浅层页岩气压裂技术总结
压裂总结

压裂作业工序总结前言近期通过对阳试1井和阳试2井压裂工作的全程跟踪及监督,同时结合现有的相关压裂理论知识,现对针对压裂作业谈谈自我的认识。
一、前期准备工作一项作业的顺利完成与前期的准备工作是分不开的,尤其是压裂作业。
压裂作业是一项复杂而又高技术的作业,所以前期是的准备工作对压裂至关重要。
前期的准备工作有以下方面。
1、井场标准化压裂对井场的要求主要是井场面积和井场地面抗压能力两方面。
一方面,井场的面积应能够满足压裂车、水罐等压裂设备的摆放,使得压裂作业能够顺利展开。
另一方面,由于压裂设备大多都是重型车辆,所以井场的地面不能太软,要有一定的抗压强度,尤其是泥浆池要填平压实,确保压裂设备不会陷入,能够顺利进出井场。
2、通往井场的道路通往井场的道路要畅通,方便压裂设备及压裂所需材料进入井场,只有这样才能保证准备工作的充分性和压裂作业的连续性。
3、压裂用水由于压裂作业的主要介质是水,所以对水的需求量是非常大的,通常压裂一层煤需备水1000m3左右。
同时压裂工作有很大的变化性,因而用水量也有很大的不确定性。
因此压裂前必须有稳定的水源、足量的备水、连续的供水等工作。
二、压裂设计工作压裂的宗旨就是在煤层中压出多条裂缝,增大煤层的渗透率,从而达到快速排水降压,将煤层气解析出来的目的。
所以压裂方案的设计必须遵从最大限度地增大裂缝的延伸长度和宽度,同时尽可能的减小,甚至避免吐砂和煤粉的返出。
1、控制滤失,增加缝长在压裂过程中,压裂液的滤失绝不容忽视。
当压裂液压开煤层,向前延伸时,由于割理和发育的微裂隙,使得压裂液大量滤失,不能重新开启一条新裂缝,而是从一开始就沿着大的隔离延伸,在延伸的过程中,不断有小割理、微裂隙张开,使压裂液遭受损失,就需要不断加大施工排量和压裂液量,然而由于设备能力、备液能力的限制,就不能满足造长缝的要求。
因此对于割理及微裂缝较发育的煤层,应在前置液中添加一定比例的0.106~0.142mm降滤失剂。
页岩气压裂技术概述

页岩压裂技术
▪ 压裂是清除钻井后近井筒污染的常见形式。在处理Huron 页岩时,压裂是为了创造(沟通)天然裂缝网络,即主要 的天然气通道。
▪ 在此探讨页岩裂缝网络和裂缝复杂性,要形成复杂性裂缝网络的技术。 另外,还对RA(减阻剂)和化学示踪剂帮助优化裂缝网络通道进行深入 探讨。
▪ 提高页岩气藏裂缝的接触面积(提高裂缝复杂性)和控制裂缝向下延伸 有利于页岩气的经济开采,拓展Barnett地区页岩开发现状。
•在压裂时使用井下微地震技术,能够监测裂缝通道是否与 天然裂缝相交,整个裂缝网络的的裂缝网络流通通道。
▪ Barnett页岩 虽然大多数页岩包含烃类,但是只有少数能成为所谓的非常
规油气藏。有机质总量、烃类成熟度、含水饱和度、页岩厚度和埋藏深度(
基于热成熟度、孔隙体积和压力)是受天然气生成和保存的地质情况影响的
。而制造相互沟通的裂缝网络对页岩气藏是否能成为具有经济效益的油气藏
至关重要。
▪ 压裂的作用 要使得非常规油气资源具有经济价值,在页岩油气藏中创造
3、天然气还可能吸附在岩石矿物表面,通过水驱过裂缝 或者稍大的孔隙来释放压力。这些介质内的天然气量取决 于页岩的特征(和含水饱和度),以及采气阶段(游离气 先开发,解析气后开发)和天然气开采的持续时间。
要使得页岩气具有开采经济价值,需要广泛的裂缝增产来 开启、沟通和稳定的天然裂缝系统。
▪裂缝形成机理 图1 裂缝沟通情况的粗略图
近井地带的应力与裂缝的位置和射孔有关。压裂的施工 能够调整应力分布,从最初压裂位置沿水平井筒变化。在 每次压裂中,从第一次到最后一次沿着井筒裂缝可能变化 5到10度。
页岩气开采压裂技术分析与思考

页岩气开采压裂技术分析与思考摘要:目前,社会进步迅速,页岩气存储于致密泥页岩地层中,页岩连续分布、区域广,含有一定量的黏土矿物,塑性强,在高应力载荷下易发生形变,页岩储层具有低孔低渗等特性,需对页岩储层进行改造才具备商业开发价值。
目前涪陵区块和川东南区块,均已实现页岩气大规模开发,形成一套成熟的页岩气开采工艺,工艺实施需借助现场施工实现,只有严格把控施工质量,确保工艺有效实施,才能够实现对页岩气资源的高效开发。
下文对此进行简要的阐述。
关键词:页岩气;开采压裂技术分析;思考引言伴随着油田行业的深入发展,如今能源紧缺问题已经成为了社会性现实。
页岩气储层低孔低渗,往往要投入巨大的精力对其进行压裂改造才能够保障产能稳定。
水力压裂中压裂液性能带来的影响十分直观与突出。
1页岩气压裂施工质量技术现状当前,经常使用的技术大多是多级压裂、清水、压裂、水力喷射压裂、重复压裂与同步压裂等等,页岩气开发过程中所使用的储层改造技术还有氮气泡沫压裂和大型水力压裂也是国内外目前的主流压裂技术。
影响页岩气产量的主要原因是裂缝的发育程度,如何得到较多的人造裂缝是压裂设计主要应该考虑的。
如何才能得到有效而又经济的压裂成果,在实行水力压裂以前,经常要实行压裂的设计。
然而,压裂设计的工作确双有许多,最为主要的核心应属压裂效果的模拟,经过压裂的模拟才可以预测裂缝发育的宽度及长度,从而知道压裂能否顺利成功。
2页岩气压裂开采中对环境的影响页岩气压裂在开采的过程当中必定会因为一些噪声及废水废气等开采事故灾害对环境造成一些污染影响,通常会对水资源进行大量的消耗以及地下水层进行污染。
目前,有些专家和环保人士在对页岩气压裂开采的过程也是提出了很多相关环境污染的影响问题,同时,岩气压裂在开采过程中确实造成了较为严重的环境污染。
2.1大量消耗水资源页岩气压裂的开采使用的水力压裂法是压裂液最为重要的,分别由高压水、砂以及化学添加剂而组成的。
页岩气压裂的开采其用水量也是较大的,一般情况页岩气压裂开采需消耗四至五百万加化的水资源才能使页岩断裂。
页岩气井压裂施工技术

高效防膨剂
二、页岩气压裂技术
完成总公司先导项目研究: 高温压裂液现场快速混配技术
改变传统的压裂液配液模式, 连续混配车广泛应用于页岩气大型 压裂施工中,实现即配、即供、即 注工作,配液量已超过300000m3, 单井最大超过30000m3。
二、页岩气压裂技术
页岩气配套桥塞、射孔联作管串及钻塞钻头
➢ 分层压裂段数不受限制,理论上可实现无限级分段压裂。
➢ 与裸眼封隔器相比,管柱下入风险相对较小。
➢ 施工砂堵后,压裂段上部保持通径,可直接进行连续油管冲砂作业。
双回压阀 非旋转扶正器 双向震击器 马达
磨鞋
连续油管接头 液压丢手接头 双启动循环阀 高强度应急丢手工具
二、页岩气压裂技术
Meyer2010
二、页岩气压裂技术
DLFP12-105电缆防喷装置
密封电缆直径:φ8mm(可适用φ5.6-12.7mm) 防喷管通径:φ120mm 工作压力:105MPa 强度试验压力:157MPa
二、页岩气压裂技术
应急技术
打 捞 工 具
若由于水平井存在特殊情况导致无法将井下工具串泵送到位, 则可放弃泵送方式,选用连续油管输送方式完成水平井桥塞-分簇 射孔联作技术。
2020/11/4
三、超高压气井现场施工技术
2、压裂施工设备准备
南页1HF井压裂车 及压裂设备
压裂车名称 3000型压裂车 2500型压裂车
合计
数量(台) 6 12 18
2500型压裂泵车参数
项目
参
数
台上发动机额定功率 3000HP(2235KW)
台上发动机最高转速 2000r/min
单车最大输出水功率 2500HP(1860KW)
页岩气三代钻井技术、压裂技术

页岩气三代钻井技术、压裂技术怎样开采页岩气?页岩气是充填于页岩裂隙、微细孔隙及层面内的自然气。
开采页岩气通常要先打直井到几千米的地下,再沿水平方向钻进数百米到上千米,并采纳大型水力压裂技术,也就是通过向地下注入清水、陶制颗粒、化学物等混合成的压裂液,以数十到上百兆帕的压力,将蕴含自然气的岩层“撬开”,就像在致密的页岩中建设一条条“高速大路”,让深藏于页岩层中的页岩气沿“高速大路”跑到水平井段,最终从直井中采出来。
页岩气井钻井示意图页岩气三代钻井技术●一代技术2023年~2023年,勘探开发初期,水平段1000~1500米,周期80~100天。
主要以常规油气钻井技术工艺+水平井钻井技术+油基钻井液为主。
●二代技术2023年~2023年,一、二期产能建设时期,水平段1500~2200米,周期60~80天。
针对页岩气开发特点,开展页岩气工程技术“一次革命”,攻关完成了“井工厂作业+国产化工具+自主化技术+系列化工艺”,实现提速降本增产。
●三代技术2023年至今,页岩气大进展时期,水平段2000~3000米,周期40~60天,围绕“四提”目标,开展页岩气工程技术“二次革命”,主要技术路线是“个体突破向综合配套转变,单项提速向系统提速进展”,技术要点是两个方向(钻井工艺+钻井工具)、三大核心(激进参数+精益施工+超常工艺)、三大基础(地面装备+井下工具+钻具组合)。
页岩气三代压裂技术●一代技术2023年~2023年,渐渐形成自主化的以“桥塞分段大规模体积压裂+井工厂运行”为核心的页岩气长水平井高效压裂技术系列。
●二代技术2023年~2023年,自主页岩气压裂技术转变为追求改造体积裂缝简单度最大化,攻关形成了“多簇亲密割+簇间暂堵+长段塞加砂”主体压裂工艺等低成本分段工具及工艺为代表的二代压裂技术系列。
●三代技术2023年至今,为满意多层立体开发和不同类型储层要求,乐观开展全电驱压裂装备配套适应性讨论,推广牵引器射孔技术和延时趾端滑套工艺,优化高效可溶桥塞结构,研发井口快速插拔装置、多级选发点火装置、高效连续油管钻塞液体系,持续更新升级压裂装备及其配套工具,全面提升了装备作业水平,实现低成本、规模化、绿色施工。
压裂工作总结

压裂工作总结一、主要工作完成情况1、2018年到2018年累计完成31层(段)12口井的压裂工作,其中水平井1口。
现已全部下泵投产。
2、在以上各井施工过程中,做到深入现场、严格监督、准确核实、详细记录、积极学习,保证了射孔、压裂、冲砂、下泵作业的正常施工和作业质量,目前以上各井生产正常。
在12口井共计31层(段)的压裂施工过程中,做到了执行设计坚决、分析问题科学、采取措施合理,较好的完成了压裂监督和学习任务。
累计用液量22981方,平均每层用液量696.39方。
累计用砂量1249.7方,平均每层用砂量37.87方。
在水平井的压裂施工过程中,为了满足L型井快速施工的要求,使用了新的压裂工艺-连续油管水力喷砂射孔拖动分层环空压裂。
经过10天的紧张施工,圆满的完成了顺A5煤层走向压裂7段的方案。
二、现场学习压裂作业是一项复杂而又高技术的作业,现场知识的学习至关重要,现场知识的学习包括对压裂设备和压裂材料的认识。
1、压裂设备压裂施工设备主要由地面设备和压裂车组两部分组成。
地面设备压裂用地面工具设备主要有封井器、井口球阀、投球器、活动弯头、油壬、蜡球管汇、压裂管汇等,为井口以上地面控制类工具。
压裂车组(1)压裂车压裂车是压裂的主要设备,它的作用是向井内注入高压、大排量的压裂液,将地层压开,把支撑剂挤入裂缝。
压裂车主要由运载、动力、传动、泵体等四大件组成,压裂泵是压裂车的工作主机。
现场施工对压裂车的技术性能要求很高,压裂车必须具有压力高、排量大、耐腐蚀、抗磨损性强等特点。
(2)混砂车混砂车的作用是按一定的比例和程序混砂,并把混砂液供给压裂车。
它的结构主要由传动、供液和输砂系统三部分组成。
(3)砂罐车砂罐车的作用是装载压裂砂,按照施工要求向混砂车内加入定量的不同目数的压裂砂。
(4)仪表车仪表车是压裂施工的指挥部,完成压裂全过程的监测,实时采集、显示、记录压裂作业全过程的数据,并对工作数据进行相关处理、记录保存,最后打印输出施工数据和曲线。
页岩气开采压裂技术

页岩气开采压裂技术摘要:我国页岩气资源丰富但由于页岩地层渗透率很低,页岩气井完井后需要经过储层改造才能获得理想的产量,而水力压裂是页岩气开发的核心技术之一。
在研究水力压裂技术开发页岩气原理的基础上,剖析了国外的应用实例,分析了各种水力压裂技术( 多级压裂、清水压裂、水力喷射压裂、重复压裂以及同步压裂技术)的特点和适用性, 探讨了天然裂缝系统和压裂液配制在水力压裂中的作用。
关键词:水力压裂页岩气开采压裂液0 前言自1947年美国进行第1次水力压裂以来,经过50多年的发展,水力压裂技术从理论研究到现场实践都取得了惊人的发展。
如裂缝扩展模型从二维发展到拟三维和全三维; 压裂井动态预测模型从电模拟图版和稳态流模型发展到三维三相不稳态模型,且可考虑裂缝导流能力随缝长和时间的变化、裂缝中的相渗曲线和非达西流效应及储层的应力敏感性等因素的影响; 压裂液从原油和清水发展到低、中、高温系列齐全的优质、低伤害、具有延迟交联作用的胍胶有机硼和清洁压裂液体系;支撑剂从天然石英砂发展到中、高强度人造陶粒,并且加砂方式从人工加砂发展到混砂车连续加砂;压裂设备从小功率水泥车发展到1000型压裂车和2000 型压裂车;单井压裂施工从小规模、低砂液比发展到超大型、高砂液比压裂作业;压裂应用的领域从特定的低渗油气藏发展到特低渗和中高渗油气藏(有时还有防砂压裂)并举。
同时, 从开发井压裂拓宽到探井压裂,使压裂技术不但成为油气藏的增产增注手段,如今也成为评价认识储层的重要方法。
1 国内外现状水力压裂技术自1947年在美国堪萨斯州试验成功至今近半个世纪了,作为油井的主要增产措施正日益受到世界各国石油工作者的重视和关注,其发展过程大致可分以下几个阶段:60 年代中期以前, 以研究适应浅层的水平裂缝为主这一时期我国主要以油井解堵为目的开展了小型压裂试验。
60 年代中期以后, 随着产层加深, 以研究垂直裂缝为主。
这一时期的压裂目的是解堵和增产, 通常称之为常规压裂。
页岩气井压裂技术

特点:适用套管(31/2″、41/2″、51/2″、7″);适合
大排量、大型施工、封隔可靠性高、压裂层位精确、分层
压裂的段数不受限制。
三、压裂施工设计技术
井号
岩性
水平段长 压裂
(m) 段数 隔离+射孔方式
压裂工艺
压裂液
支撑剂
涪页 HF-1 页岩、夹薄层灰岩 1136.75 10 桥塞+射孔联作 滑溜水+冻胶
拉强度比
B=26.7-40, 脆性
强
B=14.5~26.7, 脆
性中等
B<14.5, 脆性弱
脆性
地层
低粘度
复合压裂液
网络裂缝
线性胶
高砂比
泡沫
双翼裂缝
凝胶
塑性
地层
低排量
高排量
三、压裂工艺技术
3、页岩气压裂主要工艺技术
1)水平井桥塞分段压裂工艺:
通过水力泵送桥塞方式实现坐封、射孔联作、并沿水平段
方向实现逐级封隔、射孔和压裂的工艺。
7.0
压后返出液
1.20
1.10
1.004
7.0
二、压裂液返排液的回收利用技术
对威201-H1井返出液放置1个月后进行处理后基本
性能测试结果如下:
类别
粘度,
mPa.s
密度,
g/cm3
表张,
mN/m
接触角,
降阻率,%
原配方
5.60
1.001
26.23
63.12
67
返排液
1.20
1.004
32.42
38.12
页岩气井压裂技术
汇报内容
➢概述
➢压裂液技术
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
⊥ ⊥
抗压强度
干燥 /MPa
饱和 /MPa
31.63
34.81 18.17
21.27
24.71 11.84
软化 系数
0.67 0.71 0.65
抗拉强 度
/MPa
1.52
1.69 0.94
变形特性
弹性模量 ×104 Mpa
泊松 比
1.463 0.19
1.672 0.20 1.258 0.23
地质概况
筠连地区浅层页岩气井压裂 施工阶段总结报告
2012年11月
汇报主要内容
➢第一部分 ➢第二部分 ➢第三部分 ➢第四部分 ➢第五部分 ➢第六部分
地质概况 设计依据和压裂工艺 压裂工作量完成情况 典型井例分析 压裂难点与存在问题分析 下步改进意见与建议第来自部分 地质概况地质概况
沐爱区域乐平组煤层厚度等值线图
井号 Z105井
岩心号
509-1号 509-3号
Z105井岩心地应力大小结果
取芯深度 m
岩性
实验条件 围压MPa
5 594.91-595.2 煤岩
15
实验结果(MPa)
抗压强度
地层最小主应力
69.9 9.7
100.9
工区煤层总体特征
地质概况
(1)煤层集中发育于二叠系上统乐平组(P2l)的上岩性段,区域内2#、 3#、7#、8#煤层普遍发育,局部发育4#、9#煤层, (2)煤层顶、底板岩性,以泥岩、炭质泥岩为主,局部为泥质粉砂岩或 细砂岩。 (3)煤岩渗透性较差,储层压力为常压。 (4)煤层的闭合应力较高,基本在0.018MPa/m以上,压裂改造效果可能 以形成水平缝为主。 (5)各煤层含气量均较高,2#、3#、8#煤层局部区域较低 (6)煤层含水量较少。 (7)粘土矿物20%左右。 (8)杨氏模量低,泊松比高,煤层软。 (9)微裂缝较发育,主次裂隙近直角相交,充填物主要为粘土。
压力计深 度 M
663.93 517.38 296.64 621.28 855.65 550.38
渗透率0.020~0.18md, 渗透性较差;储层压力 梯度0.94~1.75×102MPa/m,为常压~高 压储层,地层倾角大的 区域高于地层倾角平缓 区域;闭合压力梯度 1.78~5.35×102MPa/m,较高~异常 高,随地层倾角增加而 升高。
第二部分 设计依据与压裂工艺
7+8
15.63
3.91 0.76
40.32
9.15
沐爱YSL1煤层隔层孔隙度、渗透率实验数据
兰式体积 VLdaf 44.80 34.53
饱 兰式压力 和
度
PLdaf
S实
测
2.57
73 %
1.96
68 %
样品号
YSL1005 YSL1006 YSL1008
岩心
3 3
2顶
井号
岩性
YSL1 YSL1 YSL1
深灰色粉砂岩 深灰色砂岩 深灰色砂岩
深度 (m)
608.30 604.87 595.71
层位
P P P
孔隙度 (%)
渗透率 (10-3μm2)
13.11 3.02 2.95
0.000439 0.000207 0.0000245
试井分析结果
地质概况
沐爱区域乐平组煤层注入/压降试验数据表
井号
YSL21V
1.138
1.267
泊松比 0.24 0.23
沐爱地区乐平组煤芯煤 层气含量测试结果
YSL3井煤层及顶板岩石力学性质测定结果表
层位
2+3煤底板 7+8煤顶板 7+8煤底板
岩性
细砂岩 砂岩 砂岩
深度/m
506.40-506.81 526.98-527.50 535.37-536.05
压力 与 层理 关系
闭合压力
MPa 11.85 15.79 15.89 13.57 15.9 10.94
闭合压力梯 度
╳10-2MPa/m 1.78 3.05 5.36 2.19 1.82 1.93
破裂压力
MPa 12.63 16.74 17.79 14.04 16.61 11.37
破裂压力梯度
╳10-2MPa/m 1.9 3.23 5.99 2.26 1.91 2.01
0.0017 -1.87 -1.51 -3.4 -3.44
调查半径 m
5.71
4.82 4.08 5.13 4.93 9.71
储层温度 °C
31.54
29. 5 25.9 23.06 33.39 31.25
沐爱区域乐平组煤层地破试验数据表
井号
YSL2-1V YSL3 YSL4 YSL6 YSL11 YSL14
地质概况
乐平组煤层气勘探评价井位部署图
勘探开发目的层是二叠系上统乐平组。乐平组自上而下发育 2#、3#、4#、7#、8#、9#煤层等六套煤层。其中,2#、3#、7#、8# 煤层发育连续、稳定。
地质概况
勘查区块内大部分区域的煤岩煤层气含气量大于10m3/t; YSL3、YSL4井的煤岩组分分析以有机组分为主,占85%; YSL3、YSL4井分析煤岩灰分约26%、挥发份约7%,全硫低于3%; 顶底板力学性质(如下表)
YSL3 YSL4 YSL6 YSL11 YSL14
储层压力 MPa
6.4
9.06 3.91 5.81 8.8 5.87
压力梯度 ╳10-2MPa/m
0.96
1.75 1.31 0.936 1.02 1.06
渗透率 md
0.02
0.038 0.027 0.18 0.02 0.12
表皮 系数
-0.38
YSL3、YSL4井7+8#煤层含气饱和度测试较高; YSL1井岩芯分析砂岩孔隙度小、渗透率低,是煤岩层很好的隔层。
井号
YSL-03 YSL-04
YSL3和4井乐平组煤岩含气饱和度数据表
主力 煤层
7+8
实测 含气量
GCdaf
25.65
储层 压力
P
9.06
水分 Mad 1.01
灰分 Ad 28.90
挥发分 Vdaf 10.81
岩石力学实验
地质概况
Z105井岩心三轴试验结果
岩心号
岩 性
2号
煤 岩
取芯深度 m
594.91595.20
实验条件 围压MPa
8
杨氏模量 MPa
5690
实验结果
泊松比
体积压缩系数 1/MPa
0.26
3×10-4
抗压强度 MPa
81.3
昭105井岩石力学实验显示,煤层杨氏模量低, 泊松比高,地层最小主应力9.7MPa。
YSL4井煤层及顶板岩石力学性质测定结果表
编号
YSL4-7+8顶 YSL4-7+8底
深度(m) 313.59-314.02 318.76-319.40
抗压强度MPa
干燥状态 饱和状态
6.93
3.01
15.52
7.53
软化 系数 0.43
0.49
抗拉强度 MPa 0.31
0.78
弹性模量 ×104 MPa