TOFD检测

合集下载

tofd检测标准

tofd检测标准

tofd检测标准
TOFD(Time of Flight Diffraction,飞行时间换能)是一种超声检测技术,主要用于检测材料中的裂纹和缺陷。

具体的TOFD检测标准由以下几个方面组成:
1. 检测仪器和设备:TOFD检测必须使用专业的超声检测仪器和设备,并且需要对其进行校准和验证。

2. 检测人员:TOFD检测需要经过专业培训的检测人员进行操作和解读结果。

他们应该具备相关的知识和技能。

3. 标准操作程序:TOFD检测应该有详细的操作程序,包括检测设备的设置、检测样品的准备、探头的安装和校准等。

4. 标定和验证:TOFD检测需要进行标定和验证,以确保检测结果的准确性和可靠性。

这可以通过使用已知缺陷样品进行比对和校准来完成。

5. 缺陷评估和报告:TOFD检测结果应该进行缺陷评估,并生成详细的检测报告。

报告应包括检测参数、检测结果和相关的建议。

总之,TOFD检测需要遵守一系列的标准和要求,以确保检测的准确性和可靠性。

这些标准主要涉及仪器设备、操作程序、人员培训和质量控制等方面。

无损检测技术衍射时差法超声TOFD检测基本原理

无损检测技术衍射时差法超声TOFD检测基本原理

无损检测技术衍射时差法超声TOFD检测基本原理无损检测(Nondestructive Testing,简称NDT)技术是一种应用于工程领域的检测方法,其目的是在不损伤被测物体的情况下获得其内部和表面的缺陷信息,以判断材料的质量和可靠性。

衍射时差法超声TOFD(Time of Flight Diffraction)是无损检测中一种常用的超声检测技术,它通过分析超声波在被测物体内部的衍射图样和所传播时间的差异来确定缺陷的位置和尺寸。

衍射时差法超声TOFD检测的基本原理如下:1.超声波传播:超声波在被检测材料内部的传播速度是已知的,传播路径是直线传播的。

超声波发射器发射出短脉冲的超声波信号,经过材料中的声阻抗不一致表面发生反射;然后通过被检材料内部传播,当超声波遇到缺陷时,会部分反射、散射和透射;最后,超声波信号达到接收器并被记录。

2.衍射现象:当超声波遇到边界或缺陷时,会发生衍射现象。

衍射现象是指波通过开口或缝隙时,从波的前向运动方向上的边界或缝隙中发射出去一部分。

3.TOFD测量:TOFD测量的关键在于将两个特征回波的衍射声波进行时间差测量。

超声波发射器和接收器之间有一对平行排列的接收器,其中一个接收器用于接收来自发射器产生的超声波的第一个回波,另一个接收器用于接收来自发射器产生的超声波的第二个回波。

4.TOFD信号分析:通过同时接收两个回波,并测量二者之间的时间差,可以确定缺陷的位置和尺寸。

当超声波传播到缺陷区域时,由于缺陷的存在,衍射声波将被传播到两个接收器之间。

通过测量两个回波的时间差,可以计算出衍射声波的传播路径,从而确定缺陷的位置。

5.结果分析:将TOFD信号进行处理和分析,可以得到缺陷的尺寸、位置和形态。

同时,根据TOFD原理的高度灵敏度特点,可以检测到非常小的缺陷。

衍射时差法超声TOFD检测技术具有以下优点:1.高敏感性:TOFD检测技术可以检测到相对较小的缺陷,对大多数工程材料和结构缺陷的检测效果非常好。

TOFD检测工艺参数和实际操作记录

TOFD检测工艺参数和实际操作记录

TOFD检测工艺参数和实际操作记录
一、UTTOFD检测工艺参数
1、时域反射技术(Time-Domain Reflection,TDR):采用TDR技术,在线布置检测时应使用50Ω带宽扫描,采用TDR-201带宽模式,允许范
围为:最低带宽:25MHz,最大带宽:75MHz,扫描脉冲宽度:2ns,允许
范围:最小1.5ns,最大4ns。

2、信号发射器:其模式为宽带发射信号,可以发射1.1MHz~15MHz
的信号,扫描间隔宽度≥3ns,接口为Φ3.5mm。

3、衰减器:扫描衰减器设定范围为:0-8dB,允许范围误差为±2dB,允许范围应在0-10dB之间。

4、接收调理:收信号接收调理设定范围应在-12dB~+18dB之间。

5、信号处理:采用180°相位回转技术,在信号处理中采用180°相
位回转,使信号更容易被捕捉到,提高探头检测灵敏度,扫描深度100mm。

1、首先,根据设置参数,检查各操作参数是否满足要求。

当检查完
毕后,按照图示调整检测系统,确定检测位置,并做好监护;
2、然后,使用探头在检测区域内进行探测,操作时注意保持探头接
点与检测位置的稳定性,采用180°相位回转技术进行处理,并确保扫描
深度100mm。

3、接着,根据有无缺陷信号,对检测结果进行综合分析。

超声波衍射时差法(TOFD)检测过程控制要点

超声波衍射时差法(TOFD)检测过程控制要点

超声波衍射时差法(TOFD)检测过程控制要点超声波衍射时差法(TOFD)是采用一发一收探头,利用缺陷端点的衍射波信号探测缺陷和测定缺陷尺寸的一种超声检测技术,其对垂直于探测面缺陷的尺寸测量具有独特的优势,在结构焊缝检测上的应用已经较为成熟。

随着国内标准NB/T 47013.10-2010《承压设备无损检测第10部分:衍射时差法超声检测》的颁布,TOFD检测技术在国内得到迅速推广。

TOFD检测不是一个基于幅度响应的超声检测技术,但需要足够的灵敏度以使待检测的缺陷能够被识别。

TOFD检测的一个弱点是检测面和底面附近存在盲区,为了确保声束覆盖检测区域,必须在确定检测工艺时考虑这一因素。

探头选择和探头配置很大程度上决定着TOFD检测技术的整体精度、信噪比和覆盖区域。

进行仪器设置是为了确保足够的系统增益和信噪比,以便发现所关注的衍射信号,确保分辨力可接受、声束能够覆盖所关注的区域以及系统动态范围的有效使用。

TOFD检测过程和现场评审中有以下几点需要重点关注:一、检测区域覆盖根据任务要求的检测区域和检测级别,首先通过选择探头角度、测定探头前沿及声束扩散角来确定探头组合和间距,并根据厚度决定是否需要分区检测。

然后进行上下面盲区的确认,以决定是否需要补充超声横波检测,或偏置非平行扫查。

二、数据采样间距进行TOFD扫查时,沿扫查方向的数据采样间距在各标准中有明确规定。

三、仪器设置和验证1.灵敏度:TOFD检测不是基于幅度对缺陷进行当量评定的检测技术,TOFD检测灵敏度的设置方式也与常规超声不同,不是以人工缺陷的幅度作为基准。

灵敏度的设置只是为了保证信号幅度在一定范围内,并具有较高的信噪比。

通常要求直通波高度为满刻度的40%~90%,或在底波80%的基础上再增益20~32dB,或噪声在满刻度的5%~10%。

有时标准会要求在试块上验证探头指定区域缺陷的检出性。

2.深度校准:TOFD检测中,探头接收的信号到达时间与反射体的深度并不是线性关系,反射体的深度是在假定信号位于两探头中心的正下方的情况下,依据已知的声速和信号与直通波的时间差由软件自动计算得到的。

tofd操作规程

tofd操作规程

tofd操作规程TOFD操作规程一、 TOFD简介TOFD(Time of Flight Diffraction,声时差检测)是一种非破坏性超声波测试技术,广泛应用于检测各种材料的缺陷。

它基于声时差原理,即利用超声波在缺陷周围的散射现象来检测缺陷的存在和位置。

二、 TOFD操作规程1. 设备准备(1)检查设备:确认TOFD设备完整且无损坏,包括传感器、探头、接收器等。

(2)校准设备:按照设备使用手册进行设备校准,确保测量的准确性和可靠性。

(3)设置参数:根据被测材料的特性和待检测缺陷的要求,合理设置TOFD设备的参数,包括探头频率、发射电平、增益等。

2. 缺陷检测(1)传感器安装:根据被测材料的情况和测试要求,选择合适的传感器,并将其连接到探头上。

(2)采样点设置:根据被测材料的尺寸和缺陷的位置要求,在被测材料上设置合适的采样点,保证检测全面和准确度。

(3)扫描探头:将探头平行于被测材料表面移动,保持一定的扫描速度和均匀性,确保探头能够覆盖到所有的采样点。

(4)记录数据:将扫描中得到的TOFD信号记录下来,包括声时差信号和幅度信号,以便后续的数据处理和分析。

3. 数据处理(1)数据导入:将记录的TOFD信号数据导入到数据处理软件中,通过合适的文件格式进行导入。

(2)信号处理:在数据处理软件中进行信号处理,包括首次回波定位、声时差计算等,以获得准确的缺陷位置和大小。

(3)结果分析:根据信号处理的结果,对检测到的缺陷进行分析和评估,判断其是否符合要求,并记录下来。

4. 报告编写(1)报告内容:根据检测结果,编写检测报告,包括被测材料的信息、TOFD操作过程、检测结果和评估等内容。

(2)报告结构:检测报告应包括封面、目录、摘要、引言、实施方案、检测结果、数据分析、结论和附件等部分。

(3)报告格式:检测报告的格式应符合相应的标准或规范,并注明检测时间、检测人员和设备信息等。

5. 数据保存(1)数据归档:将检测过程中的原始数据和处理结果进行归档,建立完整的数据档案,保证数据的完整性和可追溯性。

TOFD技术的优缺点

TOFD技术的优缺点

TOFD技术的优缺点TOFD(Time-of-Flight Diffraction)技术是一种常用于无损检测的超声波检测方法,其原理是利用超声波在物体中的传播时间和反射信号的强度来检测缺陷。

以下是TOFD技术的优缺点:优点:1.高准确性:TOFD技术采用幅射超声波技术,可以实时对材料进行扫描,能够高精度地测量缺陷的尺寸和位置,并且能够区分大小不一的缺陷。

2.高灵敏度:TOFD技术可以探测到微小的缺陷,能够检测到微米级别的缺陷,对于一些重要的安全关键部件的无损检测非常有效。

3.高效性:TOFD技术可以在快速扫描的同时采集大量的数据,可以快速地获取大范围内的缺陷信息,节省了检测时间和人力成本。

4.全面性:TOFD技术不受限于对缺陷的预期,可以探测到多种不同类型的缺陷,如裂纹、孔洞、气泡等,对于多种材料的检测都具有一定的适用性。

5.无需缺陷的先验知识:相对于传统的A扫和B扫技术,TOFD技术无需事先了解缺陷的位置和形状,可以全面地检测材料中的所有缺陷。

缺点:1.受到耦合介质的限制:TOFD技术需要使用耦合介质将超声波传递到被测材料上,而不同材料需要选择适合的耦合介质,这会对TOFD技术的应用造成局限。

2.对操作人员的要求高:TOFD技术需要经验丰富的操作人员进行正确的操作和解读数据,对操作人员的技能要求较高,需要进行专门的培训和资质认证。

3.对材料的要求高:TOFD技术对被检测材料有一定的要求,例如材料应具有良好的声波传导性和一定的尺寸范围。

一些复杂材料(如复合材料)的检测可能比较困难。

4.软件处理的复杂性:TOFD技术的数据处理复杂,需要运用专门的软件进行数据分析和图像处理,这对于使用者来说有一定的技术要求。

总结:TOFD技术在无损检测领域有着广泛的应用,具有高准确性、高灵敏度、高效性、全面性等优点,能够提供可靠的缺陷检测和评估结果。

然而,TOFD技术也存在一些缺点,例如对耦合介质和材料的要求高,操作人员水平要求较高等。

TOFD衍射时差法超声检测技术课件

TOFD衍射时差法超声检测技术课件
• 检测数据有永久的数字记录。
• 检测速度快,效率高。
折射角度与衍射波幅度的关系
折射角度与衍射波幅度的关系
• 裂纹上尖端信号从0-65°单调增大,从65 ° ~85°单调降低。波幅最大时的折射角为65 ° 。
• 裂纹下尖端的信号波幅曲线在20 °和65 °时 出现两个峰值,在38 °时,裂纹下尖端的信号 波幅下降到最低。
• 可对原始的检测数据再分析,使用多样 的可视化显示。
TOFD技术的优点
1、TOFD技术的可靠性好。 2、TOFD技术的定量精度高。 3、TOFD检测简便快捷,检测效率高。 4、TOFD检测系统配有自动或半自动扫查装置,能够
确定缺陷与探头的相对位置,信号通过处理可转换 为TOFD图像。TOFD图像更有利于缺陷的识别和分 析。
Rx
典型的D扫视图
D 扫所看到的视图
• D扫描用于采集焊缝及两侧母材中的缺陷 • D扫描视图不能判断出缺陷在焊缝中的横向位置
Tx
Rx
平行扫查-B扫
• 采用平行扫查可 以对缺陷深度进 行更精确的定量, 而且有助于对缺 陷宽度和倾斜角 度的判断。
扫查方向
Tx
Rx
波束方向
焊缝
平行扫查
• 当探头相对于缺陷对称时时间最短 。
TOFD中文名称
• Time of Flight Diffraction Technique的中文 翻译为——衍射时差法超声检测技术
• GB/T 12604.1—2005(等同ISO 5577:2000) 翻译为——衍射声时
• 物理学术语翻译为——衍射渡越时间
TOFD发展历程
• TOFD技术发现(20世纪70年代)——摸 索、完善、装备研发
与底波信号时间差至少20个周期的要求,这可 使直通波与底波回波在10%以上的波幅不超过 两个周期,减小盲区,提高时间分辨率。 • 综合考虑晶片尺寸与探头频率,根据标准规定 选择。 • 一般使用的TOFD探头中心频率为1~15MHz, 晶片尺寸为 3~20mm。 • 常用的探头角度为:45 ° 、60 ° 、70 °

超声TOFD检测方法

超声TOFD检测方法

超声TOFD检测方法超声时间飞行差异(TOFD)是一种基于超声波技术的非破坏性检测方法,主要用于检测材料中的缺陷和裂纹。

本文将详细介绍TOFD检测方法及其应用。

1.TOFD检测原理TOFD检测利用超声波在材料中传播的时间差来检测缺陷和裂纹。

它采用两个相互垂直的传感器,其中一个作为发射器发射超声波,另一个作为接收器接收反射回来的信号。

在材料内部存在缺陷或裂纹时,超声波在缺陷处发生散射,一部分超声波会从缺陷内部反射回来,形成一条称为反射声束的图像。

另一部分超声波则会绕过缺陷,称为绕射声束。

TOFD检测利用这两个声束之间的时间差来确定缺陷的位置和尺寸。

2.TOFD检测系统TOFD检测系统由发射器、接收器和数据采集与处理系统组成。

发射器通过超声波探头发送短脉冲信号,接收器接收返回的超声信号,并将信号传输给数据采集与处理系统进行分析和显示。

数据采集与处理系统通常采用计算机或专用设备,通过算法计算声束之间的时间差,生成缺陷的声束图像。

3.TOFD检测优势TOFD检测方法具有以下优势:(1)高精度:TOFD能够实现对缺陷的准确定位和尺寸测量,能够检测到微小的裂纹。

(2)宽范围:TOFD检测方法适用于各种材料,包括金属、塑料、陶瓷等,并且对材料的厚度也没有限制。

(3)高效率:TOFD检测快速、自动化程度高,可以实现迅速检测大面积的材料。

(4)高重复性:TOFD检测方法的结果具有较高的重复性和可靠性,可以进行重复的检测。

4.TOFD检测应用TOFD检测方法广泛应用于不同领域:(1)航空航天领域:TOFD检测可以检测飞机发动机叶片等零部件中的裂纹,保证安全飞行。

(2)石油化工领域:TOFD检测可以检测石油管道、储罐等设备中的缺陷和腐蚀,避免泄漏和事故发生。

(3)交通运输领域:TOFD检测可以检测铁路轨道、桥梁等结构中的裂纹和缺陷,确保交通运输的安全。

(4)核电领域:TOFD检测可以检测核电设备中的裂纹和缺陷,预防核泄漏和事故。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

TOFD定义
Time Of Flight Diffraction(TOFD)超声波衍射时差法,是一种依靠从待检试件内部结构(主要是指缺陷)的“端角”和“端点”处得到的衍射能量来检测缺陷的方法,用于缺陷的检测、定量和定位。

TOFD技术的来源
TOFD技术的英文全称是Time of Flight Diffraction Technique,中文译名为衍射时差法超声检测技术。

TOFD技术于20世纪70年代由英国哈威尔的国家无损检测中心silk博士首先提出,其原理源于silk博士对裂纹尖端衍射信号的研究。

在同一时期我国中科院也检测出了裂纹尖端衍射信号,发展出一套裂纹测高的工艺方法,但并未发展出现在通行的TOFD检测技术。

TOFD技术首先是一种检测方法,但能满足这种检测方法要求的仪器却迟迟未能问世。

详细情况在下一部分内容进行讲解。

TOFD要求探头接收微弱的衍射波时达到足够的信噪比,仪器可全程记录A扫波形、形成D扫描图谱,并且可用解三角形的方法将A扫时间值换算成深度值。

而同一时期工业探伤的技术水平没能达到可满足这些技术要求的水平。

直到20世纪90年代,计算机技术的发展使得数字化超声探伤仪发展成熟后,研制便携、成本可接受的TOFD检测仪才成为可能。

但即便如此,TOFD仪器与普通A超仪器之间还是存在很大技术差别。

TOFD技术的物理原理
衍射现象是TOFD技术采用的基本物理原理。

衍射现象的解释:波遇到障碍物或小孔后通过散射继续传播的现象,根据惠更斯原理,媒质上波阵面上的各点,都可以看成是发射子波的波源,其后任意时刻这些子波的包迹,就是该时刻新的波阵面。

TOFD工作原理
TOFD技术采用一发一收两个宽带窄脉冲探头进行检测,探头相对于焊缝中心线对称布置。

发射探头产生非聚焦纵波波束以一定角度入射到被检工件中,其中部分波束沿近表面传播被接收探头接收,部分波束经底面反射后被探头接收。

接收探头通过接收缺陷尖端的衍射信号及其时差来确定缺陷的位置和自身高度。

TOFD技术优越性:
a)一次扫查几乎能够覆盖整个焊缝区域(除上下表面盲区),可以实现非常高的检测速度;
b)可靠性要好,对于焊缝中部缺陷检出率很高;
c)能够发现各种类型的缺陷,对缺陷的走向不敏感;
d)可以识别向表面延伸的缺陷;
e)采用D-扫描成像,缺陷判读更加直观;
f)对缺陷垂直方向的定量和定位非常准确,精度误差小于1mm;
g)和脉冲反射法相结合时检测效果更好,覆盖率100%;
TOFD技术局限性:
a)近表面存在盲区,对该区域检测可靠性不够
b)对缺陷定性比较困难
c)对图像判读需要丰富经验
d)横向缺陷检出比较困难
e)对粗晶材料,检出比较困难
f)对复杂几何形状的工件比较难测量
国内主要TOFD仪器型号和商家:
进口:
ISONIC系列(以色列SONOTRONNDT), OMniScan MX系列(加拿大奥林巴斯)
国内自主研发:
PXUT900系列(南通友联),汉威HTS800系列(武汉中科)
RT(Radiographic testing射线检测)、UT(Ultrasonic testing 超声波检测)、MT(Magnetic particle testing 磁粉检测)、PT(Penetrant flaw testing渗透检测)四种常规无损检测方法。

相关文档
最新文档