如何理解小波

合集下载

完美通俗解读小波变换,终于懂了小波是什么

完美通俗解读小波变换,终于懂了小波是什么

完美通俗解读小波变换,终于懂了小波是什么要讲小波变换,我们必须了解傅立叶变换。

要了解傅立叶变换,我们先要弄清楚什么是”变换“。

很多处理,不管是压缩也好,滤波也好,图形处理也好,本质都是变换。

变换的是什么东西呢?是基,也就是basis。

如果你暂时有些遗忘了basis的定义,那么简单说,在线性代数里,basis是指空间里一系列线性独立的向量,而这个空间里的任何其他向量,都可以由这些个向量的线性组合来表示。

那basis在变换里面啥用呢?比如说吧,傅立叶展开的本质,就是把一个空间中的信号用该空间的某个basis的线性组合表示出来,要这样表示的原因,是因为傅立叶变换的本质,是。

小波变换自然也不例外的和basis有关了。

再比如你用Photoshop去处理图像,里面的图像拉伸,反转,等等一系列操作,都是和basis的改变有关。

既然这些变换都是在搞基,那我们自然就容易想到,这个basis 的选取非常重要,因为basis的特点决定了具体的计算过程。

一个空间中可能有很多种形式的basis,什么样的basis比较好,很大程度上取决于这个basis服务于什么应用。

比如如果我们希望选取有利于压缩的话,那么就希望这个basis 能用其中很少的向量来最大程度地表示信号,这样即使把别的向量给砍了,信号也不会损失很多。

而如果是图形处理中常见的线性变换,最省计算量的完美basis就是eigenvector basis了,因为此时变换矩阵T对它们的作用等同于对角矩阵(Tv_n=av_n,a是eigenvalue)。

总的来说,抛开具体的应用不谈,所有的basis,我们都希望它们有一个共同的特点,那就是,容易计算,用最简单的方式呈现最多的信号特性。

好,现在我们对变换有了基本的认识,知道他们其实就是在搞基。

当然,搞基也是分形式的,不同的变换,搞基的妙处各有不同。

接下来先看看,傅立叶变换是在干嘛。

傅立叶级数最早是Joseph Fourier这个人提出的,他发现,这个basis不仅仅存在与vector space,还存在于function space。

如何使用小波变换进行图像去噪处理

如何使用小波变换进行图像去噪处理

如何使用小波变换进行图像去噪处理图像去噪是数字图像处理中的重要任务之一,而小波变换作为一种常用的信号处理方法,被广泛应用于图像去噪。

本文将介绍如何使用小波变换进行图像去噪处理。

1. 理解小波变换的基本原理小波变换是一种多尺度分析方法,它将信号分解成不同频率的子信号,并且能够同时提供时域和频域的信息。

小波变换使用一组基函数(小波函数)对信号进行分解,其中包括低频部分和高频部分。

低频部分表示信号的整体趋势,而高频部分表示信号的细节信息。

2. 小波去噪的基本思想小波去噪的基本思想是将信号分解成多个尺度的小波系数,然后通过对小波系数进行阈值处理来去除噪声。

具体步骤如下:(1)对待处理的图像进行小波分解,得到各个尺度的小波系数。

(2)对每个尺度的小波系数进行阈值处理,将小于阈值的系数置为0。

(3)对去噪后的小波系数进行小波逆变换,得到去噪后的图像。

3. 选择合适的小波函数和阈值选择合适的小波函数和阈值对小波去噪的效果有重要影响。

常用的小波函数包括Haar小波、Daubechies小波和Symlet小波等。

不同的小波函数适用于不同类型的信号,可以根据实际情况选择合适的小波函数。

阈值的选择也是一个关键问题,常用的阈值处理方法有固定阈值和自适应阈值两种。

固定阈值适用于信噪比较高的图像,而自适应阈值适用于信噪比较低的图像。

4. 去噪实例演示为了更好地理解小波去噪的过程,下面以一张含有噪声的图像为例进行演示。

首先,对该图像进行小波分解,得到各个尺度的小波系数。

然后,对每个尺度的小波系数进行阈值处理,将小于阈值的系数置为0。

最后,对去噪后的小波系数进行小波逆变换,得到去噪后的图像。

通过对比原始图像和去噪后的图像,可以明显看出去噪效果的提升。

5. 小波去噪的优缺点小波去噪方法相比于其他去噪方法具有以下优点:(1)小波去噪能够同时提供时域和频域的信息,更全面地分析信号。

(2)小波去噪可以根据信号的特点选择合适的小波函数和阈值,具有较好的灵活性。

浅谈小波分析理论及其应用

浅谈小波分析理论及其应用

浅谈小波分析理论及其应用
小波分析是一种在时间上和频率上非常灵活的方法,它将函数分解为不同频率的小波,从而更好地理解信号特征。

小波分析对于信号和图像处理领域有着广泛的应用,它可以用于去噪、压缩、特征提取和模式识别等方面。

小波分析的基本原理是根据小波函数的特点进行信号的分解。

小波函数有时域和频域的双重特性,这使得小波分析可以在时间和频率上同时分析信号。

小波函数有许多种类,其中最著名的是Morlet小波函数和Haar小波函数。

不同类型的小波函数有着不同的特点,可以用于处理不同类型的信号。

小波分析的应用非常广泛,其中最重要的是信号的去噪。

小波去噪可以利用小波分解的多尺度分析特性,将信号分成多个不同的频率带,去除噪声后再进行重构。

由于小波函数的好处在于可以在不同的时间尺度和频率上描述函数的特征,因此可以避免传统傅里叶变换中产生的频域和时间域之间的不确定性问题。

小波分析还可以用于信号的压缩。

小波变换可以将信号表示为一组小波系数,这些小波系数可以提供基于特征的图像压缩,以适合数字传输。

此外,小波变换还可以使用不同的频带系数来减少压缩过程中所需的位数,从而减小数据存储和传输的成本。

除了去噪和压缩之外,小波分析还可以用于图像处理中的特征提取、形态学分析和模式识别。

小波分析可以提供对图像特征的多尺度分析和检测,以便更有效地检测和分类图像。

在医学图像处理和物体识别领域,小波分析成为了一种广泛使用的工具。

总之,小波分析是一种非常有用的信号和图像分析工具,它在不同领域中有着广泛的应用。

随着技术的进步,小波分析的应用还将不断发展和拓展,成为更有效的数学工具。

db6小波变换

db6小波变换

db6小波变换随着数字信号处理技术的不断深入发展,小波变换作为一种新的信号处理方法被广泛应用。

Db6小波变换是小波变换中常用的变换之一。

本文将对Db6小波变换进行详细的阐述,以期帮助读者更好地理解这一新兴的信号处理技术。

一、什么是小波变换?小波变换是一种能够将信号分解成局部频率分量的变换方法,可以用于分析时间序列中的瞬态和非稳态分量,是目前广泛应用的信号分析方法之一。

与傅里叶变换相比,小波变换具有更好的时频局部性和多分辨率分析能力。

二、Db6小波变换的定义Db6小波变换,又称为Daubechies 6小波变换,是由Daubechies提出的一种小波基函数。

Db6小波基函数的表达式为:h(n)=(1/16)*(1+sqrt(10)+sqrt(5)*(3+sqrt(10)))*δ(n)+(1/16)*(sqrt(10)+sqrt(5)*(3-sqrt(10)))*δ(n-1)-(1/16)*(sqrt(10)+sqrt(5)*(3-sqrt(10)))*δ(n-3)-(1/16)*(1+sqrt(10)+sqrt(5)*(3+sqrt(10)))*δ(n-4)+(1/4)*(sqrt(5)*(1+sqrt(10)))*δ(n-5)+ (1/4)*(sqrt(5)*(1-sqrt(10)))*δ(n-6)其中δ(n)为单位冲击函数。

三、Db6小波变换的过程1. 进行M层小波分解先对待处理信号进行M层小波分解,得到M+1层小波系数。

2. 进行阈值处理对M+1层小波系数进行阈值处理,将较小的小波系数置零。

3. 进行M层小波重构使用处理后的小波系数进行M层小波重构,得到重构后的信号。

四、Db6小波变换的应用Db6小波变换在图像处理、信号处理、数据压缩等领域都有广泛的应用。

例如,在图像处理中,可以使用Db6小波变换进行边缘检测和纹理分析。

五、小结本文对Db6小波变换进行了详细的阐述,介绍了小波变换的概念和Db6小波变换的定义,并对Db6小波变换的过程和应用进行了详细说明。

图像变换(DCT和小波变换)

图像变换(DCT和小波变换)

小波变换简介
小波变换的理论基础 信号分析是为了获得时间和频率之间的相互关系。傅立叶 变换提供了有关频率域的信息,但有关时间的局部化信息却基 本丢失。与傅立叶变换不同,小波变换是通过缩放母小波 (Mother wavelet)的宽度来获得信号的频率特征, 通过平移母 小波来获得信号的时间信息。对母小波的缩放和平移操作是为 了计算小波系数,这些小波系数反映了小波和局部信号之间的
有限数字信号的 FT
正变换
ˆ X m xn e
n 0 N 1 i 2mn N
逆变换
1 ˆ xn X me N m 0
N 1
2mn i N
FT在信号处理中的局限性
用傅立叶变换提取信号的频谱需要利用 信号的全部时域信息。 傅立叶变换没有反映出随着时间的变化 信号频率成分的变化情况。
小波变换可以理解为用经过缩放和平移的一系列小波函数代替傅立叶变换的正弦波和余弦波进行傅立叶变换的结下图表示了正弦波和小波的区别由此可以看出正弦波从负无穷一直延续到正无穷正弦波是平滑而且是可预测的而小波是一类在有限区间内快速衰减到0的函数其平均值为0小波趋于不规则不对称
DCT & DWT
University of Science and Technology of Beijing 沈政伟
2 (2 x 1)u (2 y 1)v C (u)C (v ) cos cos 2M 2N MN
式中,C(u)和C(v)的定义同前面;x, u=0, 1, 2, …, M-1; y, v=0, 1, 2, …, N-1。
二维DCT定义如下:设f(x, y)为M×N的数字图像矩阵,则
F (u, v)ห้องสมุดไป่ตู้
59 例: 61 原图像为: F 62

Haar小波的理解

Haar小波的理解

Haar⼩波的理解
1. ⾸先理解L^2(R)的概念
L^2(R) 是⼀个内积空间的概念,表⽰两个⽆限长的向量做内积,张成的空间问题。

也就是两个函数分别作为⼀个向量,这两个函数要是平⽅可积的。

L^2(a,b)=<f(x)|g(x)>= ∫g(x)f(x)dx| x=a:b < +∞ [前提:∫||f(x)||dx| x=a:b < +∞ 和∫||g(x)||dx| x=a:b < +∞]
当<f(x)|g(x)> - f(x) < ε时,可以默认为在内积空间内<f(x)|g(x)>向量内积的值⾮常近似与f(x),通过这个性质,使⽤⽆数个正交的向量张成的空间的正交基向量的坐标值来表⽰f(x),即f(x) = ∑cn*[基向量]i , 可⽤cn= <f(x)|基向量>/<基向量|基向量>求得Cn.
2. Haar⼩波
尺度函数:是⼀组正交基
哈尔⼩波:是⼀组正交基
3. Haar⼩波分解
f(t)j 属于Vj空间,即分辨率为1/2^j的空间
f(t)j = V0 + W0+ W1 +W2+ ... + W j-1
4. 降采样与升采样
(待更新)
5. 重构
(待更新)
参考⽂章:
1. ⼩波分析完美教程经典 - ⼩波与⼩波变换- 林福宗清华⼤学计算机与技术系智能技术与系统国家重点实验室
2. ⼩波与傅⾥叶分析基础(第⼆版)- A First Course in Wavelets with Fourier Anaysis - Albert Boggess Freancis J.Narcowich。

小波变换与傅里叶变换的对比异同

小波变换与傅里叶变换的对比异同

小波变换与傅里叶变换的对比、异同一、基的概念两者都是基,信号都可以分成无穷多个他们的和(叠加)。

而展开系数就是基与信号之间的内积,更通俗的说是投影。

展开系数大的,说明信号和基是足够相似的。

这也就是相似性检测的思想。

但我们必须明确的是,傅里叶是0-2pi标准正交基,而小波是-inf到inf之间的基。

因此,小波在实轴上是紧的。

而傅里叶的基(正弦或余弦),与此相反。

而小波能不能成为Reisz基,或标准稳定的正交基,还有其它的限制条件。

此外,两者相似的还有就是PARSEVAL定理。

(时频能量守恒)。

二、离散化的处理傅里叶变换,是一种数学的精妙描述。

但计算机实现,却是一步步把时域和频域离散化而来的。

第一步,时域离散化,我们得到离散时间傅里叶变换(DTFT),频谱被周期化;第二步,再将频域离散化,我们得到离散周期傅里叶级数(DFS),时域进一步被周期化。

第三步,考虑到周期离散化的时域和频域,我们只取一个周期研究,也就是众所周知的离散傅里叶变换(DFT)。

这里说一句,DFT是没有物理意义的,它只是我们研究的需要。

借此,计算机的处理才成为可能。

所有满足容许性条件(从-INF到+INF积分为零)的函数,都可以成为小波。

小波作为尺度膨胀和空间移位的一组函数也就诞生了。

但连续取值的尺度因子和平移因子,在时域计算量和频域的混叠来说,都是极为不便的。

用更为专业的俗语,叫再生核。

也就是,对于任何一个尺度a和平移因子b的小波,和原信号内积,所得到的小波系数,都可以表示成,在a,b附近生成的小波,投影后小波系数的线性组合。

这就叫冗余性。

这时的连续小波是与正交基毫无关系的东西,它顶多也只能作为一种积分变换或基。

但它的显微镜特点和相似性检测能力,已经显现出来了。

为了进一步更好的将连续小波变换离散化,以下步骤是一种有效方法。

第一步,尺度离散化。

一般只将a二进离散化,此时b是任意的。

这样小波被称为二进小波。

第二步,离散b。

怎么离散化呢?b取多少才合适呢?于是,叫小波采样定理的东西,就这样诞生了。

小波特征与原始特征

小波特征与原始特征

小波特征与原始特征
我猜你想问的是小波特征与原始特征的区别,小波特征是原始特征经过小波变换后得到的特征,它与原始特征的区别主要体现在以下几个方面:
- 数据量:小波特征的数据量通常比原始特征小,因为小波变换可以将原始特征分解为不同频率的子特征,从而减少特征的维度和数据量。

- 时间分辨率:小波特征的时间分辨率通常比原始特征高,因为小波变换可以将原始特征分解为不同时间尺度的子特征,从而可以更精细地分析特征随时间的变化。

- 频率分辨率:小波特征的频率分辨率通常比原始特征高,因为小波变换可以将原始特征分解为不同频率的子特征,从而可以更精细地分析特征随频率的变化。

- 抗噪性:小波特征的抗噪性通常比原始特征好,因为小波变换可以将原始特征分解为不同频率的子特征,从而可以有效地抑制噪声的影响。

总的来说,小波特征是一种比原始特征更有效的数据表示方法,它可以更好地分析特征的时间和频率特性,并且具有更好的抗噪性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1992年,比利时女数学家I.Daubechies撰写的《小波十 讲(Ten Lectures on Wavelets)》对小波的普及起了重 要的推动作用。
1994年, AT&T公司Bell实验室的Wim Swelden提出的 提升方案Lifting Scheme,即第二代小波 。
小波的历史发展
6/20
8/20
MATLAB 6.5辅助小波分析与应用 出版社:电子工业出版社 出版日期:2003年1月1日 作者:飞思科技产品研发中心 ISBN:7505381** 定价:26元
该书是作者总结多年研究小波分析的心得,以 MATLAB 6.5中的小波分析工具箱(wavelet toolbox)2.2版为基础,在简要介绍小波分析的 基础理论之后,重点说明了小波分析工具箱的 详细使用方法,并以信号和图像处理领域为例 展示了如何应用小波分析工具箱来解决工程中 的实际问题,以达到使读者快速入门小波分析 的目的。
内积空 { e n } 满 间 足 e 中 m ,e n: 元 1 0 素 m m n n , 列 { 则 e n } 为 称 X 空 中间 的标准正
小波变换可以自适应地调节时频窗口;
小波变换对信号奇异点非常敏感,可以用于分析 检测突变信号;
因而能在信号检测、降噪、特征提取方面发挥重 要作用,被誉为信号分析的“显微镜” 。
小波的应用
4/20
J.Morlet,地震信号分析。 S.Mallat,二进小波用于图像的边缘检测、图像压缩和重构 Farge,连续小波用于涡流研究 Wickerhauser,小波包用于图像压缩。 Frisch噪声的未知瞬态信号。 Dutilleux语音信号处理 H.Kim时频分析 Beykin正交小波用于算子和微分算子的简化
Z表 示 整 数 集 合 R表 示 实 数 集 合 C表 示 复 数 集 合
2.对称性: (x, y)(y,x)
Z+表 示 正 整 数 集 合
3.三角不等式 x,: y,zX,有(x, y)(x,z)(z, y)
R n表 示 n为 欧 氏 空 间
则称(x, y)为x和y之间的距离 X为,以(x, y)为距离的距离空间 内 积。 x , y x ( t ) y ( t ) * d t R
如何理解小波?
1/20
Wavelet(小波)=Wave(波)+let
Booklet(小册子) =Book(书)+let
小波:即小区域的波,是一种特殊的、长度有限的、 平均值为零的波形。
它有两个特点: 一是“小”,即在时域具有紧支集或近似紧支集; 二是正负交替的“波动性”,也就是直流分量为零。
如何理解小波?
S.Mallat
I.Daubechies Wim Swelden
小波分析典型参考书
7/20
荣获1994年Leroy P.Steele奖。该书印 数超过15000册,这在 学术著作中是极为罕见 的。
ISBN:7-118-03381-2 作者:Daubechies, 李建平,杨万年译
小波分析典型参考书
2/20
1.5
1.5
1
1
0.5
0.500 Nhomakorabea-0.5
-0.5
-1
-1
0
500 1000 1500 2000 2500 3000 3500 4000 4500 0
2000 4000 6000 8000 10000 12000 14000 16000
Daubechies16阶
Meyer
小波的优点
3/20
小波变换在时域和频域同时具有良好的局部化特 性;
信号处理、图像处理、模式识别、语音识别、量子物理、地震勘探 流体力学、电磁场、CT成象、机器视觉、机械故障诊断、分形
小波的历史发展
5/20
小波变换的概念是由法国从事石油信号处理的工程师 J.Morlet在1974年首先提出的。当时未能得到数学家的 认可。
1986年著名数学家Y.Meyer偶然构造出一个真正的小 波基,并与S.Mallat合作建立了构造小波基的多尺度 分析。
泛函知识初步函数空间
10/20
线性空间
设 X是任一非空 X中 集定 合义 ,了 在线素 性的 运加 算法 (和 元 运 元算 素) 的, 数乘 并且满足加结 法合 或律 数及 乘分 的配律。 对于线性空量 间, 的用 任 x来 范 一定 数 向义其长度。
赋范线性空间
设 X 为一线 x性 X,存 空在 间非 , x与 负 之 实 对 数 应,满足
设 X为 复 数 域 上 的 线 性 空 间 , 从 XX到 C中 定 义 了 函 数 •,•, x,y,zX,, 满 足 1.x,yy,x*
2.,C,xy,zx,zy,z
3.x,x0,当 且 仅 当 x0时 x,x0.
称 •,•为 X中 的 内 积 , X称 为 内 积 空 间 。 范 数x x,x, 距 离 (x,y) xy,xy
即g(t)X,有g(t) akek(t)
k
基底
如ek果 (t)是线性无 式 关 系 ak是 的 数 唯 ,一 使 {ek(t)的 得 k} Z为 , 上 空 称 间的基底
正交(直交) x,y为内X 中 积的 空两 间 个 x,y元 0 ,称 x与 素 y正, 交x 若 , y 记作
标准正交基(规范正交基)
1.x0,当且 x仅 0时 x当 , 02. R ,xx 3. x,y X,xyxy 距离定 (x,y) 义 yx为
Banach空间
设空 X中 间的任{x一 i}iZ都 序有 列极限,都 并 X 在 中 且, 此该 极空 限间为完备的。 完备的线性为 赋 Ba范 n空 a空 c间 h间 。称
Hilbert空间
泛函知识初步
9/20
空间
空间的直观理解就是一种集合,其元素可能是函数、矢量等,而元素之间存在一 定的关系或性质。
函数空间
所谓函数空间,就是由函数构成的集合,并在集合上赋予了一定的代数结构。
距离空间
设X是任一集合 x,, yX,都对应一个实 (x,数 y),而且满足 1.非负性: (x, y)0,当且仅x当y时,(x, y)0.
完 备 的 内 积 空 间 称 为 H ilbert空 间
泛函知识初步基底
11/20
张成span
设ek(t)为一个函数 X表 序示 列 ek为 (t), 所有可能的线 成性 的组 集合 合构 ,即
X{ akek(t);t,akR,kZ}称X为由序 ek(t)列 张成的线性空间:
k
Xspa{enk}
相关文档
最新文档