎭⎪⎫k +7k +2,4k -2k +2.由已知⎝⎛⎭⎪⎫k +7k +2-12+⎝ ⎛⎭⎪⎫4k -2k +2+12=52,解得k =-34,∴y +1=-34(x -1),即3x +4y +1=0.综上可知,所求直线的方程为x =1或3x +4y +1=0.3.(2014·湖南长沙一模)过点(1,3)作直线l ,若经过点(a,0)和(0,b ),且a ∈N *,b ∈N *,则可作出的直线l 的条数为( )A .1B .2C .3D .4解析: 由题意得1a +3b=1⇒(a -1)(b -3)=3,又a ∈N *,b ∈N *,故有两个解⎩⎪⎨⎪⎧a =2b =6或⎩⎪⎨⎪⎧a =4,b =4.答案: B在求直线方程时,应先选择适当的直线方程的形式,并注意各种形式的适用条件,用斜截式及点斜式时,直线的斜率必须存在,而两点式不能表示与坐标轴垂直的直线,截距式不能表示与坐标轴垂直或经过原点的直线,故在解题时,若采用截距式,应注意分类讨论,判断截距是否为零,若采用点斜式,应先考虑斜率不存在的情况.直线方程的综合利用互动讲练型直线l 过点P (1,4),分别交x 轴的正半轴和y 轴的正半轴于A ,B 两点,O 为坐标原点,当|OA |+|OB |最小时,求l 的方程.解析: 依题意,l 的斜率存在,且斜率为负, 设直线l 的斜率为k ,则直线l 的方程为y -4=k (x -1)(k <0).令y =0,可得A ⎝⎛⎭⎪⎫1-4k,0;令x =0,可得B (0,4-k ).|OA |+|OB |=⎝⎛⎭⎪⎫1-4k +(4-k )=5-⎝ ⎛⎭⎪⎫k +4k=5+⎝ ⎛⎭⎪⎫-k +4-k ≥5+4=9. ∴当且仅当-k =4-k 且k <0,即k =-2时,|OA |+|OB |取最小值. 这时l 的方程为2x +y -6=0.在本例条件下,若|PA |·|PB |最小,求l 的方程. 解析: |PA |·|PB |=⎝ ⎛⎭⎪⎫4k 2+16·1+k 2=-4k (1+k 2)=4⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1-k +-k ≥8(k <0).∴当且仅当1-k =-k 且k <0,即k =-1时,|PA |·|PB |取最小值. 这时l 的方程为x +y -5=0.直线方程综合问题的两大类型及解法(1)与函数相结合的问题:解决这类问题,一般是利用直线方程中的x ,y 的关系,将问题转化为关于x (或y )的函数,借助函数的性质解决.(2)与方程、不等式相结合的问题:一般是利用方程、不等式的有关知识(如方程解的个数、根的存在问题,不等式的性质、基本不等式等)来解决.A 级 基础训练1.在等腰三角形AOB 中,AO =AB ,点O (0,0),A (1,3),点B 在x 轴的正半轴上,则直线AB 的方程为( )A .y -1=3(x -3)B .y -1=-3(x -3)C .y -3=3(x -1)D .y -3=-3(x -1)解析: 因为AO =AB ,所以直线AB 的斜率与直线AO 的斜率互为相反数,所以k AB =-k OA =-3,所以直线 AB 的点斜式方程为:y -3=-3(x -1).答案: D2.(2014·山西太原质检)设直线l 与x 轴的交点是P ,且倾斜角为α,若将此直线绕点P 按逆时针方向旋转45°,得到直线的倾斜角为α+45°,则( )A .0°≤α≤180°B .0°≤α<135°C .0°≤α<180°D .0°<α<135°解析: ∵⎩⎪⎨⎪⎧0°<α<180°,0°≤α+45°<180°.∴0°<α<135°. ∴选D . 答案: D3.已知直线l :ax +y -2-a =0在x 轴和y 轴上的截距相等,则a 的值是( ) A .1 B .-1 C .-2或-1D .-2或1解析: 由题意可知a ≠0.当x =0时,y =a +2. 当y =0时,x =a +2a, ∴a +2a=a +2, 解得a =-2或a =1. 答案: D4.直线Ax +By -1=0在y 轴上的截距是-1,而且它的倾斜角是直线3x -y =33的倾斜角的2倍,则( )A .A =3,B =1 B .A =-3,B =-1C .A =3,B =-1D .A =-3,B =1解析: 将直线Ax +By -1=0化成斜截式y =-A Bx +1B.∵1B=-1,∴B =-1,故排除A ,D .又直线3x -y =33的倾斜角α=π3,∴直线Ax +By -1=0的倾斜角为2α=2π3,∴斜率-A B =tan 2π3=-3,∴A =-3,故选B . 答案: B5.若直线过点P ⎝ ⎛⎭⎪⎫-3,-32且被圆x 2+y 2=25截得的弦长是8,则该直线的方程为( ) A .3x +4y +15=0 B .x =-3或y =-32C .x =-3D .x =-3或3x +4y +15=0解析: 若直线的斜率不存在,则该直线的方程为x =-3,代入圆的方程解得y =±4,故该直线被圆截得的弦长为8,满足条件;若直线的斜率存在,不妨设直线的方程为y +32=k (x +3),即kx -y +3k -32=0,因为该直线被圆截得的弦长为8,故半弦长为4.又圆的半径为5,则圆心(0,0)到直线的距离为52-42=⎪⎪⎪⎪⎪⎪3k -32k 2+1,解得k =-34,此时该直线的方程为3x +4y +15=0.答案: D6.已知m ≠0,则过点(1,-1)的直线ax +3my +2a =0的斜率为________. 解析: ∵点(1,-1)在直线ax +3my +2a =0上,∴a -3m +2a =0,∴m =a ≠0,∴k =-a 3m =-13.答案: -137.直线x cos α+3y +2=0的倾斜角的范围是________. 解析: 设直线的倾斜角为θ,依题意知,k =-33cos α; ∵cos α∈[-1,1],∴k ∈⎣⎢⎡⎦⎥⎤-33,33, 即tan θ∈⎣⎢⎡⎦⎥⎤-33,33. 又θ∈[0,π),∴θ∈⎣⎢⎡⎦⎥⎤0,π6∪⎣⎢⎡⎭⎪⎫5π6,π.答案: ⎣⎢⎡⎦⎥⎤0,π6∪⎣⎢⎡⎭⎪⎫5π6,π8.设点A (-1,0),B (1,0),直线2x +y -b =0与线段AB 相交,则b 的取值范围是________.解析: b 为直线y =-2x +b 在y 轴上的截距,如图,当直线y =-2x +b 过点A (-1,0)和点B (1,0)时,b 分别取得最小值和最大值. ∴b 的取值范围是[-2,2]. 答案: [-2,2]9.已知直线过点P 1(2,3)和点P 2(1,m ),且m 满足方程m 2-4m +3=0,求该直线方程. 解析: 由题意,因为m 满足方程m 2-4m +3=0, 则m =1或m =3.若m =1,则直线方程可写为y -31-3=x -21-2, 即2x -y -1=0;若m =3,则直线方程的斜率为0,直线方程可写为y =3. 因此符合条件的直线方程为2x -y -1=0或y =3.10.设直线l 的方程为x +my -2m +6=0,根据下列条件分别确定m 的值: (1)直线l 的斜率为1;(2)直线l 在x 轴上的截距为-3.解析: (1)因为直线l 的斜率存在,所以m ≠0,于是直线l 的方程可化为y =-1mx +2m -6m .由题意得-1m=1,解得m =-1.(2)法一:令y =0,得x =2m -6.由题意得2m -6=-3,解得m =32.法二:直线l 的方程可化为x =-my +2m -6.由题意得2m -6=-3,解得m =32.B 级 能力提升1.在同一平面直角坐标系中,直线l 1:ax +y +b =0和直线l 2:bx +y +a =0有可能是( )解析: 直线l 1:ax +y +b =0的斜率k 1=-a ,在y 轴上的截距为-b ;直线l 2:bx +y +a =0的斜率k 2=-b ,在y 轴上的截距为-a .在选项A 中l 2的斜率-b <0,而l 1在y 轴上截距-b >0,所以A 不正确.同理可排除C 、D .答案: B2.一条直线经过点A (-2,2),并且与两坐标轴围成的三角形的面积为1,则此直线的方程为__________.解析: 设所求直线的方程为x a +y b=1, ∵A (-2,2)在直线上,∴-2a +2b=1.①又因直线与坐标轴围成的三角形面积为1, ∴12|a |·|b |=1.② 由①②可得(1)⎩⎪⎨⎪⎧a -b =1,ab =2,或(2)⎩⎪⎨⎪⎧a -b =-1ab =-2.由(1)解得⎩⎪⎨⎪⎧a =2,b =1,或⎩⎪⎨⎪⎧a =-1,b =-2.方程组(2)无解.故所求的直线方程为x 2+y 1=1或x -1+y-2=1, 即x +2y -2=0或2x +y +2=0为所求直线的方程. 答案: x +2y -2=0或2x +y +2=03.已知直线l 与两坐标轴围成的三角形的面积为3,分别求满足下列条件的直线l 的方程:(1)过定点A (-3,4); (2)斜率为16.解析: (1)设直线l 的方程为y =k (x +3)+4,它在x 轴,y 轴上的截距分别是-4k-3,3k +4,由已知,得⎪⎪⎪⎪⎪⎪k +⎝ ⎛⎭⎪⎫-4k -3=6, 解得k 1=-23或k 2=-83.所以直线l 的方程为2x +3y -6=0或8x +3y +12=0. (2)设直线l 在y 轴上的截距为b ,则直线l 的方程是y =16x +b ,它在x 轴上的截距是-6b ,由已知,得|(-6b )·b |=6,∴b =±1. ∴直线l 的方程为x -6y +6=0或x -6y -6=0. 4.已知直线l :kx -y +1+2k =0(k ∈R ). (1)证明:直线l 过定点;(2)若直线l 不经过第四象限,求k 的取值范围;(3)若直线l 交x 轴负半轴于点A ,交y 轴正半轴于点B ,O 为坐标原点,设△AOB 的面积为S ,求S 的最小值及此时直线l 的方程.解析: (1)证明:证法一:直线l 的方程可化为y =k (x +2)+1, 故无论k 取何值,直线l 总过定点(-2,1).证法二:设直线l 过定点(x 0,y 0),则kx 0-y 0+1+2k =0对任意k ∈R 恒成立,即(x 0+2)k -y 0+1=0恒成立,∴x 0+2=0,-y 0+1=0,解得x 0=-2,y 0=1,故直线l 总过定点(-2,1).(2)直线l 的方程为y =kx +2k +1,则直线l 在y 轴上的截距为2k +1,要使直线l 不经过第四象限,则⎩⎪⎨⎪⎧k ≥0,1+2k ≥0,解得k 的取值范围是[0,+∞).(3)依题意,直线l 在x 轴上的截距为-1+2kk,在y 轴上的截距为1+2k ,∴A ⎝ ⎛⎭⎪⎫-1+2k k ,0,B (0,1+2k ).又-1+2kk<0且1+2k >0,∴k >0.故S =12|OA ||OB |=12×1+2k k (1+2k )=12⎝⎛⎭⎪⎫4k +1k +4≥12(4+4)=4,当且仅当4k =1k ,即k =12时,取等号.故S 的最小值为4,此时直线l 的方程为x -2y +4=0.第二节 两直线的位置关系1.能根据两条直线的斜率判断这两条直线平行或垂直. 2.能用解方程组的方法求两条相交直线的交点坐标.3.掌握两点间的距离公式、点到直线的距离公式,会求两平行直线间的距离.1.两条直线平行与垂直的判定 (1)两条直线平行对于两条不重合的直线l 1,l 2,其斜率分别为k 1,k 2,则有l 1∥l 2⇔k 1=k 2.特别地,当直线l 1,l 2的斜率都不存在时,l 1与l 2平行.(2)两条直线垂直如果两条直线l 1,l 2斜率存在,设为k 1,k 2,则l 1⊥l 2⇔k 1·k 2=-1,当一条直线斜率为零,另一条直线斜率不存在时,两条直线垂直.2.两直线相交交点:直线l 1:A 1x +B 1y +C 1=0和l 2:A 2x +B 2y +C 2=0的公共点的坐标与方程组⎩⎪⎨⎪⎧A 1x +B 1y +C 1=0A 2x +B 2y +C 2=0的解一一对应.相交⇔方程组有唯一解,交点坐标就是方程组的解; 平行⇔方程组无解; 重合⇔方程组有无数个解. 3.三种距离公式(1)点A (x 1,y 1)、B (x 2,y 2)间的距离: |AB |=x 1-x 22+y 1-y 22.(2)点P (x 1,y 1)到直线l :Ax +By +C =0的距离:d =|Ax 1+By 1+C |A 2+B 2.(3)两条平行直线l 1:Ax +By +C 1=0与l 2:Ax +By +C 2=0(C 1≠C 2)间的距离为d =|C 1-C 2|A 2+B 2.常见的四大直线系方程(1)过定点P (x 0,y 0)的直线系A (x -x 0)+B (y -y 0)=0(A 2+B 2≠0),还可以表示为y -y 0=k (x -x 0)(斜率不存在时可视为x =x 0).(2)与直线Ax +By +C =0平行的直线系方程是Ax +By +m =0(m ∈R 且m ≠C ). (3)与直线Ax +By +C =0垂直的直线系方程是Bx -Ay +m =0(m ∈R ).(4)过直线l 1:A 1x +B 1y +C 1=0与l 2:A 2x +B 2y +C 2=0的交点的直线系方程为A 1x +B 1y +C 1+λ(A 2x +B 2y +C 2)=0(λ∈R ),但不包括l 2.1.判断下面结论是否正确(请在括号中打“√”或“×”) (1)当直线l 1和l 2斜率都存在时,一定有k 1=k 2⇒l 1∥l 2.( ) (2)如果两条直线l 1与l 2垂直,则它们的斜率之积一定等于-1.( )(3)已知直线l 1:A 1x +B 1y +C 1=0,l 2:A 2x +B 2y +C 2=0(A 1、B 1、C 1、A 2、B 2、C 2为常数),若直线l 1⊥l 2,则A 1A 2+B 1B 2=0.( )(4)点P (x 0,y 0)到直线y =kx +b 的距离为|kx 0+b |1+k2.( ) (5)直线外一点与直线上一点的距离的最小值就是点到直线的距离.( ) 答案: (1)× (2)× (3)√ (4)× (5)√2.已知p :直线l 1:x -y -1=0与直线l 2:x +ay -2=0平行,q :a =-1,则p 是q 的( )A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件解析: 由于直线l 1:x -y -1=0与直线l 2:x +ay -2=0平行的充要条件是1×a -(-1)×1=0,即a =-1.答案: A3.已知点P (-1,1)与点Q (3,5)关于直线l 对称,则直线l 的方程为( ) A .x -y +1=0 B .x -y =0 C .x +y -4=0D .x +y =0解析: 线段PQ 的中点坐标为(1,3),直线PQ 的斜率k PQ =1,∴直线l 的斜率k l =-1,∴直线l 的方程为x +y -4=0.答案: C4.直线Ax +3y +C =0与直线2x -3y +4=0的交点在y 轴上,则C 的值为________.解析: 因为两直线的交点在y 轴上,所以点⎝ ⎛⎭⎪⎫0,43在第一条直线上,所以C =-4.答案: -45.已知直线l 1的方程为3x +4y -7=0,直线l 2的方程为6x +8y +1=0,则直线l 1与l 2的距离为________.解析: ∵直线l 1的方程为3x +4y -7=0,直线l 2的方程为6x +8y +1=0,即3x +4y +12=0,∴直线l 1与直线l 2的距离为⎪⎪⎪⎪⎪⎪12+732+42=32. 答案: 32两条直线的平行与垂直自主练透型1.直线l 过点(-1,2)且与直线2x -3y +4=0垂直,则l 的方程是( ) A .3x +2y -1=0 B .3x +2y +7=0 C .2x -3y +5=0D .2x -3y +8=0解析: 直线2x -3y +4=0的斜率是23,由直线l 与直线2x -3y +4=0垂直,可知直线l 的斜率是-32,又因直线l 过点(-1,2),由点斜式可得直线l 的方程为y -2=-32(x+1),即3x +2y -1=0.答案: A2.(2014·广东惠州二调)“a =1”是“直线l 1:ax +2y -1=0与直线l 2:x +(a +1)y +4=0平行”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件解析: 若直线l 1与l 2平行,则a (a +1)-2×1=0, 即a =-2或a =1,所以“a =1”是“直线l 1与直线l 2平行”的充分不必要条件. 答案: A3.已知直线l 的倾斜角为3π4,直线l 1经过点A (3,2),B (a ,-1),且l 1与l 垂直,直线l 2:2x +by +1=0与直线l 1平行,则a +b 等于( )A .-4B .-2C .0D .2解析: 由题意知,l 的倾斜角为3π4,∴k =tan 3π4=-1,设l 1的斜率为k 1,∴k 1=2+13-a =33-a,∵l 1与l 垂直,∴k ·k 1=-1,∴a =0.又∵l 2:2x +by +1=0与l 1平行,∴-2b=1,∴b =-2,∴a +b =-2. 答案: B两直线平行、垂直的判定方法(1)已知两直线的斜率存在①两直线平行⇔两直线的斜率相等且在坐标轴上的截距不等; ②两直线垂直⇔两直线的斜率之积等于-1.[提醒] 当直线斜率不确定时,要注意斜率不存在的情况. (2)已知两直线的一般方程两直线方程l 1:A 1x +B 1y +C 1=0,l 2:A 2x +B 2y +C 2=0中系数A 1,B 1,C 1,A 2,B 2,C 2与垂直、平行的关系:A 1A 2+B 1B 2=0⇔l 1⊥l 2;A 1B 2-A 2B 1=0且A 1C 2-A 2C 1≠0⇔l 1∥l 2.两直线的交点分层深化型求经过两直线l 1:x -2y +4=0和l 2:x +y -2=0的交点P ,且与直线l 3:3x -4y +5=0垂直的直线l 的方程.解析: 法一:由方程组⎩⎪⎨⎪⎧x -2y +4=0x +y -2=0,得⎩⎪⎨⎪⎧x =0y =2,即P (0,2).∵l ⊥l 3,∴k l =-43,∴直线l 的方程为y -2=-43x ,即4x +3y -6=0.法二:∵直线l 过直线l 1和l 2的交点,∴可设直线l 的方程为x -2y +4+λ(x +y -2)=0, 即(1+λ)x +(λ-2)y +4-2λ=0. ∵l 与l 3垂直,∴3(1+λ)+(-4)(λ-2)=0, ∴λ=11,∴直线l 的方程为12x +9y -18=0, 即4x +3y -6=0.1.(2014·浙江温州十校联考)过两直线2x -y -5=0和x +y +2=0的交点且与直线3x +y -1=0平行的直线方程为________.解析: 联立⎩⎪⎨⎪⎧2x -y -5=0,x +y +2=0,得交点P (1,-3).设过点P 且与直线3x +y -1=0平行的直线方程为3x +y +m =0,则3×1-3+m =0,解得m =0.答案: 3x +y =02.过点P (3,0)作一条直线l ,使它被两直线l 1:2x -y -2=0和l 2:x +y +3=0所截的线段AB 以P 为中点,求此直线l 的方程.解析: 法一:设直线l 的方程为y =k (x -3), 将此方程分别与l 1,l 2的方程联立, 得⎩⎪⎨⎪⎧y =k x -,2x -y -2=0得⎩⎪⎨⎪⎧y =k x -,x +y +3=0.解之,得x A =3k -2k -2和x B =3k -3k +1,∵P (3,0)是线段AB 的中点, 由x A +x B =6得3k -2k -2+3k -3k +1=6,解得k =8. 故直线l 的方程为y =8(x -3), 即8x -y -24=0.法二:设l 1上的点A 的坐标为(x 1,y 1), ∵P (3,0)是线段AB 的中点,则l 2上的点B 的坐标为(6-x 1,-y 1),∴⎩⎪⎨⎪⎧2x 1-y 1-2=0,-x 1+-y 1+3=0.解这个方程组,得⎩⎪⎨⎪⎧x 1=113,y 1=163.∴点A 的坐标为⎝⎛⎭⎪⎫113,163,由两点式可得l 的方程为8x -y -24=0.3.已知直线l 1:2x +3y +8=0,l 2:x -y -1=0,l 3:x +ky +k +12=0,分别求满足下列条件的k 的值:(1)l 1,l 2,l 3相交于一点; (2)l 1,l 2,l 3围成三角形.解析: (1)直线l 1,l 2的方程联立得⎩⎪⎨⎪⎧x -y -1=02x +3y +8=0,解得⎩⎪⎨⎪⎧x =-1y =-2,即直线l 1,l 2的交点为P (-1,-2).又点P 在直线l 3上,所以-1-2k +k +12=0,解得k =-12.(2)由(1)知k ≠-12.当直线l 3与l 1,l 2均相交时,有⎩⎪⎨⎪⎧2k -3≠0k +1≠0,解得k ≠32且k ≠-1,综上可得k ≠-12,且k ≠32,且k ≠-1.1.两直线交点的求法求两直线的交点坐标,就是解由两直线方程组成的方程组,以方程组的解为坐标的点即为交点.2.求经过两直线交点的直线方程,利用直线系方程,会给解题带来方便.距离问题互动讲练型已知A (4,-3),B (2,-1)和直线l :4x +3y -2=0,在坐标平面内求一点P ,使|PA |=|PB |,且点P 到直线l 的距离为2.解析: 设点P 的坐标为(a ,b ). ∵A (4,-3),B (2,-1),∴线段AB 的中点M 的坐标为(3,-2). 而AB 的斜率k AB =-3+14-2=-1,∴线段AB 的垂直平分线方程为y +2=x -3, 即x -y -5=0.∵点P (a ,b )在直线x -y -5=0上,∴a -b -5=0.①又点P (a ,b )到直线l :4x +3y -2=0的距离为2, ∴|4a +3b -2|5=2, 即4a +3b -2=±10,②由①②联立可得⎩⎪⎨⎪⎧a =1,b =-4或⎩⎪⎨⎪⎧a =277,b =-87.∴所求点P 的坐标为(1,-4)或⎝ ⎛⎭⎪⎫277,-87.已知直线l 1:mx +8y +n =0与l 2:2x +my -1=0互相平行,且l 1,l 2之间的距离为5,求直线l 1的方程.解析: ∵l 1∥l 2,∴m 2=8m ≠n-1,∴⎩⎪⎨⎪⎧m =4,n ≠-2或⎩⎪⎨⎪⎧m =-4,n ≠2.(1)当m =4时,直线l 1的方程为4x +8y +n =0, 把l 2的方程写成4x +8y -2=0, ∴|n +2|16+64=5,解得n =-22或n =18.故所求直线的方程为2x +4y -11=0或2x +4y +9=0. (2)当m =-4时,直线l 1的方程为4x -8y -n =0,l 2的方程为2x -4y -1=0,∴|-n +2|16+64=5,解得n =-18或n =22.故所求直线的方程为2x -4y +9=0或2x -4y -11=0.求点到直线的距离时,要注意把直线方程化成一般式的形式;求两条平行线之间的距离时,可先把两平行线方程中x ,y 的对应项系数转化成相等的形式,再利用距离公式求解.也可转化成点到直线距离求解.对称问题互动讲练型已知直线l :2x -3y +1=0,点A (-1,-2).求: (1)点A 关于直线l 的对称点A ′的坐标;(2)直线m :3x -2y -6=0关于直线l 的对称直线m ′的方程.解析: (1)设A ′(x ,y ),由已知⎩⎪⎨⎪⎧y +2x +1×23=-1,2×x -12-3×y -22+1=0,解得⎩⎪⎨⎪⎧x =-3313,y =413.∴A ′⎝ ⎛⎭⎪⎫-3313,413.(2)在直线m 上取一点,如M (2,0),则M (2,0)关于直线l 的对称点M ′必在直线m ′上. 设M 的对称点为M ′(a ,b ),则⎩⎪⎨⎪⎧2×a +22-3×b +02+1=0,b -0a -2×23=-1.解得M ′⎝ ⎛⎭⎪⎫613,3013.设m 与l 的交点为N ,则由⎩⎪⎨⎪⎧2x -3y +1=0,3x -2y -6=0.得N (4,3).又∵m ′经过点N (4,3),∴由两点式得直线m ′的方程为9x -46y +102=0.在本例条件下,求直线l 关于点A (-1,-2)对称的直线l ′的方程.解析: 设P (x ,y )为l ′上任意一点,则P (x ,y )关于点A (-1,-2)的对称点为P ′(-2-x ,-4-y ),∵P ′在直线l 上,∴2(-2-x )-3(-4-y )+1=0. 即2x -3y -9=0.对称问题的解题策略解决中心对称问题的关键在于运用中点坐标公式,而解决轴对称问题,一般是转化为求对称点的问题,在求对称点时,关键是抓住两点:一是两对称点的连线与对称轴垂直;二是两对称点的中心在对称轴上,即抓住“垂直平分”,由“垂直”列出一个方程,由“平分”列出一个方程,联立求解.A 级 基础训练1.(2014·广东六校一联)如果直线(2a +5)x +(a -2)y +4=0与直线(2-a )x +(a +3)y -1=0互相垂直,则a =( )A .2B .-2C .2,-2D .2,0,-2解析: 由题意可知(2a +5)(2-a )+(a -2)(a +3)=(2-a )·[(2a +5)-(a +3)]=-(a -2)(a +2)=0,解得a =±2,故选C .答案: C2.已知两点A (3,2)和B (-1,4)到直线mx +y +3=0的距离相等,则m 的值为( ) A .0或-12B .12或-6 C .-12或12D .0或12解析: 依题意得|3m +2+3|m 2+1=|-m +4+3|m 2+1,∴|3m +5|=|m -7|,∴3m +5=m -7或3m +5=7-m . ∴m =-6或m =12.故应选B .答案: B3.已知直线l 1:y =2x +3,直线l 2与l 1关于直线y =-x 对称,则直线l 2的斜率为( ) A .12 B .-12C .2D .-2解析: ∵l 2,l 1关于y =-x 对称, ∴l 2的方程为-x =-2y +3.即y =12x +32.∴l 2的斜率为12.答案: A4.(2014·广东模拟)若直线l 1:x -2y +m =0(m >0)与直线l 2:x +ny -3=0之间的距离是5,则m +n =( )A .0B .1C .-1D .2 解析: ∵直线l 1:x -2y +m =0(m >0)与直线l 2:x +ny -3=0之间的距离为5,∴⎩⎪⎨⎪⎧n =-2,|m +3|5=5,∴n =-2,m =2(负值舍去). ∴m +n =0. 答案: A5.(2014·湖北八市联考)已知集合M =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ,y ⎪⎪⎪y -3x -2=3,N ={(x ,y )|ax +2y +a =0},且M ∩N =∅,则a =( )A .-6或-2B .-6C .2或-6D .-2解析: 易知集合M 中的元素表示的是过(2,3)点且斜率为3的直线上除(2,3)点外的所有点,要使M ∩N =∅,则N 中的元素表示的是斜率为3且不过(2,3)点的直线,或过(2,3)点且斜率不为3的直线,∴-a2=3或2a +6+a =0,∴a =-6或a =-2.答案: A6.经过点P (-1,2)且与曲线y =3x 2-4x +2在点M (1,1)处的切线平行的直线方程为________.解析: ∵y ′=6x -4,∴y ′|x =1=2,∴所求直线的方程为y -2=2(x +1),即2x -y +4=0.答案: 2x -y +4=07.直线x +2y -3=0与直线ax +4y +b =0关于点A (1,0)对称,则b =________. 解析: 法一:由题知,点A 不在直线x +2y -3=0上, ∴两直线平行, ∴-12=-a 4,∴a =2.又点A 到两直线距离相等, ∴|1-3|5=|2+b |25, ∴|b +2|=4, ∴b =-6或b =2.∵点A 不在直线x +2y -3=0上, ∴两直线不能重合, ∴b =2.法二:在直线x +2y -3=0上任取两点P 1(1,1),P 2(3,0),则P 1,P 2关于点A 的对称点P 1′,P 2′都在直线ax +4y +b =0上,∵易知P 1′(1,-1),P 2′(-1,0),∴⎩⎪⎨⎪⎧a -4+b =0,-a +b =0,∴b =2. 答案: 28.设直线l 经过点A (-1,1),则当点B (2,-1)与直线l 的距离最远时,直线l 的方程为________.解析: 设点B (2,-1)到直线l 的距离为d , 当d =|AB |时取得最大值, 此时直线l 垂直于直线AB ,k l =-1k AB =32, ∴直线l 的方程为y -1=32(x +1),即3x -2y +5=0.答案: 3x -2y +5=09.已知两直线l 1:ax -by +4=0和l 2:(a -1)x +y +b =0,求满足下列条件的a ,b 的值.(1)l 1⊥l 2,且直线l 1过点(-3,-1);(2)l 1∥l 2,且坐标原点到这两条直线的距离相等. 解析: (1)∵l 1⊥l 2,∴a (a -1)-b =0. 又∵直线l 1过点(-3,-1),∴-3a +b +4=0. 故a =2,b =2.(2)∵直线l 2的斜率存在,l 1∥l 2,∴直线l 1的斜率存在. ∴k 1=k 2,即a b=1-a .①又∵坐标原点到这两条直线的距离相等, ∴l 1,l 2在y 轴上的截距互为相反数,即4b=b .②联立①②可得:a =2,b =-2或a =23,b =2.10.已知直线l :3x -y +3=0,求: (1)点P (4,5)关于l 的对称点;(2)直线x -y -2=0关于直线l 对称的直线方程.解析: 设P (x ,y )关于直线l :3x -y +3=0的对称点为P ′(x ′,y ′). ∵k PP ′·k l =-1,即y ′-yx ′-x×3=-1.① 又PP ′的中点在直线3x -y +3=0上,∴3×x ′+x 2-y ′+y2+3=0.②由①②得⎩⎪⎨⎪⎧x ′=-4x +3y -95, ③y ′=3x +4y +35. ④(1)把x =4,y =5代入③④得x ′=-2,y ′=7, ∴P (4,5)关于直线l 的对称点P ′的坐标为(-2,7).(2)用③④分别代换x -y -2=0中的x ,y ,得关于l 的对称直线方程为-4x +3y -95-3x +4y +35-2=0, 化简得7x +y +22=0.B 级 能力提升1.(2014·洛阳统考)已知点P (x 0,y 0)是直线l :Ax +By +C =0外一点,则方程Ax +By +C +(Ax 0+By 0+C )=0表示( )A .过点P 且与l 垂直的直线B .过点P 且与l 平行的直线C .不过点P 且与l 垂直的直线D .不过点P 且与l 平行的直线解析: 因为点P (x 0,y 0)不在直线Ax +By +C =0上,所以Ax 0+By 0+C ≠0,所以直线Ax +By +C +(Ax 0+By 0+C )=0不经过点P ,排除A 、B ;又直线Ax +By +C +(Ax 0+By 0+C )=0与直线l :Ax +By +C =0平行,排除C ,故选D .答案: D2.(2014·四川卷)设m ∈R ,过定点A 的动直线x +my =0和过定点B 的动直线mx -y -m +3=0交于点P (x ,y ),则|PA |·|PB |的最大值是________.解析: 由题意可知点A 为(0,0),点B 为(1,3).又∵直线x +my =0的斜率k 1=-1m,直线mx -y -m +3=0的斜率k 2=m ,∴k 1k 2=-1.∴两条动直线互相垂直.又由圆的性质可知,动点P (x ,y )的轨迹是圆, ∴圆的直径为|AB |=12+32=10. ∴|PA |·|PB |≤|PA |2+|PB |22=|AB |22=5.当且仅当|PA |=|PB |=5时,等号成立. ∴|PA |·|PB |的最大值是5.答案: 53.已知直线l 经过直线2x +y -5=0与x -2y =0的交点P . (1)点A (5,0)到l 的距离为3,求l 的方程; (2)求点A (5,0)到l 的距离的最大值.解析: (1)∵经过两已知直线交点的直线系方程为(2x +y -5)+λ(x -2y )=0,即(2+λ)x +(1-2λ)y -5=0, ∴|10+5λ-5|+λ2+-2λ2=3,解得λ=2或λ=12. ∴l 的方程为x =2或4x -3y -5=0.(2)由⎩⎪⎨⎪⎧2x +y -5=0,x -2y =0,解得交点P (2,1),如图,过P 作任一直线l ,设d 为点A 到l的距离,则d ≤|PA |(当l ⊥PA 时等号成立). ∴d max =|PA |=10.4.A ,B 两个工厂距一条河分别为400 m 和100 m ,A ,B 两工厂之间距离500 m ,把小河看作一条直线,今在小河边上建一座供水站,供A ,B 两工厂用水,要使供水站到A ,B 两工厂铺设的水管长度之和最短,问供水站应建在什么地方?解析: 如图,以小河所在直线为x 轴,过点A 的垂线为y 轴,建立直角坐标系,则点A (0,400),点B (a,100).过点B 作BC ⊥AO 于点C .在△ABC 中,AB =500,AC =400-100=300, 由勾股定理得BC =400, ∴B (400,100).点A (0,400)关于x 轴的对称点A ′(0,-400), 由两点式得直线A ′B 的方程为y =54x -400.令y =0,得x =320,即点P (320,0).故供水站(点P)在距O点320 m处时,到A,B两厂铺设的水管长度之和最短.第三节 圆的方程1.掌握确定圆的几何要素,掌握圆的标准方程与一般方程. 2.初步了解用代数方法处理几何问题的思想.1.圆的定义及方程 定义 平面内与定点的距离等于定长的点的集合(轨迹) 标准 方程 (x -a )2+(y -b )2=r 2(r >0)圆心:(a ,b ),半径:r 一般 方程x 2+y 2+Dx +Ey +F =0(D 2+E 2-4F >0)圆心:⎝ ⎛⎭⎪⎫-D 2,-E 2,半径:12D 2+E 2-4F2.点与圆的位置关系点M (x 0,y 0)与圆(x -a )2+(y -b )2=r 2的位置关系: (1)若M (x 0,y 0)在圆外,则(x 0-a )2+(y 0-b )2>r 2. (2)若M (x 0,y 0)在圆上,则(x 0-a )2+(y 0-b )2=r 2. (3)若M (x 0,y 0)在圆内,则(x 0-a )2+(y 0-b )2<r 2.1.待定系数法求圆的方程(1)若已知条件与圆心(a ,b )和半径r 有关,则设圆的标准方程,依据已知条件列出关于a ,b ,r 的方程组,从而求出a ,b ,r 的值;(2)若已知条件没有明确给出圆心或半径,则选择圆的一般方程,依据已知条件列出关于D ,E ,F 的方程组,进而求出D ,E ,F 的值.2.确定圆心位置的方法(1)圆心在过切点且与切线垂直的直线上. (2)圆心在圆的任意弦的垂直平分线上. (3)两圆相切时,切点与两圆圆心共线.1.判断下面结论是否正确(请在括号中打“√”或“×”) (1)确定圆的几何要素是圆心与半径.( )(2)方程Ax 2+Bxy +Cy 2+Dx +Ey +F =0表示圆的充要条件是A =C ≠0,B =0,D 2+E 2-4F >0.( )(3)若点M (x 0,y 0)在圆x 2+y 2+Dx +Ey +F =0外,则x 20+y 20+Dx 0+Ey 0+F >0.( ) 答案: (1)√ (2)√ (3)√2.方程x 2+y 2+4mx -2y +5m =0表示圆的充要条件是( ) A .14<m <1 B .m <14或m >1C .m <14D .m >1解析: 由D 2+E 2-4F =16m 2+4-20m >0, 解得m >1或m <14,故选B .答案: B3.若点(1,1)在圆(x -a )2+(y +a )2=4的内部,则实数a 的取值范围是( ) A .-1<a <1 B .0<a <1 C .a >1或a <-1 D .a =±1解析: ∵点(1,1)在圆内,∴(1-a )2+(1+a )2<4,即-1<a <1. 答案: A4.圆(x -1)(x +2)+(y -2)(y +4)=0的圆心坐标为________. 解析: 整理配方,得⎝ ⎛⎭⎪⎫x +122+(y +1)2=454,所以圆心为⎝ ⎛⎭⎪⎫-12,-1.答案: ⎝ ⎛⎭⎪⎫-12,-1 5.(2014·陕西卷)若圆C 的半径为1,其圆心与点(1,0)关于直线y =x 对称,则圆C 的标准方程为____________.解析: 因为(1,0)关于y =x 的对称点为(0,1),所以圆C 是以(0,1)为圆心,以1为半径的圆,其方程为x 2+(y -1)2=1.答案: x 2+(y -1)2=1确定圆的方程自主练透型1.(2014·山东潍坊一模)若圆C 经过(1,0),(3,0)两点,且与y 轴相切,则圆C 的方程为( )A .(x -2)2+(y ±2)2=3 B .(x -2)2+(y ±3)2=3 C .(x -2)2+(y ±2)2=4 D .(x -2)2+(y ±3)2=4解析: 因为圆C 经过(1,0),(3,0)两点,所以圆心在直线x =2上,又圆与y 轴相切,所以半径r =2,设圆心坐标为(2,b ),则(2-1)2+b 2=4,b 2=3,b =±3,选D .答案: D2.过P (4,-2),Q (-1,3)两点,且在y 轴上截得的线段长为43的圆的方程为________________.解析: 设圆的方程为x 2+y 2+Dx +Ey +F =0.① 将P ,Q 点的坐标分别代入①得⎩⎪⎨⎪⎧4D -2E +F =-20, ②D -3E -F =10. ③令x =0,由①得y 2+Ey +F =0.④由已知|y 1-y 2|=43,其中y 1、y 2是方程④的两根, 所以(y 1-y 2)2=(y 1+y 2)2-4y 1y 2=E 2-4F =48.⑤ 解②③⑤组成的方程组得⎩⎪⎨⎪⎧D =-2,E =0,F =-12或⎩⎪⎨⎪⎧D =-10,E =-8,F =4,故所求圆的方程为x 2+y 2-2x -12=0或x 2+y 2-10x -8y +4=0. 答案: x 2+y 2-2x -12=0或x 2+y 2-10x -8y +4=0.3.已知圆心为C 的圆经过点A (0,-6),B (1,-5),且圆心在直线l :x -y +1=0上,求圆的标准方程.解析: 法一:设圆的方程为x 2+y 2+Dx +Ey +F =0(D 2+E 2-4F >0),则圆心坐标为⎝ ⎛⎭⎪⎫-D 2,-E 2.由题意可得⎩⎪⎨⎪⎧-2-6E +F =012+-2+D -5E +F =0,D -E -2=0消去F 得⎩⎪⎨⎪⎧D +E -10=0D -E -2=0,解得⎩⎪⎨⎪⎧D =6E =4,代入求得F =-12,所以圆的方程为x 2+y 2+6x +4y -12=0, 标准方程为(x +3)2+(y +2)2=25. 法二:因为A (0,-6),B (1,-5), 所以线段AB 的中点D 的坐标为⎝ ⎛⎭⎪⎫12,-112,直线AB 的斜率k AB =-5--1-0=1,因此线段AB 的垂直平分线l 的方程是y +112=-⎝⎛⎭⎪⎫x -12,即x +y +5=0.圆心C 的坐标是方程组⎩⎪⎨⎪⎧x +y +5=0x -y +1=0的解,解得⎩⎪⎨⎪⎧x =-3y =-2,所以圆心C 的坐标是(-3,-2). 圆的半径长r =|AC |=+2+-6+2=5,所以,圆心为C 的圆的标准方程是(x +3)2+(y +2)2=25.求圆的方程的两种方法(1)直接法:根据圆的几何性质,直接求出圆心坐标和半径,进而写出方程 . (2)待定系数法:若已知条件与圆心(a ,b )和半径r 有关,则设圆的标准方程,依据已知条件列出关于a ,b ,r 的方程组,从而求出a ,b ,r 的值.与圆有关的最值问题分层深化型 已知实数x ,y 满足方程x 2+y 2-4x +1=0. (1)求y x的最大值和最小值; (2)求y -x 的最大值和最小值.解析: 原方程可化为(x -2)2+y 2=3,表示以(2,0)为圆心,3为半径的圆. (1)y x的几何意义是圆上一点与原点连线的斜率, 所以设y x=k ,即y =kx .当直线y =kx 与圆相切时,斜率k 取最大值或最小值,此时|2k -0|k 2+1=3,解得k =±3(如图1).所以y x的最大值为3,最小值为- 3.(2)y -x 可看作是直线y =x +b 在y 轴上的截距,当直线y =x +b 与圆相切时,纵截距b 取得最大值或最小值,此时|2-0+b |2=3,解得b =-2±6(如图2). 所以y -x 的最大值为-2+6,最小值为-2- 6.1.已知点P (x ,y )在圆x 2+(y -1)2=1上运动,则y -1x -2的最大值与最小值分别为________.解析: 设y -1x -2=k ,则k 表示点P (x ,y )与点(2,1)连线的斜率.当该直线与圆相切时,k 取得最大值与最小值.由|2k |k 2+1=1,解得k =±33.答案:33 -332.若本例中的条件不变.(1)求点P (x ,y )到直线3x +4y +12=0的距离的最大值和最小值. (2)求x 2+y 2的最大值和最小值.解析: (1)∵圆心(2,0)到直线3x +4y +12=0的距离为d =|6+12|5=185, ∴P (x ,y )到直线3x +4y +12=0的距离的最大值为185+3,最小值为185- 3. (2)x 2+y 2表示圆上的一点与原点距离的平方,由平面几何知识知,在原点和圆心连线与圆的两个交点处取得最大值和最小值(如图).。

2016版《一点一练》高考数学(文科)专题演练:第十章 推理与证明、算法与复数(含两年高考一年模拟)

2016版《一点一练》高考数学(文科)专题演练:第十章 推理与证明、算法与复数(含两年高考一年模拟)

1.y ∈Z },B ={(x ,y )||x |≤2,|y |≤2,x ,y ∈Z },定义集合A ⊕B ={(x 1+x 2,y 1+y 2)|(x 1,y 1)∈A ,(x 2,y 2)∈B },则A ⊕B 中元素的个数为( )A .77B .49C .45D .302.(2015·广东)若集合E ={(p ,q ,r ,s )|0≤p <s ≤4,0≤q <s ≤4,0≤r <s ≤4且p ,q ,r ,s ∈N },F ={(t ,u ,v ,w )|0≤t <u ≤4,0≤v <w ≤4且t ,u ,v ,w ∈N },用card(X )表示集合X 中的元素个数,则card(E )+card(F )=( )A .200B .150C .100D .503.(2015·陕西)观察下列等式1-12=121-12+13-14=13+14 1-12+13-14+15-16=14+15+16……据此规律,第n 个等式可为________.4.(2014·陕西)已知f (x )=x 1+x,x ≥0,若f 1(x )=f (x ),f n +1(x )=f (f n (x )),n ∈N +则f 2 014(x )的表达式为______.5.(2014·北京)顾客请一位工艺师把A ,B 两件玉石原料各制成一件工艺品.工艺师带一位徒弟完成这项任务.每件原料先由徒弟完成粗加工,再由工艺师进行精加工完成制作,两件工艺品都完成后交付顾客.两件原料每道工序所需时间(单位:工作日)如下:6.(2015·江苏)设a 1,a 2,a 3,a 4是各项为正数且公差为d (d ≠0)的等差数列.(1)证明:2a 1,2a 2,2a 3,2a 4依次构成等比数列;(2)是否存在a 1,d ,使得a 1,a 22,a 33,a 44依次构成等比数列?并说明理由;(3)是否存在a 1,d 及正整数n ,k ,使得a n 1,a n +k 2,a n +2k 3,a n +3k 4依次构成等比数列?并说明理由.1.(2015·吉林四校调研)设a 、b 、c 都是正数,则a +1b ,b +1c ,c +1a 三个数( )A .都大于2B .至少有一个大于2C .至少有一个不大于2D .至少有一个不小于22.(2015·河北保定模拟)定义A B ,B C ,C D ,D B 分别对应下列图形( )那么下列图形中,可以表示A D ,A C 的分别是( )A .(1)(2)B .(2)(3)C .(2)(4)D .(1)(4)3.(2015·宜昌调研)给出下列两种说法:①已知p 3+q 3=2,求证p +q ≤2,用反证法证明时,可假设p +q ≥2;②已知a ,b ∈R ,|a |+|b |<1,求证方程x 2+ax +b =0的两根的绝对值都小于1,用反证法证明时,可假设方程有一根x 1的绝对值大于或等于1,即假设|x 1|≥1.以下结论正确的是( )A .①与②的假设都错误B .①与②的假设都正确C .①的假设正确;②的假设错误D .①的假设错误;②的假设正确4.(2015·淮南模拟)从1开始的自然数按如图所示的规则排列,现有一个三角形框架在图中上下或左右移动,使每次恰有九个数在此三角形内,则这九个数的和可以为( )A .2 011B .2 012C .2 013D .2 0145.(2015·泉州模拟)设△ABC 的三边长分别为a ,b ,c ,△ABC的面积为S ,内切圆半径为r ,则r =2S a +b +c;类比这个结论可知,四面体ABCD 的四个面的面积分别为S 1,S 2,S 3,S 4,四面体ABCD 的体积为V ,内切球半径为R ,则R =________.6.(2015·黄山模拟)在矩形ABCD 中,对角线AC 与相邻两边所成的角为α,β,则有cos 2α+cos 2β=1.类比到空间中的一个正确命题是:在长方体ABCD -A 1B 1C 1D 1中,对角线AC 1与相邻三个面所成的角为α,β,γ,则________.7.(2015·莱芜模拟)如果函数f (x )在区间D 上是凸函数,那么对于区间D 内的任意x 1,x 2,…,x n ,都有f (x 1)+f (x 2)+…+f (x n )n≤f ⎝ ⎛⎭⎪⎫x 1+x 2+…+x n n .若y =sin x 在区间(0,π)上是凸函数,那么在△ABC 中,sin A +sin B +sin C 的最大值是________.8.(2015·北京模拟)若f (a +b )=f (a )f (b )(a ,b ∈N *),且f (1)=2,则f (2)f (1)+f (4)f (3)+…+f (2 014)f (2 013)=________.9.(2015·昆明一中检测)甲、乙、丙三名同学中只有一人考了满分,当他们被问到谁考了满分时,甲说:丙没有考满分;乙说:是我考的;丙说:甲说真话.事实证明:在这三名同学中,只有一人说的是假话,那么得满分的同学是________.10.(2015·湖北八校一联)观察下列等式:12=1,12-22=-3,12-22+32=6,12-22+32-42=-10,……,由以上等式推测出一个一般性的结论:对于n∈N*,12-22+32-42+…+(-1)n+1n2=________.11.(2015·宝鸡市质检)观察等式:①13×13+12×12+16×1=12,②13×23+12×22+16×2=12+22,③13×33+12×32+16×3=12+22+32,…,以上等式都是成立的,照此写下去,第2 015个成立的等式是________.12.(2015·武汉市调研)平面几何中有如下结论:如图1,设O是等腰Rt△ABC底边BC的中点,AB=1,过点O的动直线与两腰或其延长线的交点分别为Q,R,则有1AQ+1AR=2.类比此结论,将其拓展到空间有:如图2,设O是正三棱锥A-BCD底面BCD的中心,AB,AC,AD两两垂直,AB=1,过点O的动平面与三棱锥的三条侧棱或其延长线的交点分别为Q,R,P,则有________.1.(2015·输入x的值为1,则输出y的值为()A.2 B.7 C.8 D.128第1题图第2题图2.(2015·天津)阅读上边的程序框图,运行相应的程序,则输出i的值为()A.2 B.3 C.4 D.53.(2015·北京)执行如图所示的程序框图,输出的k值为() A.3 B.4 C.5 D.64.(2015·四川)执行如图所示的程序框图,输出S的值为()A.-32 B.32C.-12 D.12第3题图 第4题图 第5题图5.(2015·重庆)执行如图所示的程序框图,则输出s 的值为( ) A.34 B.56 C.1112 D.25246.(2014·新课标Ⅰ)执行下面的程序框图,若输入的a ,b ,k 分别为1,2,3,则输出的M =( )A.203B.165C.72D.158第6题图 第7题图 7.(2014·新课标Ⅱ)执行上面的程序框图,如果输入的x ,t 均为2,则输出的S =( )A .4B .5C .6D .78.(2015·新课标全国Ⅰ)已知复数z 满足(z -1)i =1+i ,则z =( )A .-2-iB .-2+iC .2-iD .2+i9.(2015·新课标全国Ⅱ)若a 为实数,且2+a i 1+i=3+i ,则a =( ) A .-4 B .-3 C .3 D .410.(2015·广东)已知i 是虚数单位,则复数(1+i)2=( )A .2iB .-2iC .2D .-211.(2015·山东)若复数z 满足z 1-i=i ,其中i 为虚数单位,则z =( )A .1-iB .1+iC .-1-iD .-1+i12.(2015·安徽)设i 是虚数单位,则复数(1-i)(1+2i)=( )A .3+3iB .-1+3iC .3+iD .-1+i13.(2014·重庆)实部为-2,虚部为1的复数所对应的点位于复平面的( )A .第一象限B .第二象限C .第三象限D .第四象限14.(2014·福建)复数z =(3-2i)i 的共轭复数z 等于( )A .-2-3iB .-2+3iC .2-3iD .2+3i1.(2015·x 的值为( )A .4B .5C .6D .7第1题图 第2题图 2.(2015·云南名校统考)执行如图所示的程序框图,输出的S 值为-4时,则输入的S 0的值为( ) A .7 B .8 C .9 D .103.(2015·湖北八校一联)如图给出的是计算12+14+16+…+12 014的值的程序框图,其中判断框内应填入的是( )A .i ≤2 013?B .i ≤2 015?C .i ≤2 017?D .i ≤2 019?第3题图 第4题图 4.(2015·宝鸡市质检)某程序框图如图所示,则该程序运行后输出的S 的值等于( )A .1 B.14 C.12 D.185.(2015·四川省统考)某程序框图如图所示,若输出的S =57,则判断框内应填( )A .k >4?B .k >5?C .k >6?D .k >7?第5题图 第6题图 6.(2015·晋冀豫三省调研)执行如图所示的程序框图,输出S 的值为( )A .3B .-6C .10D .127.(2015·贵阳市模拟)复数z =3-2i ,i 是虚数单位,则z 的虚部是( )A .2iB .-2iC .2D .-28.(2015·郑州一预)设i 是虚数单位,若复数m +103+i(m ∈R )是纯虚数,则m 的值为( )A .-3B .-1C .1D .39.(2015·邯郸市质检)已知i 是虚数单位,则复数z =4+3i 3-4i的虚部是( )A .0B .iC .-iD .110.(2015·汕头市监测)复数21-i的实部与虚部之和为( ) A .-1 B .2 C .1 D .011.(2015·唐山一期检测)若复数z =a +3i 1-2i(a ∈R ,i 是虚数单位)是纯虚数,则z 的值为( )A .2B .3C .3iD .2i12.(2015·唐山摸底)复数z =1-3i 1+2i,则( ) A .|z |=2 B .z 的实部为1C .z 的虚部为-iD .z 的共轭复数为-1+i13.(2015·福州市质检)在复平面内,两共轭复数所对应的点( )A .关于x 轴对称B .关于y 轴对称C .关于原点对称D .关于直线y =x参考答案第十章推理与证明、算法与复数考点33推理与证明【两年高考真题演练】1.C[如图,集合A表示如图所示的所有圆点“”,集合B表示如图所示的所有圆点“”+所有圆点“”,集合A⊕B显然是集合{(x,y)||x|≤3,|y|≤3,x,y∈Z}中除去四个点{(-3,-3),(-3,3),(3,-3),(3,3)}之外的所有整点(即横坐标与纵坐标都为整数的点),即集合A⊕B表示如图所示的所有圆点“”+所有“”圆点+所有圆点“”,共45个.故A⊕B中元素的个数为45.故选C.]2.A[当s=4时,p,q,r都可取0,1,2,3中的一个,有43=64种,当s=3时,p,q,r都可取0,1,2中的一个,有33=27种,当s=2时,p,q,r都可取0,1中的一个,有23=8种,当s=1时,p,q,r都可取0,有1种,∴card(E)=64+27+8+1=100.当t=0时,u可取1,2,3,4中的一个,有4种,当t=1时,u取2,3,4中的一个,有3种,当t=2时,u可取3,4中的一个,有2种,当t=3时,u可取4,有一种,∴t,u取值有1+2+3+4=10种,同样地,v,w的取值也有10种,则card(F)=10×10=100种,∴card(E)+card(F)=100+100=200种.]3.1-12+13-14+…+12n-1-12n=1n+1+1n+2+…+12n[等式左边的特征:第1个等式有2项,第2个有4项,第3个有6项,且正负交错,故第n 个等式左边有2n 项且正负交错,应为1-12+13-14+…+12n -1-12n;等式右边的特征:第1个有1项,第2个有2项,第3个有3项,故第n 个有n 项,且有前几个的规律不难发现第n 个等式右边应为1n +1+1n +2+…+12n .] 4.f 2 014(x )=x 1+2 014x [f 1(x )=x 1+x ,f 2(x )=x1+x 1+x 1+x=x 1+2x ,f 3(x )=x1+2x 1+x 1+2x=x 1+3x ,…,由数学归纳法得f 2 014(x )=x 1+2 014x .] 5.42 [为使交货期最短,需徒弟先对原料B 进行粗加工,用时6个工作日,再由工艺师对原料B 进行精加工,用时21个工作日,在此期间徒弟再对原料A 进行粗加工,不会影响工艺师加工完原料B 后直接对原料A 进行精加工,所以最短交货期为6+21+15=42(个)工作日.]6.(1)证明 因为2a n +12a n=2a n +1-a n =2d (n =1,2,3)是同一个常数,所以2a 1,2a 2,2a 3,2a 4依次构成等比数列,(2)解 令a 1+d =a ,则a 1,a 2,a 3,a 4分别为a -d ,a ,a +d ,a +2d (a >d ,a >-2d ,d ≠0).假设存在a 1,d ,使得a 1,a 22,a 33,a 44依次构成等比数列,则a 4=(a -d )(a +d )3,且(a +d )6=a 2(a +2d )4.令t =d a ,则1=(1-t )(1+t )3,且(1+t )6=(1+2t )4⎝ ⎛⎭⎪⎫-12<t <1,t ≠0, 化简得t 3+2t 2-2=0(*),且t 2=t +1.将t 2=t +1代入(*)式,t (t +1)+2(t +1)-2=t 2+3t =t +1+3t =4t +1=0,则t =-14. 显然t =-14不是上面方程的解,矛盾,所以假设不成立.因此不存在a 1,d ,使得a 1,a 22,a 33,a 44依次构成等比数列.(3)解 假设存在a 1,d 及正整数n ,k ,使得a n 1,a n +k 2,a n +2k 3,a n +3k 4依次构成等比数列,则a n 1(a 1+2d )n +2k =(a 1+d )2(n +k ),且(a 1+d )n +k (a 1+3d )n +3k =(a 1+2d )2(n +2k ).分别在两个等式的两边同除以a 2(n +k )1及a 2(n +2k )1, 并令t =d a 1⎝⎛⎭⎪⎫t >-13,t ≠0, 则(1+2t )n +2k =(1+t )2(n +k ),且(1+t )n +k (1+3t )n +3k =(1+2t )2(n +2k ).将上述两个等式两边取对数,得(n +2k )ln(1+2t )=2(n +k )ln(1+t ),且(n +k )ln(1+t )+(n +3k )ln(1+3t )=2(n +2k )ln(1+2t ).化简得2k [ln(1+2t )-ln(1+t )]=n [2ln(1+t )-ln(1+2t )],且3k [ln(1+3t )-ln(1+t )]=n [3ln(1+t )-ln(1+3t )].再将这两式相除,化简得ln(1+3t )ln(1+2t )+3ln(1+2t )ln(1+t )=4ln(1+3t )ln(1+t )(**). 令g (t )=4ln(1+3t )ln(1+t )-ln(1+3t )ln(1+2t )-3ln(1+2t )ln(1+t ),则g ′(t )=错误!.令φ(t )=(1+3t )2ln(1+3t )-3(1+2t )2ln(1+2t )+3(1+t )2ln(1+t ), 则φ′(t )=6[(1+3t )ln(1+3t )-2(1+2t )ln(1+2t )+(1+t )ln(1+t )]. 令φ1(t )=φ′(t ),则φ1′(t )=6[3ln(1+3t )-4ln(1+2t )+ln(1+t )].令φ2(t )=φ1′(t ),则φ2′(t )=12(1+t )(1+2t )(1+3t )>0. 由g (0)=φ(0)=φ1(0)=φ2(0)=0,φ′2(t )>0,知φ2(t ),φ1(t ),φ(t ),g (t )在⎝ ⎛⎭⎪⎫-13,0和(0,+∞)上均单调. 故g (t )只有唯一零点t =0,即方程(**)只有唯一解t =0,故假设不成立.所以不存在a 1,d 及正整数n ,k ,使得a n 1,a n +k 2,a n +2k 3,a n +3k 4依次构成等比数列.【一年模拟试题精练】1.D [利用反证法证明.假设三个数都小于2,则a +1b +b +1c +c +1a <6,而a +1b +b +1c +c +1a ≥2+2+2=6,与假设矛盾.故选D.]2.C [由A B ,B C 知,B 是大正方形,A 是|,C 是—,由C D 知,D 是小正方形,∴A D 为小正方形中有竖线,即(2)正确,A C 为+,即(4)正确.故选C.]3.D [反证法的实质是否定结论,对于①,其结论的反面是p +q >2,所以①错误;对于②,其假设正确.]4.B [设最小的数为x ,则其它8个数分别为x +7,x +8,x +9,x +14,x +15,x +16,x +17,x +18,故9个数之和为x +3(x +8)+5(x +16)=9x +104,当x =212时,9x +104=2 012.]5.3V S 1+S 2+S 3+S 4[V =13S 1·R +13S 2·R +13S 3·R +13S 4·R =13(S 1+S 2+S 3+S 4)R ,R =3V S 1+S 2+S 3+S 4.] 6.cos 2α+cos 2β+cos 2γ=2 [设α,β,γ是AC 1分别与面ABCD 1,面ABB 1A 1,面BCC 1B 1所成的角.cos α=AC AC 1,cos β=AB 1AC 1,cos γ=BC 1AC 1,cos 2α+cos 2β+cos 2γ=2(AB 2+BC 2+CC 21)AC 21=2.] 7.332 [f (x )=sin x ,f (A )+f (B )+f (C )3≤f ⎝ ⎛⎭⎪⎫A +B +C 3 即sin A +sin B +sin C ≤3sin A +B +C 3=3sin π3=332.故sin A +sin B +sin C 的最大值为332.]8.2 014 [令a =n ,b =1,则f (n +1)=f (n )·f (1),即:f (n +1)f (n )=f (1)=2,故:f (2)f (1)+f (4)f (3)+…+f (2 014)f (2 013)=2×1 007=2 014.] 9.甲 [假设甲说的是假话,即丙考满分,则乙也是假话,不成立;假设乙说的是假话,即乙没有考满分,又丙没有考满分,故甲考满分;故答案为:甲.]10.(-1)n +1·n (n +1)2 [12=1=(-1)21×22;12-22=-3=(-1)32×32;12-22+32=6=(-1)43×42;12-22+32-42=-10=(-1)54×52,…,12-22+32-42+…+(-1)n +1·n 2=(-1)n +1·n (n +1)2.]11.13×2 0153+12×2 0152+16×2 015=12+22+…+20152 [①:13×13+12×12+16×1=12;②:13×23+12×22+16×2=12+22;③:13×33+12×32+16×3=12+22+32,……;2 015:13×2 0153+12×2 0152+16×2 015=12+22+…+2 0152]12.1AQ +1AR +1AP =3 [设O 到各个平面的距离为d ,而V R -AQP =13S △AQP ·AR =13·12·AQ ·AP ·AR =16AQ ·AP ·AR ,又∵V R -AQP =V O -AQP +V O -ARP +V O -AQR=13S △AQP ·d +13S △ARP ·d +13S △AQR ·d=16(AQ ·AP +AR ·AP +AQ ·AR )d16AQ ·AP ·AR =16(AQ ·AP +AR ·AP +AQ ·AR )d , 即1AQ +1AR +1AP =d ,而V A -BDC =13S △BDC ·h=13·34·2·33=16,V O -ABD =13V A -BDC =118, 即13·S △ABD ·d =13·12·d =118⇒d =3, ∴1AQ +1AR +1AP =3.]考点34 算法与复数【两年高考真题演练】1.C [当x =1时,执行y =9-1=8.输出y 的值为8,故选C.]2.C [运行相应的程序.第1次循环:i =1,S =10-1=9;第2次循环:i =2,S =9-2=7;第3次循环:i =3,S =7-3=4;第4次循环:i =4,S =4-4=0;满足S =0≤1,结束循环,输出i =4.故选C.]3.B [第一次循环:a =3×12=32,k =1;第二次循环:a =32×12=34,k =2;第三次循环:a =34×12=38,k =3;第四次循环:a =38×12=316<14,k =4.故输出k =4.]4.D [每次循环的结果为k =2,k =3,k =4,k =5>4,∴S =sin 5π6=12.]5.D [s =12+14+16+18=2524,即输出s 的值为2524.]6.D [当n =1时,M =1+12=32,a =2,b =32;当n =2时,M =2+23=83,a =32,b =83;当n =3时,M =32+38=158,a =83,b =158;n =4时,终止循环.输出M =158.]7.D [k =1,M =11×2=2,S =2+3=5;k =2,M =22×2=2,S =2+5=7;k =3,3>t ,∴输出S =7,故选D.]8.C [由(z -1)i =1+i ,两边同乘以-i ,则有z -1=1-i ,所以z =2-i.]9.D [由2+a i 1+i=3+i ,得2+a i =(3+i)(1+i)=2+4i ,即a i =4i ,因为a 为实数,所以a =4.故选D.]10.A [(1+i)2=1+2i +i 2=1+2i -1=2i.]11.A [∵z 1-i=i ,∴z =i(1-i)=i -i 2=1+i ,∴z =1-i.] 12.C [(1-i)(1+2i)=1+2i -i -2i 2=1+i +2=3+i ,故选C.]13.B [实部为-2,虚部为1的复数为-2+i ,所对应的点位于复平面的第二象限,选B.]14.C [因为复数z =(3-2i)i =2+3i ,所以z =2-3i ,故选C. ]【一年模拟试题精练】1.C [x =3,y =23=8<10+3+3=33;x =3+1=4.y =24=16<10×4+3=43;x =4+1=5,y =25=32<10×5+3=53;x =5+1=6,y =26=64>10×6+3=63,故输出的x 值为6.]2.D [由题意知S 0应为偶数,排除选项A 、C.当S 0=8时,i =1<4,S =8-2=6;i =2<4,S =6-22=2;i =3<4,S =2-23=-6;i =4=4,输出S =-6,排除B ,故选D.]3.B [i =2,S =0;S =0+12,i =4;S =12+14,i =6;…,S =12+14+…+12012,i =2 014;要计算S =12+14+…+12 012+12 014,应满足i ≤2 015.]4.C [S =1=1,k =1<2 015;S =18<1,k =2<2 015;s =2×12=14<1,k =3<2 015;S =14×2=12<1,k =4<2015;S =12×2=1,k =5<2 015 循环周期为4,2 015=4×503+3,S =1=1,k =2 013<2 015;S =18,k =2 014<2 015;S =18×2=14<1,k =2 015=2 015, S =14×2=12<1,k =2 016>2 015,输出S =12.]5.A [k =1,S =1;k =2,S =2×1+2=4;k =3,S =2×4+3=11;k =4,S =2×11+4=26;k =5,S =2×26+5=57要输出S =57,需k >4.]6.C [当i =1时,1<5为奇数,S =-1,i =2; 当i =2时,2<5为偶数,S =-1+4=3,i =3; 当i =3时,3<5为奇数,S =3-33=-5,i =4; 当i =4时,4<5为偶数,S =-6+42=10,i =5; 当i =5时,5≥5,输出S =10.]7.D [z =3-2i 的虚部为-2.]8.A [∵m +103+i =m +3-i 为纯虚数,∴m +3=0,即m =-3.]9.D [∵z =4+3i 3-4i =i ,∴z 的虚部为1.]10.B[21-i=1+i,故其实部与虚部之和为1+1=2.]11.C[∵z=a+3i1-2i=a-65+2a+35i为纯虚数,∴a-65=0,即a=6,∴z=3i.]12.D[∵z=1-3i1+2i=-1-i,∴|z|=2,z的实部为-1,虚部为-1,z的共轭复数为-1+i,故选D.]13.A[∵z=a+b i的共轭复数z=a-b i,∴z和z关于x轴对称.]。

2016版《一点一练》高考数学(理科)专题演练:第七章 立体几何(含两年高考一年模拟)

2016版《一点一练》高考数学(理科)专题演练:第七章 立体几何(含两年高考一年模拟)

1.(2015·山东)在梯形ABCD 中,∠ABC =π2,AD ∥BC ,BC =2AD=2AB =2.将梯形ABCD 绕AD 所在的直线旋转一周而形成的曲面所围成的几何体的体积为( )A.2π3B.4π3C.5π3 D .2π2.(2015·浙江)某几何体的三视图如图所示(单位:cm),则该几何体的体积是( )A .8 cm 3B .12 cm 3C.323 cm 3D.403 cm 3 3.(2015·北京)某三棱锥的三视图如图所示,则该三棱锥的表面积是( )A.2+ 5 B.4+ 5 C.2+2 5 D.54.(2014·福建)某空间几何体的正视图是三角形,则该几何体不可能是()A.圆柱B.圆锥C.四面体D.三棱柱5.(2014·江西)一几何体的直观图如图,下列给出的四个俯视图中正确的是()6.(2014·安徽)一个多面体的三视图如图所示,则该多面体的表面积为()A.21+ 3 B.18+ 3C .21D .187.(2014·陕西)将边长为1的正方形以其一边所在直线为旋转轴旋转一周,所得几何体的侧面积是( )A .4πB .3πC .2πD .π8.(2014·湖北)《算数书》竹简于上世纪八十年代在湖北省江陵县张家山出土,这是我国现存最早的有系统的数学典籍,其中记载有求“囷盖”的术:置如其周,令相乘也.又以高乘之,三十六成一.该术相当于给出了由圆锥的底面周长L 与高h ,计算其体积V 的近似公式V ≈136L 2h .它实际上是将圆锥体积公式中的圆周率π近似取为3.那么,近似公式V ≈275L 2h 相当于将圆锥体积公式中的π近似取为( )A.227B.258C.15750D. 3551139.(2015·江苏)现有橡皮泥制作的底面半径为5,高为4的圆锥和底面半径为2、高为8的圆柱各一个.若将它们重新制作成总体积与高均保持不变,但底面半径相同的新的圆锥与圆柱各一个,则新的底面半径为________.10.(2014·山东)三棱锥P -ABC 中,D ,E 分别为PB ,PC 的中点,记三棱锥D -ABE 的体积为V 1,P -ABC 的体积为V 2,则V 1V 2=________.1.(2015·山东莱芜模拟)某几何体的三视图如图所示,且该几何体的体积是3,则正视图中的x 的值是( )A .2 B.92 C.32 D .32.(2015·山东省实验中学模拟)设下图是某几何体的三视图,则该几何体的体积为( )A.2π3 B .8-π3 C .8-2π D. 8-2π33.(2015·河南天一大联考)某几何体的三视图如图所示,则该几何体的体积为( )A .12+πB .8+πC .12-πD .6-π4.(2015·湖北七州模拟)某个几何体的三视图如图所示(其中正视图中的圆弧是半径为2的半圆),则该几何体的表面积为( )A .92+24πB .82+24πC .92+14πD .82+14π5.(2015·安徽安庆模拟)一个正方体的棱长为m ,表面积为n ,一个球的半径为p ,表面积为q .若m p =2,则n q =( )A.8πB.6πC.π6D.π8 6.(2015·福建龙岩模拟)如图所示是一个几何体的三视图,其中正视图是一个正三角形,则这个几何体的表面积是( )A.33B.32C.3+7D.3+7+17.(2015·福建莆田模拟)某几何体的三视图如图所示,其中正视图是腰长为2的等腰三角形,俯视图是半径为1的半圆,则其侧视图的面积是( )A.12B.32 C .1 D. 38.(2015·广东中山模拟)已知一个几何体的三视图如图所示,则该几何体的体积(单位:cm 3)为________.1.(2015·安徽)已知m,n是两条不同直线,α,β是两个不同平面,则下列命题正确的是()A.若α,β垂直于同一平面,则α与β平行B.若m,n平行于同一平面,则m与n平行C.若α,β不平行,则在α内不存在与β平行的直线D.若m,n不平行,则m与n不可能垂直于同一平面2.(2015·福建)若l,m是两条不同的直线,m垂直于平面α,则“l⊥m”是“l∥α”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件3.(2015·浙江)如图,已知△ABC,D是AB的中点,沿直线CD将△ACD翻折成△A′CD,所成二面角A′-CD-B的平面角为α,则()A.∠A′DB≤αB.∠A′DB≥αC.∠A′CB≤αD.∠A′CB≥α4.(2015·广东)若空间中n个不同的点两两距离都相等,则正整数n的取值()A.大于5 B.等于5C.至多等于4 D.至多等于35.(2014·辽宁)已知m,n表示两条不同直线,α表示平面.下列说法正确的是()A.若m∥α,n∥α,则m∥n B.若m⊥α,n⊂α,则m⊥nC.若m⊥α,m⊥n,则n∥αD.若m∥α,m⊥n,则n⊥α6.(2014·浙江)设m,n是两条不同的直线,α,β是两个不同的平面,则正确的结论是()A.若m⊥n,n∥α,则m⊥αB.若m∥β,β⊥α,则m⊥αC.若m⊥β,n⊥β,n⊥α,则m⊥αD.若m⊥n,n⊥β,β⊥α,则m⊥α7.(2014·广东)在空间中四条两两不同的直线l1,l2,l3,l4,满足l1⊥l2,l2⊥l3,l3⊥l4,则下列结论一定正确的是()A.l1⊥l4B.l1∥l4C.l1与l4既不垂直也不平行D.l1与l4的位置关系不确定8.(2014·课标全国Ⅱ)直三棱柱ABC-A1B1C1中,∠BCA=90°,M,N分别是A1B1,A1C1的中点,BC=CA=CC1,则BM与AN所成角的余弦值为()A.110 B.25 C.3010 D.229.(2015·浙江)如图,三棱锥A-BCD中,AB=AC=BD=CD=3,AD=BC=2,点M,N分别是AD,BC的中点,则异面直线AN,CM所成的角的余弦值是________.10.(2015·四川)如图,四边形ABCD和ADPQ均为正方形,它们所在的平面互相垂直,动点M在线段PQ上,E、F分别为AB、BC的中点.设异面直线EM与AF所成的角为θ,则cos θ的最大值为________.1.(2015·山东泰安模拟)已知m ,n 为不同的直线,α,β为不同的平面,则下列说法正确的是( )A .m ⊂α,n ∥m ⇒n ∥αB .m ⊂α,n ⊥m ⇒n ⊥αC .m ⊂α,n ⊂β,n ∥m ⇒α∥βD .n ⊂β,n ⊥α⇒α⊥β2.(2015·山东省实验中学模拟)对于不重合的两个平面α与β,给定下列条件:①存在平面γ,使得α、β都垂直于γ;②存在平面γ,使得α、β都平行于γ;③α内有不共线的三点到β的距离相等;④存在异面直线l 、m ,使得l ∥α,l ∥β,m ∥α,m ∥β,其中,可以判定α与β平行的条件有( )A .1个B .2个C .3个D .4个3.(2015·安徽安庆模拟)b 、c 表示两条不重合的直线,α、β表示两个不重合的平面,下列命题中正确的是( )A.⎭⎪⎬⎪⎫c ∥αb ⊂α⇒c ∥b B. ⎭⎪⎬⎪⎫c ∥αα⊥β⇒c ⊥β C. ⎭⎪⎬⎪⎫c ⊥αc ⊥β⇒α∥β D. ⎭⎪⎬⎪⎫b ∥c c ⊂α⇒b ∥α 4.(2015·湖南怀化一模)设m ,n ,是两条不同的直线,α,β,γ是三个不同的平面,给出下列四个命题:①m⊥α,n∥α,则m⊥n;②若α⊥γ,β⊥γ,则α∥β;③若α∥β,β∥γ,m⊥α,则m⊥γ;④若α∩γ=m,β∩γ=n,m ∥n,则α∥β.其中正确命题的序号是()A.①和③B.②和③C.③和④D.①和④5.(2015·福建厦门模拟)长方体ABCD-A1B1C1D1中,AA1=2AB=2AD,G为CC1中点,则直线A1C1与BG所成角的大小是()A.30°B.45°C.60°D.90°6.(2015·福建泉州模拟)设a,b是互不垂直的两条异面直线,则下列命题成立的是()A.存在唯一直线l,使得l⊥a,且l⊥bB.存在唯一直线l,使得l∥a,且l⊥bC.存在唯一平面α,使得a⊂α,且b∥αD.存在唯一平面α,使得a⊂α,且b⊥α7.(2015·四川成都高三摸底)已知a,b是两条不同直线,α是一个平面,则下列说法正确的是()A .若a ∥b ,b ⊂α,则a ∥αB .若a ∥α,b ⊂α,则a ∥bC .若a ⊥α,b ⊥α,则a ∥bD .若a ⊥b ,b ⊥α,则a ∥α8.(2015·浙江温州十校期末联考)已知α,β是两个不同的平面, m ,n 是两条不同的直线,则下列命题不正确的是( )A .若m ∥n ,m ⊥α,则n ⊥αB .若m ∥α,α∩β=n ,则m ∥nC .若m ⊥β,m ⊥α,则α∥βD .若m ⊥α,m ⊂β,则α⊥β9.(2015·河北衡水模拟)已知三棱柱ABC -A 1B 1C 1的侧棱与底面垂直,体积为94,底面是边长为3的正三角形.若P 为底面A 1B 1C 1的中心,则P A 与平面ABC 所成角的大小为( )A.5π12B.π3C.π4D.π610.(2015·东北三省三校模拟)P 为正方体ABCD -A 1B 1C 1D 1对角线BD 1上的一点,且BP =λBD 1(λ∈(0,1)).下面结论:①A 1D ⊥C 1P ;②若BD 1⊥平面P AC ,则λ=13;③若△P AC 为钝角三角形,则λ∈⎝ ⎛⎭⎪⎫0,12;④若λ∈⎝ ⎛⎭⎪⎫23,1,则△P AC 为锐角三角形.其中正确的结论为________(写出所有正确结论的序号). 11.(2015·安徽黄山模拟)一个正四棱柱形的密闭容器底部镶嵌了同底的正四棱锥形实心装饰块,容器内盛有a升水时,水面恰好经过正四棱锥的顶点P,如果:将容器倒置,水面也恰好过点P有下列四个命题:①正四棱锥的高等于正四棱柱的高的一半;②若往容器内再注a 升水,则容器恰好能装满;③将容器侧面水平放置时,水面恰好经过点P;④任意摆放该容器,当水面静止时,水面都恰好经过点P.其中正确命题的序号为________(写出所有正确命题的序号).考点24平行关系、垂直关系两年高考真题演练1.(2015·新课标全国Ⅰ)如图,长方体ABCD-A1B1C1D1中AB=16,BC=10,AA1=8,点E,F分别在A1B1,D1C1上,A1E=D1F=4.过点E,F的平面α与此长方体的面相交,交线围成一个正方形.(1)在图中画出这个正方形(不必说明画法和理由);(2)求平面α把该长方体分成的两部分体积的比值.2.(2015·湖南)如图,直三棱柱ABC-A1B1C1的底面是边长为2的正三角形,E,F分别是BC,CC1的中点.(1)证明:平面AEF⊥平面B1BCC1;(2)若直线A1C与平面A1ABB1所成的角为45°,求三棱锥F-AEC 的体积.3.(2015·江苏)如图,在直三棱柱ABC-A1B1C1中,已知AC⊥BC,BC=CC1.设AB1的中点为D,B1C∩BC1=E.求证:(1)DE∥平面AA1C1C;(2)BC1⊥AB1.4.(2014·四川)在如图所示的多面体中,四边形ABB1A1和ACC1A1都为矩形.(1)若AC⊥BC,证明:直线BC⊥平面ACC1A1;(2)设D,E分别是线段BC,CC1的中点,在线段AB上是否存在一点M,使直线DE∥平面A1MC?请证明你的结论.考点24平行关系、垂直关系一年模拟试题精练1.(2015·四川德阳模拟)如图所示,在正方体ABCD-A1B1C1D1中,E、F分别是棱DD1、C1D1的中点.(1)求直线BE和平面ABB1A1所成角θ的正弦值;(2)证明:B1F∥平面A1BE.2.(2015·江西红色六校模拟)如图,已知在四棱锥P-ABCD中,底面ABCD是边长为4的正方形,△P AD是正三角形,平面P AD⊥平面ABCD,E,F,G分别是PD,PC,BC的中点.(1)求证:平面EFG⊥平面P AD;(2)若M是线段CD上一点,求三棱锥M-EFG的体积.3.(2015·安徽黄山模拟)如图所示,在正方体ABCD-A′B′C′D′中,棱AB,BB′,B′C′,C′D′的中点分别是E,F,G,H.(1)求证:AD′∥平面EFG;(2)求证:A′C⊥平面EFG:(3)判断点A,D′,H,F是否共面?并说明理由.4.(2015·湖北八市模拟)如图,ABC-A1B1C1是底面边长为2,高为32的正三棱柱,经过AB的截面与上底面相交于PQ,设C1P=λC1A1(0<λ<1).(1)证明:PQ∥A1B1;(2)是否存在λ,使得平面CPQ⊥截面APQB?如果存在,求出λ的值;如果不存在,请说明理由.考点25 空间向量与立体几何两年高考真题演练1.(2015·天津)如图,在四棱柱ABCD -A 1B 1C 1D 1中,侧棱A 1A ⊥底面ABCD ,AB ⊥AC ,AB =1,AC =AA 1=2,AD =CD =5,且点M 和N 分别为B 1C 和D 1D 的中点.(1)求证:MN ∥平面ABCD ;(2)求二面角D 1-AC -B 1的正弦值;(3)设E 为棱A 1B 1上的点,若直线NE 和平面ABCD 所成角的正弦值为13,求线段A 1E 的长.2.(2015·湖北)《九章算术》中,将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马,将四个面都为直角三角形的四面体称之为鳖臑.如图,在阳马P -ABCD 中,侧棱PD ⊥底面ABCD ,且PD =CD ,过棱PC 的中点E ,作EF ⊥PB 交PB 于点F ,连接DE 、DF 、BD 、BE .(1)证明:PB ⊥平面DEF .试判断四面体DBEF 是否为鳖臑.若是,写出其每个面的直角(只需写出结论);若不是,说明理由;(2)若面DEF 与面ABCD 所成二面角的大小为π3,求DC BC 的值.3.(2014·江西)如图,四棱锥P-ABCD中,ABCD为矩形,平面P AD⊥平面ABCD.(1)求证:AB⊥PD;(2)若∠BPC=90°,PB=2,PC=2,问AB为何值时,四棱锥P-ABCD的体积最大?并求此时平面PBC与平面DPC夹角的余弦值.考点25 空间向量与立体几何一年模拟试题精练1.(2015·福建厦门模拟)已知等边三角形P AB 的边长为2,四边形ABCD 为矩形,AD =4,平面P AB ⊥平面ABCD ,E ,F ,G 分别是线段AB ,CD ,PD 上的点.(1)如图(1),若G 为线段PD 的中点,BE =DF =23,证明:PB ∥平面EFG ;(2)如图(2),若E, F 分别为线段AB ,CD 的中点,DG =2GP ,试问:矩形ABCD 内(包括边界)能否找到点H ,使之同时满足下列两个条件,并说明理由.(ⅰ)点H 到点F 的距离与点H 到直线AB 的距离之差大于4; (ⅱ)GH ⊥PD .2.(2015·广东六校联盟模拟)如图,将长为4,宽为1的长方形折叠成长方体ABCD -A 1B 1C 1D 1的四个侧面,记底面上一边AB =t ,(0<t <2),连接A 1B ,A 1C ,A 1D .(1)当长方体ABCD -A 1B 1C 1D 1的体积最大时,求二面角B -A 1C -D 的值;(2)线段A 1C 上是否存在一点P ,使得A 1C ⊥平面BPD ,若有,求出P 点的位置,没有请说明理由.3.(2015·山东潍坊一模)如图,已知平行四边形ABCD 与直角梯形ABEF 所在的平面互相垂直,其中BE ∥AF ,AB ⊥AF ,AB =BE =12AF ,BC =2AB ,∠CBA=π4,P 为DF 的中点.(1)求证:PE ∥平面ABCD ;(2)求平面DEF 与平面ABCD 所成角(锐角)的余弦值.4.(2015·湖北八市模拟)如图1在Rt △ABC 中,∠ABC =90°,D 、E 分别为线段AB 、AC 的中点,AB =4,BC =2 2.以DE 为折痕,将Rt △ADE 折起到图2的位置,使平面A ′DE ⊥平面DBCE ,连接A ′C ,A ′B ,设F 是线段A ′C 上的动点,满足CF →=λCA ′→.(1)证明:平面FBE ⊥平面A ′DC ;(2)若二面角F -BE -C 的大小为45°,求λ的值.第七章立体几何考点22空间几何体的结构、三视图,几何体的表面积与体积【两年高考真题演练】1.C[如图,由题意,得BC=2,AD=AB=1.绕AD所在直线旋转一周后所得几何体为一个圆柱挖去一个圆锥的组合体.所求体积V=π×12×2-13π×12×1=53π.]2.C[该几何体是棱长为2 cm的正方体与一底面边长为2 cm的正方形,高为2 cm的正四棱锥组成的组合体,V=2×2×2+13×2×2×2=323(cm3).故选C.]3.C[该三棱锥的直观图如图所示:过D作DE⊥BC,交BC于E,连接AE,则BC=2,EC=1,AD=1,ED=2,S表=S△BCD+S△ACD+S△ABD+S△ABC=12×2×2+12×5×1+12×5×1+12×2×5=2+2 5.]4.A[因为圆锥、四面体、三棱柱的正视图均可以是三角形,而圆柱无论从哪个方向看均不可能是三角形,所以选A.]5.B [俯视图为在水平投射面上的正投影,结合几何体可知选B.]6.A[由三视图知,该多面体是由正方体割去两个角所成的图形,如图所示,则S =S 正方体-2S 三棱锥侧+2S 三棱锥底=6×4-2×3×12×1×1+2×34×(2)2=21+ 3.]7.C [依题意,知所得几何体是一个圆柱,且其底面半径为1,母线长也为1,因此其侧面积为2π×1×1=2π,故选C.]8.B [由题意可知:L =2πr ,即r =L 2π,圆锥体积V =13Sh =13πr 2h =13π·⎝ ⎛⎭⎪⎫L 2π2h =112πL 2h ≈275L 2h ,故112π≈275,π≈258,故选B.]9.7 [设新的底面半径为r ,由题意得13πr 2·4+πr 2·8=13π×52×4+π×22×8,解得r =7.] 10.14 [由题意,知V D -ABE =V A -BDE =V 1,V P -ABC =V A -PBC =V 2.因为D ,E 分别为PB ,PC 中点,所以S △BDE S △PBC =14.设点A 到平面PBC 的距离为d ,则V 1V 2=13S △BDE·d 13S △PBC ·d=S △BDE S △PBC =14.] 【一年模拟试题精练】1.D第1题解析图[根据三视图判断几何体为四棱锥,其直观图是:V =13×1+22×2x =3⇒x =3.故选D.]2.D [由三视图可知,几何体为正方体内挖去一个圆锥,所以该几何体的体积为V 正方体-V 锥=23-13(π×12×2)=8-23π.] 3.C [由三视图可知,原几何体是底面边长为2的正方形,高为3的棱柱,里面挖去一个半径为1的球,所以所求几何体的体积为12-π,故选C.]第4题解析图4.C [该几何体是个半圆柱与长方体的组合体,直观图如右图,表面积为S =5×4+2×4×4+2×4×5+2π×5+π×22=92+14π.]5.B [由题意可以得到n =6m 2,q =4πp 2,所以n q =6m 24πp 2=32π×4=6π,故选B.] 6.D [根据三视图可以得到原几何体为底面的等腰直角三角形且斜边为2的三棱锥,所以一侧面上的斜高为72,所以侧面积为3+7,底面积为1,则全面积为3+7+1,故选D.]7.B [有三视图可以得到原几何体是以1为半径,母线长为2的半圆锥,故侧视图的面积是32,故选B.]8.π+33 [由三视图,该组合体上部是一个三棱锥,下部是一圆柱由图中数据知V 圆柱=π×12×1=π三棱锥垂直于底面的侧面是边长为2的等边三角形,且边长是2,故其高即为三棱锥的高,高为3,故棱锥高为3由于棱锥底面为一等腰直角三角形,且斜边长为2,故两直角边长都是2,底面三角形的面积是12×2×2=1, 故V棱锥=13×1×3=33 ,故该几何体的体积是π+33.]考点23 点、线、平面之间的位置关系【两年高考真题演练】1.D [对于A ,α,β垂直于同一平面,α,β关系不确定,A 错;对于B ,m ,n 平行于同一平面,m ,n 关系不确定,可平行、相交、异面,故B 错;对于C ,α,β不平行,但α内能找出平行于β的直线,如α中平行于α,β交线的直线平行于β,故C 错;对于D,若假设m,n垂直于同一平面,则m∥n,其逆否命题即为D选项,故D正确.]2.B[m垂直于平面α,当l⊂α时,也满足l⊥m,但直线l与平面α不平行,∴充分性不成立,反之,l∥α,一定有l⊥m,必要性成立.故选B.]3.B[极限思想:若α=π,则∠A′CB<π,排除D;若α=0,如图,则∠A′DB,∠A′CB都可以大于0,排除A,C.故选B.]4.C[当n=3时显然成立,故排除A,B;由正四面体的四个顶点,两两距离相等,得n=4时成立,故选C.]5.B[对A:m,n还可能异面、相交,故A不正确.对C:n 还可能在平面α内,故C不正确.对D:n还可能在α内,故D不正确.对B:由线面垂直的定义可知正确.]6.C[当m⊥n,n∥α时,可能有m⊥α,但也有可能m∥α或m⊂α,故A选项错误;当m∥β,β⊥α时,可能有m⊥α,但也有可能m∥α或m⊂α,故选项B错误;当m⊥β,n⊥β,n⊥α时,必有α∥β,从而m⊥α,故选项C正确;在如图所示的正方体ABCD-A1B1C1D1中,取m为B1C1,n为CC1,β为平面ABCD,α为平面ADD1A1,这时满足m⊥n,n⊥β,β⊥α,但m⊥α不成立,故选项D 错误.]7.D [如图,在正方体ABCD -A 1B 1C 1D 1中,取l 1为BC ,l 2为CC 1,l 3为C 1D 1.满足l 1⊥l 2,l 2⊥l 3.若取l 4为A 1D 1,则有l 1∥l 4;若取l 4为DD 1,则有l 1⊥l 4.因此l 1与l 4的位置关系不确定,故选D.]8.C9.78 [连接DN ,作DN 的中点O ,连接MO ,OC .在△AND 中.M为AD 的中点,则OM 綉12AN .所以异面直线AN ,CM 所成角为∠CMO ,在△ABC 中,AB =AC =3,BC =2,则AN =22,∴OM = 2.在△ACD 中,同理可知CM =22,在△BCD 中,DN =22,在Rt △ONC 中,ON =2,CN =1∴OC = 3.在△CMO 中,由余弦定理cos ∠CMO =|MC |2+|MO |2-|OC |22|MC |·|MO |=8+2-32×22×2=78.] 10.25 [建立空间直角坐标系如图所示,设AB =1,则AF →=⎝ ⎛⎭⎪⎫1,12,0,E ⎝ ⎛⎭⎪⎫12,0,0,设M (0,y ,1)(0≤y ≤1), 则EM →=⎝ ⎛⎭⎪⎫-12,y ,1, ∴cos θ=-12+12y1+1414+y 2+1=-1-y52·4y 2+5. 设异面直线所成的角为α,则cos α=|cos θ|=1-y52·4y 2+5=255·1-y 4y 2+5, 令t =1-y ,则y =1-t ,∵0≤y ≤1,∴0≤t ≤1,那么cos α=|cos θ|=255·t 4t 2-8t +9=255t 24t 2-8t +9 =25514-8t +9t 2,令x =1t ,∵0≤t ≤1,∴x ≥1,那么cos α=25514-8x +9x 2, 又∵z =9x 2-8x +4在[1,+∞)上单增,∴x =1,z min =5,此时cos α的最大值=255·15=255·55=25.] 【一年模拟试题精练】1.D [A.因为m ⊂α,n ∥m ⇒n ⊂α或n ∥α,所以不正确;B. m ⊂α,n ⊥m 不能确定n 与α关系,所以不正确;C.m ⊂α,n ⊂β,n ∥m若两平面相交且m,n都平行于交线,也可以满足,所以不正确;D.直线垂直于平面,则过该直线的所有的面都与此面垂直,所以正确.故选D.]2.B[平面α、β都垂直于平面γ,平面α与平面β可能平行,也可能相交,故①错误;②正确;当平面α与平面β相交时,在平面α的两侧也存在三点到平面β的距离相等,故③错误;由面面平行的判定定理可知,当l、m移成相交直线时确定的平面与α、β都垂直,所以α∥β,故④正确,故选B.]3.C[根据直线与平面垂直的性质,可以得到C正确,故选C.] 4.A[②中平面α,β可能相交;④平面α,β可能相交,故选A.]5.C 6.C7.C[A选项中直线a还可能在平面α内,所以错误,B选项直线a与b可能平行还可能异面,所以错误,C选项由直线与平面垂直的性质可知正确,因为正确的选项只有一个,所以选C.] 8.B[A选项正确,因为两条平行线中的一条垂直于某个平面,则另一条必垂直于这个平面;B选项不正确,因为由线面平行的性质定理知,线平行于面,过线的面与已知面相交,则交线与已知线平行,由于m与β的位置关系不确定,故不能得出线线平行;C选项正确,两个平面垂直于同一条直线,则此两平面必平行;D选项正确,一个平面过另一个平面的垂线,则这两个平面垂直.综上,B选项不正确,故选B.]9.B [如右图所示,S △ABC =12×3×3×sin 60°=334,∴VABC-A 1B 1C 1=S △ABC ×OP =334×OP =94,∴OP =3,又OA =32×3×23=1,∴tan ∠OAP =OP OA =3,由∠OAP ∈⎝ ⎛⎭⎪⎫0,π2,得∠OAP =π3.]10.①②④ [以DA ,DA 1,DD 1分别为x ,y ,z 轴建立坐标系,设正方体的棱长为1,则A (0,0,1),B (1,1,0),C (0,1,0),D 1(0,0,1),设P (x ,y ,z ),则BD 1→=(-1,-1,1),BP →=λ(-1,-1,1)=(x -1,y -1,z ),③中利用P A →·PC→<0可以得,则x =y =1-λ,z =λ,则P (1-λ,1-λ,λ),是错误的,然后可以计算出①②④正确.]11.②③ [设图(1)水的高度h 2,几何体的高为h 1,底面边长为b,图(1)中水的体积为23b 2h 2,图(2)中水的体积为b 2h 1-b 2h 2=b 2(h 1-h 2),所以23b 2h 2=b 2(h 1-h 2),所以h 1= 53h 2,故①错误;又水占容器内空间的一半,所以②正确;当容器侧面水平放置时,P 点在长方体中截面上,所以③正确;假设④正确,当水面与正四棱锥的一个侧面重合时,经计算得水的体积为2536b 2h 2>23b 2h 2,矛盾,故④不正确.故答案为:②③.]考点24 平行关系、垂直关系【两年高考真题演练】1.解 (1)交线围成的正方形EHGF 如图:(2)作EM ⊥AB ,垂足为M ,则AM =A 1E =4,EB 1=12,EM =AA 1=8.因为EHGF 为正方形,所以EH =EF =BC =10.于是MH =EH 2-EM 2=6,AH =10,HB =6.因为长方体被平面α分成两个高为10的直棱柱,所以其体积的比值为97(79也正确).2.(1)证明∵△ABC 为正三角形,E 为BC 中点,∴AE ⊥BC ,∴又B 1B ⊥平面ABC ,AE ⊂平面ABC ,∴B 1B ⊥AE ,∴由B 1B ∩BC =B 知,AE ⊥平面B 1BCC 1,又由AE ⊂平面AEF ,∴平面AEF ⊥平面B 1BCC 1.(2)解 设AB 中点为M ,连接CM ,则CM ⊥AB ,由平面A 1ABB 1⊥平面ABC 且平面A 1ABB 1∩平面ABC =AB 知,CM ⊥面A 1ABB 1,∴∠CA 1M 即为直线A 1C 与平面A 1ABB 1所成的角.∴∠CA 1M =45°,易知CM =32×2=3,在等腰Rt △CMA 中,AM =CM =3,在Rt △A 1AM 中,A 1A =A 1M 2-AM 2= 2.∴FC =12A 1A =22,又S △AEC =12×34×4=32,∴V 三棱锥F -AEC =13×32×22=612.3.证明 (1)由题意知,E 为B 1C 的中点,又D 为AB 1的中点,因此DE ∥AC .又因为DE ⊄平面AA 1C 1C ,AC ⊂平面AA 1C 1C ,所以DE ∥平面AA 1C 1C .(2)因为棱柱ABC -A 1B 1C 1是直三棱柱,所以CC 1⊥平面ABC .因为AC ⊂平面ABC ,所以AC ⊥CC 1.又因为AC ⊥BC ,CC 1⊂平面BCC 1B 1,BC ⊂平面BCC 1B 1,BC ∩CC 1=C ,所以AC ⊥平面BCC 1B 1.又因为BC 1⊂平面BCC 1B 1,所以BC 1⊥AC .因为BC =CC 1,所以矩形BCC 1B 1是正方形,因此BC 1⊥B 1C . 因为AC ,B 1C ⊂平面B 1AC ,AC ∩B 1C =C ,所以BC 1⊥平面B 1AC .又因为AB 1⊂平面B 1AC ,所以BC 1⊥AB 1.4.(1)证明 因为四边形ABB 1A 1和ACC 1A 1都是矩形, 所以AA 1⊥AB ,AA 1⊥AC .因为AB ,AC 为平面ABC 内两条相交直线,所以AA 1⊥平面ABC .因为直线BC ⊂平面ABC ,所以AA 1⊥BC .又由已知,AC ⊥BC ,AA 1,AC 为平面ACC 1A 1内两条相交直线, 所以BC ⊥平面ACC 1A 1.(2)解 取线段AB 的中点M ,连接A 1M ,MC ,A 1C ,AC 1,设O 为A 1C ,AC 1的交点.由已知,O 为AC 1的中点.连接MD ,OE ,则MD ,OE 分别为△ABC ,△ACC 1的中位线.所以,MD 綉12AC ,OE 綉12AC ,因此MD 綉OE .连接OM ,从而四边形MDEO 为平行四边形,则DE ∥MO .因为直线DE ⊄平面A 1MC ,MO ⊂平面A 1MC ,所以直线DE ∥平面A 1MC .即线段AB 上存在一点M (线段AB 的中点),使直线DE ∥平面A 1MC .【一年模拟试题精练】1.(1)解 设G 是AA 1的中点,连接GE ,BG .∵E 为DD 1的中点,ABCD -A 1B 1C 1D 1为正方体,∴GE ∥AD ,又∵AD ⊥平面ABB 1A 1,∴GE ⊥平面ABB 1A 1,且斜线BE 在平面ABB 1A 1内的射影为BG ,∴Rt △BEG 中的∠EBG 是直线BE 和平面ABB 1A 1所成角,即∠EBG =θ.设正方体的棱长为a ,∴GE =a ,BG =52a , BE =BG 2+GE 2=32a ,∴直线BE 和平面ABB 1A 1所成角θ的正弦值为:sin θ=GE BE =23;(2)证明 连接EF 、AB 1、C 1D ,记AB 1与A 1B 的交点为H ,连接EH .∵H 为AB 1的中点,且B 1H =12C 1D ,B 1H ∥C 1D ,而EF =12C 1D ,EF ∥C 1D ,∴B 1H ∥EF 且B 1H =EF ,四边形B 1FEH 为平行四边形,即B 1F ∥EH ,又∵B 1F ⊄平面A 1BE 且EH ⊂平面A 1BE ,∴B 1F ∥平面A 1BE .2.(1)证明 ∵平面P AD ⊥平面ABCD ,平面P AD ∩平面ABCD =AD ,CD ⊂平面ABCD ,CD ⊥AD ,∴CD ⊥平面P AD ,又∵△PCD 中,E 、F 分别是PD 、PC 的中点,∴EF ∥CD ,可得EF ⊥平面P AD ,∵EF ⊂平面EFG ,∴平面EFG ⊥平面P AD;(2)解 ∵EF ∥CD ,EF ⊂平面EFG ,CD ⊄平面EFG ,∴CD ∥平面EFG ,因此CD 上的点M 到平面EFG 的距离等于点D 到平面EFG 的距离,∴V M -EFG =V D -EFG ,取AD 的中点H ,连接GH 、EH ,则EF ∥GH ,∵EF ⊥平面P AD ,EH ⊂平面P AD ,∴EF ⊥EH .于是S △EFH =12EF ×EH =2=S △EFG ,∵平面EFG ⊥平面P AD ,平面EFG ∩平面P AD =EH ,△EHD 是正三角形,∴点D 到平面EFG 的距离等于正△EHD 的高,即为3,因此,三棱锥M-EFG的体积V M-EFG=V D-EFG=13×S△EFG×3=233.3.(1)证明连接BC′,在正方体ABCD-A′B′C′D′中,AB=C′D′,AB∥C′D′.所以,四边形ABC′D′是平行四边形,所以,AD′∥BC′.因为F,G分别是BB′,B′C′的中点,所以FG∥BC′,所以,FG∥AD′.因为EF,AD′是异面直线,所以AD′⊄平面EFG.因为FG⊂平面EFG,所以AD′∥平面EFG.(2)证明连接B′C,在正方体ABCD-A′B′C′D′中,A′B′⊥平面BCC′B′,BC′⊂平面BCC′B′,所以,A′B′⊥BC′.在正方形BCC′B′中,B′C⊥BC′,因为A′B′⊂平面A′B′C,B′C⊂平面A′B′C,A′B′∩B′C=B′,所以,BC′⊥平面A′B′C.因为A′C⊂平面A′B′C,所以,BC′⊥A′C.因为FG∥BC′,所以,A′C⊥FG,同理可证:A′C⊥EF.因为EF⊂平面EFG,FG⊂平面EFG,EF∩FG=F,所以,A′C⊥平面EFG.(3)解点A,D′,H,F不共面.理由如下:假设A,D′,H,F共面.连接C′F,AF,HF.由(1)知,AD′∥BC′,因为BC′⊂平面BCC ′B ′,AD ′⊄平面BCC ′B ′,所以,AD ′∥平面BCC ′B ′.因为C ′∈D ′H ,所以,平面AD ′HF ∩平面BCC ′B ′=C ′F .因为 AD ′⊂平面AD ′HF ,所以AD ′∥C ′F .所以C ′F ∥BC ′,而C ′F 与BC ′相交,矛盾.所以点A ,D ′,H ,F 不共面.4.(1)证明 由正三棱柱的性质可知,上下两个底面平行,且截面APQB ∩上底面A 1B 1C 1=PQ ,截面APQB ∩下底面ABC =AB ,由两个平面平行的性质定理可得,PQ ∥AB ,又AB ∥A 1B 1, ∴PQ ∥A 1B 1.(2)解 假设存在这样的λ满足题设,分别取AB 的中点D ,PQ 的中点E ,连接DE ,由(1)及正三棱柱的性质可知△CPQ 为等腰三角形,APQB 为等腰梯形,∴CE ⊥PQ ,DE ⊥PQ .∴∠CED 为二面角A -PQ -C 的平面角,连接C 1E 并延长交A 1B 1于F ,由(1)得,C 1P C 1A 1=C 1E C 1F =λ,C 1A 1=2,C 1F =3,∴C 1E =3λ,EF =3(1-λ),在Rt △CC 1E 中求得CE 2=34+3λ2,在Rt △DFE 中求得DE 2=34+3(1-λ)2,若平面CPQ ⊥截面APQB ,则∠CED =90°,∴CE 2+DE 2=CD 2,将以上数据代入整理,得3λ2-3λ+34=0,解得λ=12. 考点25 空间向量与立体几何【两年高考真题演练】 1.如图,以A 为原点建立空间直角坐标系,依题意可得A (0,0,0),B (0,1,0),C (2,0,0),D (1,-2,0),A 1(0,0,2),B 1(0,1,2),C 1(2,0,2),D 1(1,-2,2),又因为M ,N 分别为B 1C 和D 1D 的中点,得M ⎝ ⎛⎭⎪⎫1,12,1,N (1,-2,1). (1)证明 依题意,可得n =(0,0,1)为平面ABCD 的一个法向量,MN →=⎝ ⎛⎭⎪⎫0,-52,0,由此可得MN →·n =0,又因为直线MN ⊄平面ABCD ,所以MN ∥平面ABCD .(2)解 AD 1→=(1,-2,2),AC →=(2,0,0),设n 1=(x ,y ,z )为平面ACD 1的法向量,则⎩⎨⎧n 1·AD 1→=0,n 1·AC →=0,即⎩⎪⎨⎪⎧x -2y +2z =0,2x =0. 不妨设z =1,可得n 1=(0,1,1).设n 2=(x ,y ,z )为平面ACB 1的法向量,则⎩⎨⎧n 2·AB 1→=0,n 2·AC→=0,又AB 1→=(0,1,2), 得⎩⎪⎨⎪⎧y +2z =0,2x =0,不妨设z =1,可得n 2=(0,-2,1). 因此有cos 〈n 1,n 2〉=n 1·n 2|n 1|·|n 2|=-1010,于是sin 〈n 1,n 2〉=31010.所以,二面角D 1-AC -B 1的正弦值为31010.(3)依题意,可设A 1E →=λA 1B 1→,其中λ∈[0,1],则E (0,λ,2),从而NE→=(-1,λ+2,1),又n =(0,0,1)为平面ABCD 的一个法向量,由已知,得cos 〈NE →,n 〉=NE →·n |NE →|·|n |=1(-1)2+(λ+2)2+12=13,整理得λ2+4λ-3=0,又因为λ∈[0,1],解得λ=7-2,所以,线段A 1E 的长为7-2.2.解 法一 (1)因为PD ⊥底面ABCD ,所以PD ⊥BC , 由底面ABCD 为长方形,有BC ⊥CD ,而PD ∩CD =D , 所以BC ⊥平面PCD .而DE ⊂平面PCD ,所以BC ⊥DE .又因为PD =CD ,点E 是PC 的中点,所以DE ⊥PC .而PC ∩BC =C ,所以DE ⊥平面PBC .而PB ⊂平面PBC , 所以PB ⊥DE .又PB ⊥EF ,DE ∩EF =E ,所以PB ⊥平面DEF .由DE ⊥平面PBC ,PB ⊥平面DEF ,可知四面体BDEF 的四个面都是直角三角形,即四面体BDEF 是一个鳖臑,其四个面的直角分别为∠DEB ,∠DEF ,∠EFB ,∠DFB .(2)如图,在面PBC 内,延长BC 与FE 交于点G ,则DG 是平面DEF 与平面ABCD 的交线.由(1)知,PB ⊥平面DEF ,所以PB ⊥DG .又因为PD ⊥底面ABCD ,所以PD ⊥DG ,而PD ∩PB =P ,所以DG ⊥平面PBD .故∠BDF 是面DEF 与面ABCD 所成二面角的平面角,设PD =DC =1,BC =λ,有BD =1+λ2,在Rt △PDB 中,由DF ⊥PB ,得∠DPF =∠FDB =π3,则tan π3=tan ∠DPF =BD PD =1+λ2=3,解得λ= 2.所以DC BC =1λ=22. 故当面DEF 与面ABCD 所成二面角的大小为π3时,DC BC =22. 法二(1)如图,以D 为原点,射线DA ,DC ,DP 分别为x ,y ,z 轴的正半轴,建立空间直角坐标系.设PD =DC =1,BC =λ,则D (0,0,0),P (0,0,1),B (λ,1,0),C (0,1,0),PB→=(λ,1,-1),点E 是PC 的中点,所以E ⎝ ⎛⎭⎪⎫0,12,12,DE →=⎝ ⎛⎭⎪⎫0,12,12, 于是PB→·DE →=0,即PB ⊥DE . 又已知EF ⊥PB ,而DE ∩EF =E ,所以PB ⊥平面DEF .因PC→=(0,1,-1),DE →·PC →=0,则DE ⊥PC , 所以DE ⊥平面PBC .由DE ⊥平面PBC ,PB ⊥平面DEF ,可知四面体BDEF 的四个面都是直角三角形,即四面体BDEF 是一个鳖臑,其四个面的直角分别为∠DEB ,∠DEF ,∠EFB ,∠DFB .(2)由PD ⊥平面ABCD ,所以DP→=(0,0,1)是平面ABCD 的一个法向量;由(1)知,PB ⊥平面DEF ,所以BP→=(-λ,-1,1)是平面DEF 的一个法向量.若面DEF 与面ABCD 所成二面角的大小为π3,则cos π3=⎪⎪⎪⎪⎪⎪BP →·DP →|BP →|·|DP →|=⎪⎪⎪⎪⎪⎪1λ2+2=12, 解得λ= 2.所以DC BC =1λ=22. 故当面DEF 与面ABCD 所成二面角的大小为π3时,DC BC =22.3.(1)证明 ABCD 为矩形,故AB ⊥AD ;又平面P AD ⊥平面ABCD ,平面P AD ∩平面ABCD =AD , 所以AB ⊥平面P AD ,故AB ⊥PD .(2)解 过P 作AD 的垂线,垂足为O ,过O 作BC 的垂线,垂足为G ,连接PG .故PO ⊥平面ABCD ,BC ⊥平面POG ,BC ⊥PG ,在Rt △BPC 中,PG =233,GC =263,BG =63,设AB =m ,则OP =PG 2-OG 2=43-m 2,故四棱锥P -ABCD 的体积为V =13·6·m ·43-m 2=m 38-6m 2. 因为m 8-6m 2=8m 2-6m 4=-6⎝ ⎛⎭⎪⎫m 2-232+83, 故当m =63,即AB =63时,四棱锥P -ABCD 的体积最大.此时,建立如图所示的坐标系,各点的坐标为O (0,0,0), B ⎝ ⎛⎭⎪⎫63,63,0,C ⎝ ⎛⎭⎪⎫63,263,0,D ⎝ ⎛⎭⎪⎫0,263,0,P ⎝⎛⎭⎪⎫0,0,63.故PC →=⎝ ⎛⎭⎪⎫63,263,-63,BC →=(0,6,0),CD →=⎝ ⎛⎭⎪⎫-63,0,0, 设平面BPC 的法向量n 1=(x ,y ,1),则由n 1⊥PC →,n 1⊥BC →得 ⎩⎨⎧63x +263y -63=0,6y =0,解得x =1,y =0,n 1=(1,0,1).同理可求出平面DPC 的法向量n 2=⎝ ⎛⎭⎪⎫0,12,1,从而平面BPC 与平面DPC 夹角θ的余弦值为cos θ=|n 1·n 2||n 1||n 2|=12·14+1=105.【一年模拟试题精练】1.(1)证明 取AB 中点O ,连接PO ,则PO ⊥AB ,∵平面P AB ⊥平面ABCD ,平面P AB ∩平面ABCD =AB ,PO ⊂平面P AB ,PO ⊥平面ABCD ,分别以OB ,ON ,OP 为x 轴,y 轴,z 轴,建立空间直角坐标系, P (0,0,3),D (-1,4,0),B (1,0,0),E ⎝ ⎛⎭⎪⎫-13,0,0,F ⎝ ⎛⎭⎪⎫-13,4,0,则PB →=(1,0,-3). 设平面EFG 的法向量n =(x ,y ,z ),∵GE →=⎝ ⎛⎭⎪⎫56,-2,-32,FE →=⎝⎛⎭⎪⎫23,-4,0,∴GE→·n =0,FE →·n =0, ∴⎩⎨⎧56x -2y -32z =0,23x -4y =0 故n =(6,1,23),∴PB→·n =0,∴PB →⊥n . ∵PB ⊄平面EFG ,∴PB ∥平面EFG .(2)解 连接PE ,则PE ⊥AB ,∵平面P AB ⊥平面ABCD ,平面P AB ∩平面ABCD =AB ,PE ⊂平面P AB ,∴PE ⊥平面ABCD ,分别以EB ,EN ,EP 为x 轴,y 轴,z 轴建立空间直角坐标系,∴P (0,0,3),D (-1,4,0),PD→=(-1,4,-3), ∵PG →=13PD →=⎝ ⎛⎭⎪⎫-13,43,-33.∴G ⎝ ⎛⎭⎪⎫-13,43,233. 设点H (x ,y ,0),且-1≤x ≤1,0<y ≤4,依题意得:x 2+(y -4)2>y +4,∴x 2>16y ,(-1≤x ≤1)①又GH →=⎝⎛⎭⎪⎫x +13,y -43,-233, ∵GH ⊥PD ,∴GH→·PD →=0, ∴-x -13+4y -163+2=0,即y =114x +1112②把②代入①得:3x 2-12x -44>0. ∴x >2+2423,或x <2-2423.∵满足条件的点H 必在矩形ABCD 内,则有-1≤x ≤1, ∴矩形ABCD 内不能找到点H ,使之同时满足(ⅰ)(ⅱ)条件.2.解 法一 (1)根据题意,长方体体积为V =t (2-t )×1=t (2-t )≤⎝ ⎛⎭⎪⎫t +2-t 22=1, 当且仅当t =2-t ,即t =1时体积V 有最大值为1,所以当长方体ABCD -A 1B 1C 1D 1的体积最大时,底面四边形ABCD 为正方形,作BM ⊥A 1C 于M ,连接DM ,BD ,。

2016版《一点一练》高考数学(文科)专题演练:第六章 不等式(含两年高考一年模拟)

2016版《一点一练》高考数学(文科)专题演练:第六章   不等式(含两年高考一年模拟)
13.(2015·三明模拟)若x,y满足约束条件且z=kx+y取得最小值时的点有无数个,则k=________.
14.(2015·厦门市质检)点P(x,y)在直线y=kx+2上,记T=|x|+|y|,若使T取得最小值的点P有无数个,则实数k的取值是________.
15.(2015·赤峰市测试)已知O(x,y)为区域内的任意一点,当该区域面积为4时,z=2x-y的最大值为________.
16.(2015·吉林市高三摸底)已知正项等比数列{an}的公比q=2,若存在两项am,an,使得=4a1,则+的最小值为________.
考点20二元一次不等式(组)与简单的线性规划
两年高考真题演练
1.(2015·天津)设变量x,y满足约束条件则目标函数z=3x+y的最大值为()
A.7B.8C.9D.14
6.(2015·贵州七校一联)一个平行四边形的三个顶点的坐标为(-1,2),(3,4),(4,-2),点(x,y)在这个平行四边形的内部或边上,则z=2x-5y的最大值是()
A.16B.18C.20D.36
7.(2015·云南师大附中适应性考试)设x,y满足约束条件若目标函数z=ax+by(a>0,b>0)的最大值为4,则a+b的值为()


原料限额
A(吨)
3
2
12
B(吨)
1
2
8
A.12万元B.16万元
C.17万元D.18万元
5.(2015·四川)设实数x,y满足则xy的最大值为()
A.B.C.12D.14
6.(2015·重庆)若不等式组表示的平面区域为三角形,且其面积等于,则m的值为()
A.-3B.1C.D.3
7.(2015·福建)变量x,y满足约束条件若z=2x-y的最大值为2,则实数m等于()

2016版《一点一练》高考数学(文科)专题演练:第三章 三角函数、解三角形(含两年高考一年模拟)

2016版《一点一练》高考数学(文科)专题演练:第三章 三角函数、解三角形(含两年高考一年模拟)
A.B.
C.0D.-
5.(2015·四川)已知sinα+2cosα=0,则2sinαcosα-cos2α的值是________.
6.(2015·广东)已知tanα=2.
(1)求tan的值;
(2)求的值.
7.(2015·浙江)在△ABC中,内角A,B,C所对的边分别为a,b,c.已知tan=2.
(1)求的值;
两年高考真题演练
1.(2015·新课标全国Ⅰ)sin 20°cos 10°-cos 160°sin 10°=()
A.-B.C.-D.
2.(2015·重庆)若tanα=,tan(α+β)=,则tanβ=()
A.B.C.D
3.(2015·重庆)若tanα=2tan,则=()
A.1B.2C.3D.4
4.(2015·浙江)函数f(x)=sin2x+sinxcosx+1的最小正周期是________,最小值是________.
8.(2015·重庆)已知函数f(x)=sin 2x-cos2x.
(1)求f(x)的最小正周期和最小值;
(2)将函数f(x)的图象上每一点的横坐标伸长到原来的两倍,纵坐标不变,得到函数g(x)的图象,当x∈时,求g(x)的值域.
考点12三角函数的图象和性质
一年模拟试题精练
1.(2015·怀化市监测)函数f(x)=1-2sin2x的最小正周期是()
考点11三角恒等变换
一年模拟试题精练
1.(2015·北京东城区高三期末)已知cosα=,α∈,则sin 2α的值为()
A.B.-C.D.-
2.(2015·大庆市质检二)已知sinα=,则sin2α-cos2α的值为()
A.-B.-C.D.
3.(2015·玉溪一中高三检测)已知sinα=,则cos(π-2α)=()
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
考点28双曲线
一年模拟试题精练
1.(2015·山东潍坊模拟)如果双曲线-=1(a>0,b>0)的一条渐近线与直线x-y+=0平行,则双曲线的离心率为()
A.B.C.2 D.3
2.(2015·山东日照模拟)已知抛物线y2=2px(p>0)上一点M(1,m)(m>0)到其焦点的距离为5,双曲线-y2=1的左顶点为A,若双曲线的一条渐近线与直线AM平行,则实数a的值是()
12.(2014·北京)设双曲线C经过点(2,2),且与-x2=1具有相同渐近线,则C的方程为________;渐近线方程为________.
13.(2014·浙江)设直线x-3y+m=0(m≠0)与双曲线-=1(a>0,b>0)的两条渐近线分别交于点A,B.若点P(m,0)满足|PA|=|PB|,则该双曲线的离心率是________.
3.(2015·湖北黄冈模拟)在等腰梯形ABCD中,E,F分别是底边AB,CD的中点,把四边形AEFD沿直线EF折起后所在的平面记为α,P∈α,设PB,PC与α所成的角分别为θ1,θ2(θ1,θ2均不为0).若θ1=θ2,则点P的轨迹为()
A.直线B.圆C.椭圆D.抛物线
4.(2015·江西重点联盟模拟)已知焦点在x轴上的椭圆方程为+=1,随着a的增大该椭圆的形状()
(1)求椭圆C的标准方程;
(2)设F为椭圆C的右焦点,T为直线x=t(t∈R,t≠2)上纵坐标不为0的任意一点,过F作TF的垂线交椭圆C于点P,Q.若OT平分线段PQ(其中O为坐标原点),求t的值.
考点28双曲线
两年高考真题演练
1.(2015·福建)若双曲线E:-=1的左、右焦点分别为F1,F2,点P在双曲线E上,且|PF1|=3,则|PF2|等于()
A.5B.+
C.7+D.6
3.(2014·辽宁)已知椭圆C:+=1,点M与C的焦点不重合.若M关于C的焦点的对称点分别为A,B,线段MN的中点在C上,则|AN|+|BN|=________.
4.(2014·安徽)设F1,F2分别是椭圆E:x2+=1(0<b<1)的左,右焦点,过点F1的直线交椭圆E于A,B两点,若|AF1|=3|F1B|,AF2⊥x轴,则椭圆E的方程为________.
8.(2015·山东烟台模拟)已知圆C:(x-4)2+(y-3)2=1和两点A(-m,0),B(m,0)(m>0),若圆C上至少存在一点P,使得∠APB=90°,则m的取值范围是________.
9.(2015·湖北荆门模拟)由直线y=x+1上的点向圆(x-3)2+(y+2)2=1引切线,则切线长的最小值为________.
10.(2014·湖北)设a,b是关于t的方程t2cosθ+tsinθ=0的两个不等实根,则过A(a,a2),B(b,b2)两点的直线与双曲线-=1的公共点的个数为()
A.0 B.1 C.2 D.3
11.(2015·山东)平面直角坐标系xOy中,双曲线C1:-=1(a>0,b>0)的渐近线与抛物线C2:x2=2py(p>0)交于点O,A,B.若△OAB的垂心为C2的焦点,则C1的离心率为________.
A.B.C.3 D.2
8.(2014·广东)若实数k满足0<k<9,则曲线-=1与曲线-=1的()
A.焦距相等B.实半轴长相等
C.虚半轴长相等D.离心率相等
9.(2014·新课标全国Ⅰ)已知F为双曲线C:x2-my2=3m(m>0)的一个焦点,则点F到C的一条渐近线的距离为()
A.B.3 C.mD.3m
A.B.C.D.
3.(2015·河南天一大联考)已知圆C:(x+1)2+y2=r2与抛物线D:y2=16x的准线交于A,B两点,且|AB|=8,则圆C的面积为()
A.5πB.9πC.16πD.25π
4.(2015·四川遂宁模拟)圆心在原点且与直线y=2-x相切的圆的方程为________.
5.(2015·德州模拟)已知直线x-y+2=0及直线x-y-10=0截圆C所得的弦长均为8,则圆C的面积是________.
A.11B.9C.5D.3
2.(2015·安徽)下列双曲线中,焦点在y轴上且渐近线方程为y=±2x的是()
A.x2-=1B.-y2=1
C.-x2=1D.y2-=1
3.(2015·四川)过双曲线x2-=1的右焦点且与x轴垂直的直线,交该双曲线的两条渐近线于A,B两点,则|AB|=()
A.B.2C.6 D.4
A.2B.8
C.4D.10
3.(2015·山东)一条光线从点(-2,-3)射出,经y轴反射后与圆(x+3)2+(y-2)2=1相切,则反射光线所在直线的斜率为()
A.-或-B.-或-
C.-或-D.-或-
4.(2015·重庆)已知直线l:x+ay-1=0(a∈R)是圆C:x2+y2-4x-2y+1=0的对称轴,过点A(-4,a)作圆C的一条切线,切点为B,则|AB|=()
第八章 解析几何
考点26直线与圆
两年高考真题演练
1.(2015·广东)平行于直线2x+y+1=0且与圆x2+y2=5相切的直线的方程是()
A.2x-y+=0或2x-y-=0
B.2x+y+=0或2x+y-=0
C.2x-y+5=0或2x-y-5=0
D.2x+y+5=0或2x+y-5=0
2.(2015·新课标全国Ⅱ)过三点A(1,3),B(4,2),C(1,-7)的圆交y轴于M、N两点,则|MN|=()
A.B.C.D.
2.(2015·江西师大模拟)设椭圆方程为+=1(a>b>0),右焦点F(c,0)(c>0),方程ax2+bx-c=0的两实根分别为x1,x2,则P(x1,x2)必在()
A.圆x2+y2=2内
B.圆x2+y2=2外
C.圆x2+y2=1上
D.圆x2+y2=1与圆x2+y2=2形成的圆环之间
9.(2014·山东)圆心在直线x-2y=0上的圆C与y轴的正半轴相切,圆C截x轴所得弦的长为2,则圆C的标准方程为________.
10.(2014·陕西)若圆C的半径为1,其圆心与点(1,0)关于直线y=x对称,则圆C的标准方程为________.
11.(2014·江苏)在平面直角坐标系xOy中,直线x+2y-3=0被圆(x-2)2+(y+1)2=4截得的弦长为________.
12.(2014·大纲全国)直线l1和l2是圆x2+y2=2的两条切线.若l1与l2的交点为(1,3),则l1与l2的夹角的正切值等于________.
13.(2014·湖北)直线l1:y=x+a和l2:y=x+b将单位圆C:x2+y2=1分成长度相等的四段弧,则a2+b2=________.
14.(2014·重庆)已知直线ax+y-2=0与圆心为C的圆(x-1)2+(y-a)2=4相交于A,B两点,且△ABC为等边三角形,则实数a=________.
A.越接近于圆B.越扁
C.先接近于圆后越扁D.先越扁后接近于圆
5.(2015·河北唐山模拟)在区间[1,5]和[2,4]上分别取一个数,记为a,b,则方程+=1表示焦点在x轴上且离安徽江南十校模拟)椭圆+=1(a>b>0)上任意一点P到两焦点的距离之和为6,且椭圆的离心率为,则椭圆方程为________.
6.(2014·天津)已知双曲线-=1(a>0,b>0)的一条渐近线平行于直线l:y=2x+10,双曲线的一个焦点在直线l上,则双曲线的方程为()
A.-=1 B.-=1
C.-=1 D.-=1
7.(2014·湖北)已知F1,F2是椭圆和双曲线的公共焦点,P是它们的一个公共点,且∠F1PF2=,则椭圆和双曲线的离心率的倒数之和的最大值为()
A.-2 B.-4
C.-6 D.-8
7.(2014·江西)在平面直角坐标系中,A,B分别是x轴和y轴上的动点,若以AB为直径的圆C与直线2x+y-4=0相切,则圆C面积的最小值为()
A.B.
C.(6-2)πD.
8.(2014·四川)设m∈R,过定点A的动直线x+my=0和过定点B的动直线mx-y-m+3=0交于点P(x,y),则|PA|·|PB|的最大值是________.
7.(2014·新课标全国Ⅱ)设F1,F2分别是椭圆C:+=1(a>b>0)的左,右焦点,M是C上一点且MF2与x轴垂直.直线MF1与C的另一个交点为N.
(1)若直线MN的斜率为,求C的离心率;
(2)若直线MN在y轴上的截距为2,且|MN|=5|F1N|,求a,b.
考点27椭圆
一年模拟试题精练
1.(2015·山东省聊城模拟)过椭圆+=1(a>b>0)的左焦点F1作x轴的垂线交椭圆于点P,F2为右焦点,若∠F1PF2=60°,则椭圆的离心率为()
7.(2015·江苏淮安模拟)已知椭圆+=1(a>b>0),点A,B1,B2,F依次为其左顶点、下顶点、上顶点和右焦点,若直线AB2与直线B1F的交点恰在直线x=上,则椭圆的离心率为________.
8.(2015·河南信阳模拟)已知椭圆C:+=1(a>b>0)的焦距为4,其长轴长和短轴长之比为∶1.
5.(2014·江西)过点M(1,1)作斜率为-的直线与椭圆C:+=1(a>b>0)相交于A,B两点,若M是线段AB的中点,则椭圆C的离心率等于________.
6.(2015·浙江)
已知椭圆+y2=1上两个不同的点A,B关于直线y=mx+对称.
(1)求实数m的取值范围;
(2)求△AOB面积的最大值(O为坐标原点).
6.(2015·浙江金丽模拟)设直线ax+2y+6=0与圆x2+y2-2x+4y=0相交于点P,Q两点,O为坐标原点,且OP⊥OQ,则实数a的值为________.
7.(2015·山师大附中模拟)已知直线l:3x+y-6=0和圆心为C的圆x2+y2-2y-4=0相交于A,B两点,则线段AB的长度等于________.
相关文档
最新文档