信号与线性系统一二章自测题及参考答案
信号与系统自测题(3套)

信号与系统自测题(一)一、选择题1.积分⎰+--00)()2(dt t t δ等于( )A.)(2t δ-B.2-C. )2(-t εD. )2(2-t δ2.计算ε(3-t)ε(t)=( ) A .ε(t)-ε(t-3) B .ε(t) C .ε(t)-ε(3-t) D .ε(3-t)3.已知f (t ),为求f (t 0-at )则下列运算正确的是(其中t 0,a 为正数)()A .f (-at )左移t 0B .f (-at )右移atC .f (at )左移t 0D .f (at )右移a t4.已知f (t )=δ′(t ),则其频谱F (j ω)=()A .ωj 1B .)(1ωπδω+jC .ωjD .)(21ωπδω+j 5.信号f (t )的带宽为Δω,则信号f (2t -1)的带宽为( ) A .2ΔωB .Δω-1 C .Δω/2D .(Δω-1)/26.已知周期电流i (t )=1+t t 2cos 22cos 22+,则该电流信号的平均功率P 为( ) A .17W B .9W C .4WD .10W7.如题7图所示的信号,其单边拉普拉斯变换分别为F 1(s ), F 2(s ), F 3(s ),则( )A .F 1(s )= F 2(s )≠F 3(s )B .F 1(s )≠F 2(s )≠F 3(s )C .F 1(s )≠F 2(s )= F 3(s )D .F 1(s ) = F 2(s )= F 3(s )8.某系统的系统函数为H (s ),若同时存在频响函数H (j ω),则该系统必须满足条件( )A .时不变系统B .因果系统C .稳定系统D .线性系统 9.已知f (t )的拉普拉斯变换为F (s ),则dt t df )(的拉普拉斯变换为( )A .sF (s )B .sF (s )-f (0-)C .sF (s )+f (0-)D .⎰-∞-+0)(1)(ττd f ss sF10.已知某离散序列,其它 ⎩⎨⎧=≤=n N n n f ,0||,1)(该序列还可以表述为( )A .)()()(N n N n n f --+=εεB .)()()(N n N n n f ---+-=εεC .)1()()(---+=N n N n n f εεD .)1()()(----+-=N n N n n f εε11.已知某离散系统的系统模拟框图如题11图所示,则该系统的差分方程为( ) A .)()1(31)(n f n y n y =-+ B .)()1(31)(n f n y n y =--C .)()(31)1(n f n y n y =-+ D .)()(31)1(n f n y n y =++ 12.若f (n )的z 变换为F (z ),则)(n f a n 的z 变换为( ) A .)(az F B .)(z aF C .)(1z F aD .⎪⎭⎫ ⎝⎛a z F二、填空题13.矩形脉冲信号ε(t)-ε(t-1)经过一线性时不变系统的零状态响应为g(t)-g(t-1),则该系统的单位冲激响应h(t)为________。
信号与系统试卷及参考答案

试卷及答案信号与系统试卷(1)(满分:100分,所有答案一律写在答题纸上)考试班级学号姓名成绩考试日期:年月日,阅卷教师:考试时间120分钟,试卷题共2页一一线性非时变离散系统,具有一初始状态x(0),当激励为时f(k),响应为y(k)=((1/2)k+1)u(k);若初始状态不变,当激励为-f(k)时,响应y(k)=((-1/2)k-1)u(k)为;试求当初始状态2x(0)为,激励为4f(k)时,系统的响应?(10分)二绘出下列函数的图形(1).已知一连续时间信号x(t)如图所示,试概略画出信号y(t)=x(2-t/3)的波形图。
(8分)t(2). 试概略画出信号y(t)=u(t 2-4) 的波形图。
(8分)三 计算下列函数(1). y(t)=⎰-44(t 2+3t+2)(δ(t)+2δ(t-2))dt (4分) (2). f(t)=e -2t u(t), h(t)= e -2t u(t), y(t)=f(t)*h (t) (8分)(3). f(k)=1, k=0,1,2,3, h(k)=1, k=0,1,2,3, y(k)=f(k)*h (k) (8分) (4) 已知f(t)=e -2t u(t), 求y(t)=[t f(2t)] 的富立叶变换 (8分) (5)y’(t)+2y(t)=δ(t)+u(t), y(0)=0, 试求y(t)=? (8分) (6). y(k)-y(k-1)-2y(k-2)=u(k)+2u(k-2), y(-1)= 2,y(-2)= -1/2, 试求零输入响应y x (k)=? 零状态响应y f (k)=? (8分)四 一线性非时变因果系统,当激励为u(t)时,响应为)]2()([cos )(cos )(ππ---+=-t u t u t t tu e t g t ,求当激励f(t)=δ(t)时的响应)(t h 。
(10分)五 某一子系统,当输入f(t)=e -t u(t)时,零状态响应y f (t) = (1/2 e -t - e -2t +1/2e -3t )u(t), 试求将两个这样的子系统串联时,总系统的冲激响应。
信号与线性系统一二章自测题及参考答案

第一、二章自测题1、判断题(1)若x (t )是一连续时间周期信号,则y (t )=x (2t )也是周期信号。
(2)两个周期信号之和一定是周期信号。
(3)所有非周期信号都是能量信号。
(4)两个连续线性时不变系统相互串联的结果仍然是线性时不变系统。
(5)若)()()(t h t x t y *=,则)1()2()1(+*-=-t h t x t y 。
(6)一个系统的自由响应就等于它的零输入响应。
(7)一个系统的零状态响应就等于它的自由响应。
(8)零状态响应是指系统没有激励时的响应。
(9)系统的单位冲激响应是指系统在冲激信号作用下的全响应。
(10)两个功率信号之和必为功率信号。
2、判断下列信号是能量信号还是功率信号? (1)3cos(15)0()0t t f t t π≥⎧=⎨<⎩ (2)50()0te tf t t -⎧≥=⎨<⎩(3)()6sin 23cos3f t t t =+ (4)|2|()20sin 2t f t e t -=3、填空题(1)已知)()4()(2t t t f ε+=,则)(''t f =__________________。
(2)=+-⋅+⎰∞∞-dt t t t )1()2(2δ__________________________。
(3)=-⎰∞∞-dt t )(92δ_________________________ 。
(4)=-⎰∞∞-dt t t e t j )(0δω_________________________ 。
(5)信号cos(15)cos(30)t t -的周期为 。
4、试画出下列各函数的波形图 (1)0 ),()(001>-=t t t t f ε (2))]4()([3cos )(2--=t t t t f εεπ (3)][sin )(3t t f πε=5、已知f (t )的波形如图1.1所示,求f (2-t )与f (6-2t )的表达式,并画出波形图。
信号与系统(杨晓非)1,2,3章习题答案

2
4s
6s 3 T ' mT1 12 s T 5 12 60 s f (t )为周期信号,周期为60s.
(3) f (t ) 3e t sin(3t ) 3e t Im[e j (3t ) ] 3e t cos(3t ) 2 (4) f (t ) je( j100t 2) e 2 e( j100t 2) e 2e Re[ f (t )] e 2 cos(100t ) 2
信号与系统习题解答
1.1
(1) f(t)=(t) 解 P lim
1 2
| f (t ) | dt
2
lim
1 1 dt 2 0 2
E总 lim | f (t ) |2 dt lim dt
0
f (t ) (t )为功率信号。
t [ f
t 0
3
t (4) (t 2 t 1) ( )dt (t 2 t 1) | 2 | (t )dt 2 2
(5) (t 2 2) (t 5)dt 0
0
3
(6) (t 2 2) (t 5)dt (52 2) (t 5)dt 27
e (e e lim (2 j ) 2 0
j 2t
2 t
j 2t
)
1 dt ( ) lim e2t (e j 4t e j 4t 2)dt 4 0
1 ( ) lim [e (2 j 4)t e (2 j 4)t ]dt 4 0
信号与线性系统 白恩健书答案

第1章基本概念K第1章习题k1.1解:(1)x(t)为周期信号,周期为T=10。
(2)x(t)为非周期信号。
(3)x[n]为非周期信号。
(4)x[n]为周期信号,周期为N=2。
(5)x(t)为非周期信号。
(6)x[n]为周期信号,周期为N=2。
1.2解:(1)x(t)为功率信号。
(2)x(t)既不是能量信号也不是功率信号。
(3)x[n]为能量信号。
(4)x(t)为能量信号。
(5)x(t)为能量信号。
(6)x[n]为能量信号。
1.3略。
1.4略。
1.5(原题有误)一个离散时间系统的激励与响应的关系为y[n]=M∑i=0b i x[n−i]。
用算符S−k代表将信号x[n]平移k个单位时间得到输出信号x[n−k]的系统,即x[n−k]=S−k(x[n])。
写出联系y[n]与x[n]的系统算符T及其可逆系统的算符T inv。
解:提示:可逆系统为y[n]−M∑i=1b i x[n−i]=b0x[n]。
1.6解:(1)因果、无记忆、非线性、时不变、BIBO稳定系统。
(2)因果、无记忆、线性、时变和BIBO稳定系统。
(3)因果、无记忆、线性、时变和非稳定系统。
(4)因果、记忆、线性、时不变和BIBO稳定系统。
(5)因果、无记忆、线性、时变和BIBO稳定系统。
(6)因果、记忆、时不变、非稳定系统。
–2/48–第1章基本概念(7)因果、无记忆、线性、时不变和BIBO稳定系统。
(8)非因果系统、无记忆、线性、时不变、BIBO稳定系统。
1.7证明略。
1.8解:(1)x[n]的响应为{1,1,−1,2,n=0,1,2,3}。
(2)x[n]的响应为{1,1,−3,1,3,−5,2,n=−3∼3}。
(3)x[n]的响应为{1,0,−1,4,−3,2,n=−2∼3}。
1.9证明提示:根据微积分的极限定义证明。
1.10解:(1)x(t)的响应为4(1−e−t)u(t)−6(1−e−t+1)u(t−1)。
(2)x(t)的响应为[2(t+e−t)−2]u(t)。
信号与线性系统_习题答案(有错版)

2.1 (1) 已知连续时间信号 x(t ) 如图 P2.1(a)所示。试画出下列各信号的波形图,并加以标 注。 (a) x(t − 2) (b) x(1 − t ) (c) x(2t + 2) (2) 根据图 P2.1(b)所示的信号 h(t ) ,试画出下列各信号的波形图,并加以标注。 (a) h(t + 3) (b) h( − 2) (c) h(1 − 2t ) (3) 根据图 P2.1(a)和(b)所示的 x(t ) 和 h(t ) ,画出下列各信号的波形图,并加以标注。 (a) x(t )h(−t ) (b) x(1 − t )h(t − 1) (c) x(2 − ) h(t + 4)
其基波周期 T0 是 T1 , T2 的最小公倍数。 (b) x(n) 和 y ( n) 是周期的, x(n + = N1 ) x(n), y (n + N = y ( n) 2) 令 f= (n) x(n) + y (n) ,欲使 f (n) 是周期的,必须有
= N 0 kN = mN 2 1
πn
4
,对所有 n ,
7
1 n , n奇 显然 x(n) 是非周期的,但 y1 (n) 是周期的。 h(n) = 3 0, n偶
(c) 正确。若 x(n) 的周期为 N ,则 y2 (n) 的周期为 2 N 。 (d) 正确。若 y2 (n) 的周期为 N ,则 N 只能是偶数。 x(n) 的周期为 N / 2 。 2.7 判断下列各信号是否是周期信号,如果是周期信号,求出它的基波周期。 (a) = x(t ) 2 cos(3t + π / 4) (c) x(t ) = e (e) = x ( n)
1
信号与线性系统分析试卷

第一部分选择题(共32分)一、单项选择题(本大题共16小题,每小题2分,共32分。
在每小题的四个备选答案中,选出一个正确答案,并将正确答案的序号填在题干的括号内)1.积分等于(B)答案A. B.C. D.2.已知系统微分方程为: 若解得全响应为:t≥0.全响应中为( D ) 答案A.零输入响应分量 B.零状态响应分量C.自由响应分量 D.稳态响应分量3.系统结构框图如图示,该系统的单位冲激响应h(t)满足的方程式为( C)答案4.信号f1(t),f2(t)波形如图所示,设f(t)=f1(t)*f2(t),则f(0)为(B)答案A.1 B.2 C.3 D.4 5.已知信号f(t)的傅里叶变换F(jω)=δ(ω-ω0),则f(t)为( A)答案6.已知信号f(t)如图所示,则其傅里叶变换为(C)答案7.f(t)=ε(t)-ε(t—1)的拉氏变换为(A)答案8. 的拉氏反变换为(D)答案9.图(a)中ab段电路是某复杂电路的一部分,其中电感L和电容C都含有初始状态,请在图(b)中选出该电路的复频域模型。
(B ) 答案10.离散信号f(n)是指(B)答案A.n的取值是连续的,而f(n)的取值是任意的信号B.n的取值是离散的,而f(n)的取值是任意的信号C.n的取值是连续的,而f(n)的取值是连续的信号D.n的取值是连续的,而f(n)的取值是离散的信号11.若序列f(n)的图形如图(a)所示,那么f(—n+1)的图形为图(b)中的( D)答案12.差分方程的齐次解为,特解为,那么系统的稳态响应为( B ) 答案13.已知离散系统的单位序列响应和系统输入如图所示,f(n)作用于系统引起的零状态响应为,那么序列不为零的点数为(C)答案A.3个 B.4个C.5个 D.6个第二部分非选题(共68分)二、填空题(本大题共9小题,每小题2分,共18分)14.=()。
答案15.GLC并联电路发生谐振时,电容上电流的幅值是电流源幅值的(Q)倍。
信号与系统第一、二、三章自测题解答

第一章自测题答案1.已知)()4()(2t u t t f +=,则)(''t f =(t)4δ2u(t)'+ 2.2(2)1()t t d t t δ∞-∞+⋅+-=⎰3=-⋅+⎰∞∞-dt t t t )1()2(2δ。
3.=-⎰∞∞-dt t t e tj )(0δωoj ωet 。
4.试画出下列各函数式表示的信号图形: (1)0 ),()(001>-=t t t u t f(2))]4()([3cos )(2--=t u t u t t f π在0到4区间内的6个周期的余弦波,余弦波的周期为2/3。
(3)][sin )(3t u t f π=5.已知f (t )的波形如图1.1所示,求f (2-t )与f (6-2t )的表达式,并画出波形。
答:函数表达式:f(2-t) = [u(t)-u(t-1)]+2[u(t-1)-u(t-2)] f(6-2t)=[u(t-2)-u(t-2.5)]+2[u(t-2.5)-u(t-3)]6.信号f (5-3t )的波形如图1.2所示,试画出f (t )的波形。
答:f(5-3t)左移5/3得到f(-3t),然后再扩展3倍得到f(-t),最后反褶可得到f(t)7.对于下述的系统,输入为e (t ), 输出为r (t ),T [e (t )]表示系统对e (t )的响应,试判定下述系统是否为: (1) 线性系统;(2)非时变系统;(3)因果系统;(4)稳定系统:(a) r (t )=T [e (t )]=e (t -2)线性、非时变、因果、稳定系统 (b) r (t )=T [e (t )]=e (-t )线性、时变、非因果、稳定系统 (c) r (t )=T [e (t )]=e (t )cos t 线性、时变、因果、稳定系统 (d) r (t )=T [e (t )]=a e (t )非线性、时不变、因果、稳定系统9. 一线性非时变系统,当输入为单位阶跃信号u (t )时,输出r (t )为 )1()()(t u t u e t r t --+=-,试求该系统对图1.3所示输入e (t )的响应。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一、二章自测题1、判断题(1)若x (t )是一连续时间周期信号,则y (t )=x (2t )也是周期信号。
(2)两个周期信号之和一定是周期信号。
(3)所有非周期信号都是能量信号。
(4)两个连续线性时不变系统相互串联的结果仍然是线性时不变系统。
(5)若)()()(t h t x t y *=,则)1()2()1(+*-=-t h t x t y 。
(6)一个系统的自由响应就等于它的零输入响应。
(7)一个系统的零状态响应就等于它的自由响应。
(8)零状态响应是指系统没有激励时的响应。
(9)系统的单位冲激响应是指系统在冲激信号作用下的全响应。
(10)两个功率信号之和必为功率信号。
2、判断下列信号是能量信号还是功率信号? (1)3cos(15)0()0t t f t t π≥⎧=⎨<⎩ (2)50()0te tf t t -⎧≥=⎨<⎩(3)()6sin 23cos3f t t t =+ (4)|2|()20sin 2t f t e t -= 3、填空题(1)已知)()4()(2t t t f ε+=,则)(''t f =__________________。
(2)=+-⋅+⎰∞∞-dt t t t )1()2(2δ__________________________。
(3)=-⎰∞∞-dt t )(92δ_________________________ 。
(4)=-⎰∞∞-dt t t e t j )(0δω_________________________ 。
(5)信号cos(15)cos(30)t t -的周期为 。
4、试画出下列各函数的波形图 (1)0 ),()(001>-=t t t t f ε (2))]4()([3cos )(2--=t t t t f εεπ (3)][sin )(3t t f πε=5、已知f (t )的波形如图1.1所示,求f (2-t )与f (6-2t )的表达式,并画出波形图。
6、 对于下述系统,输入为e (t ), 输出为r (t ),T [e (t )]表示系统对e (t )的响应,试判定下述系统是否为:(1) 线性系统;(2)非时变系统;(3)因果系统;(4)稳定系统。
(a) r (t )=T [e (t )]=e (t -2) (b) r (t )=T [e (t )]=e (-t ) (c) r (t )=T [e (t )]=e (t )cos t (d) r (t )=T [e (t )]=a e (t )7、 一线性非时变系统,当输入为单位阶跃信号ε(t )时,输出r (t )为: )1()()(t t e t r t --+=-εε,试求该系统对图1.2所示输入e (t )的响应。
8、一线性时不变系统,当激励)()(1t t e ε=时,响应)()(1t et r atε-=,试求当激励)()(2t t e δ=时,响应)(2t r 的表示式。
(假定起始时刻系统无储能。
) 9、若描述某线性非时变系统的微分方程为)(2)()(2)(3)(22t e t e dt dt r t r dt d t r dtd +=++ 1)0(',1)0(==--r r 试求该系统的零输入响应。
10、线性系统由图1-3的子系统组合而成。
设子系统的冲激响应分别为)3()()(),1()(21--=-=t t t h t t h εεδ。
试求组合系统的冲激响应。
11、一线性时不变系统,在相同初始条件下,当激励为)(t f 时,其全响应为)()2sin 2()(31t t e t y t ε+=-;当激励为2)(t f 时,其全响应为)()2s i n 2()(32t t e t y t ε+=-。
求:(1) 初始条件不变,当激励为)(0t t f -时的全响应)(3t y ,t 0为大于零的实常数。
(2) 初始条件增大1倍,当激励为0.5)(t f 时的全响应。
12、计算以下信号的卷积积分)()(21t f t f * (1))()(),()(21t e t f t t f at εε-== (2))45cos()(),()(21 +==t t f t t f ωδ13、已知某连续时间系统的单位冲激响应h (t )与激励信号f (t )的波形如图1-4,试求该系统的零状态响应y (t ),画出y (t )的波形。
第一、 二章自测题参考答案1、判断题(1)正确 (2) 不一定,当它们的周期之比是有理数时,是正确的。
(3)错误,如y=t 不是周期信号,也不是能量信号。
(4)正确 (5)正确 (6) 错误 (7)错误 (8) 错误 (9) 错误 (10)错误 2、(1)功率信号;(2)能量信号;(3)功率信号;(4)能量信号. 3、 填空题(1) 已知)()4()(2t u t t f +=,则)(''t f =(t)4δ2u(t)'+ (2) 2(2)1()t t d t t δ∞-∞+⋅+-=⎰3=-⋅+⎰∞∞-dt t t t )1()2(2δ。
(3)=-⎰∞∞-dt t )(92δ 2 。
(4)00t j t j e dt t t e ωωδ=-⎰∞∞-)((5)215π 4、试画出下列各函数的波形图 (1)0 ),()(001>-=t t t t f ε(2))]4()([3cos )(2--=t t t t f εεπ在0到4区间内的6个周期的余弦波,余弦波的周期为2/3。
(3)][sin )(3t t f πε=5、函数表达式:f(2-t) = [ε(t)-ε(t-1)]+2[ε(t-1)-ε(t-2)] f(6-2t)=[ε(t-2)-ε(t-2.5)]+2[ε(t-2.5)-ε(t-3)]6、 对于下述的系统,输入为e (t ), 输出为r (t ),T [e (t )]表示系统对e (t )的响应,试判定下述系统是否为: (1)线性系统;(2)非时变系统;(3)因果系统;(4)稳定系统:(b) r (t )=T [e (t )]=e (t -2)线性、非时变、因果、稳定系统 (b) r (t )=T [e (t )]=e (-t )线性、时变、非因果、稳定系统 (c) r (t )=T [e (t )]=e (t )cos t 线性、时变、因果、稳定系统 (d) r (t )=T [e (t )]=a e (t )非线性、时不变、因果、稳定系统7、)2()1()(---=t t t e εε因为是线性时不变系统,输入)2()1(--t t εε和输出分别为)()1())1(1()1()1()(1)1(1t t e t t e t r t r t t -+-=---+-=-=+---εεεε)1()2())2(1()2()2()(2)2(2+-+-=---+-=-=+---t t e t t e t r t r t t εεεε所以 )]1()([)2()1()()()(221----+-⋅=-=--t t t e e t e e t r t r t r t t εεεε8、根据线性时不变系统的微分特性因为dt t d t )()(εδ=,所以)()()()()()(12t ae t t e t ae dtt dr t r at at at εδδε----=+-== 9、零输入响应:零输入响应的形式为齐次解,设为+0)(221≥+=--t e B e B t r tt zi将初始状态:1)0()0(1)0()0(''====-+-r r r r +代入齐次解,得B 1 + B 2 = 1;- B 1 – 2B 2 = 1 所以:B 1 = 3 B 2 = -2因而零输入响应:+-023)(2≥=--t e e t r tt zi10、)](*)()([*)()()(211t h t h t h t e t e t r ++=)(*)()()()()(2111t h t h t h t h t t h +++=δ)]3()([*)1()1()(---+-+=t t t t t εεδδδ)]4()1([)1()(---+-+=t t t εεδδ11、设系统的零输入响应为)(t r zi ,激励为)(t f 时的零状态响应为)(t r zs ,则有 )()()()2sin 2()(31t r t r t t e t y zs zi t +=+=-ε (1))(2)()()2sin 2()(32t r t r t t e t y zs zi t +=+=-ε (2)(2)-(1)得)()2sin ()(3t t e t r t zs ε+-=-)(3)(3t e t r t zi ε-=所以初始条件不变时,激励)(0t t f -的全响应:)()](2sin [)(3)()()(00)(33030t t t t e t e t t r t r t y t t t zs zi --+-+=-+=---εε初始条件增大1倍,当激励为0.5)(t f 时的全响应: )()2sin (5.0)(6)(5.0)(2)(334t t e t e t r t r t y t t zs zi εε+-+=+=--)()2s i n 5.5(3t t e t ε+=-12.计算以下卷积积分)()(21t f t f * (1))()(),()(21t e t f t u t f at ε-== (2))45cos()(),()(21 +==t t f t t f ωδ答:(1)⎰---=*tat a t e ad et f t f 021)()1(1)()(εττ= 或用卷积的微积分性质⎰∞-=t d f dtt df t f t f ])([*)()(*)(2121ττ)()]1(1[*)(t e a t at εδ--=)()1(1t e aat ε--=(2) )45cos()45cos(*)()()(21+=+*at at t t f t f δ=13、零状态响应)(*)()(t h t f t y =当0<t 时,0)(=t y当10<≤t 时,⎰=⋅=tt d t y 0422)(τ当21<≤t 时,⎰⎰+=-+=⋅+⋅=10122)1(241222)(t t d d t y tττ当32<≤t 时,⎰⎰--=-+--=⋅⋅=1221414)12(2)]2(1[41222)(t t t d d t y ττ+当43≤≤t 时,⎰--=--=⋅=2228)]2(2[212)(t t t d t y τ当4>t 时, 0)(=t y所以⎪⎪⎪⎩⎪⎪⎪⎨⎧<≤-<≤-<≤+<≤=其它,,,0432********,2210,4)(t t t t t t t t t y。