2018年江苏省南京市秦淮区中考数学一模试卷
【全国校级联考】江苏省南京市秦淮区2018届九年级数学一模试题.(解析版)

南京市秦淮区2017-2018学年第二学期九年级数学一模试卷一、选择题(本大题共6小题,每小题2分,共12分)1. 计算的结果是()A. 3B.C. 9D.【答案】A【解析】分析:根据二次根式的性质进行化简即可.<详解:=|-3|=3.故选A.点睛:此题主要考查了二次根式的性质:.2. 据某数据库统计,仅2018年第一个月,区块链行业融资额就达到680 000 000元.将680 000 000用科学记数法表示为()A. 0.68×109B. 6.8×107C. 6.8×108D. 6.8×109【答案】C【解析】分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.详解:将680 000 000用科学记数法表示为:6.8×108.故选C.点睛:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3. 下列计算正确的是()A. a3a2a5B. a10a2a5C. (a2)3a5D. a2a3a5【答案】D【解析】分析:根据整式的运算法则即可求出答案.详解:A.a2与a3不是同类项,故A不正确;B.原式=a8,故B不正确;C.原式=a6,故C不正确;故选D.点睛:本题考查学生的计算能力,解题的关键是熟练运用整式的运算法则,本题属于基础题型.4. 某校航模兴趣小组共有30位同学,他们的年龄分布如下表:由于表格污损,15和16岁人数不清,则下列关于年龄的统计量可以确定的是()A. 平均数、中位数B. 众数、中位数C. 平均数、方差D. 中位数、方差【答案】B【解析】分析:由频数分布表可知后两组的人数和为10,即可得知总人数,结合前两组的人数知出现次数最多的数据及第15、16个数据的平均数,可得答案.详解:由表可知,年龄为15岁与年龄为16岁的人数和为30(5+15)=10,故该组数据的众数为14岁,中位数为:=14岁,故关于年龄的统计量可以确定的是众数和中位数,故选B.点睛:本题主要考查频数分布表及统计量的选择,熟练掌握平均数、中位数、众数及方差的定义和计算方法是解题的关键.5. 将二次函数的图像向右平移2个单位长度,再向上平移3个单位长度,所得图像的函数表达式为()A. B. C. D.【答案】A【解析】分析:根据题意易得新抛物线的顶点,根据顶点式及平移前后二次项的系数不变可得新抛物线的解析式.详解:抛物线y=-x2的顶点坐标为(0,0).向右平移2个单位长度,再向上平移3个单位长度后的顶点坐标为(2,3),得到的抛物线的解析式是y=-(x-2)2+3.故选A.点睛:此题主要考查了次函数图象与几何变换,要求熟练掌握平移的规律:左加右减,上加下减.6. 如图,在平面直角坐标系中,□ABCD的顶点坐标分别为A(3.6,a),B(2,2),C(b,3.4),D(8,6),则的值为()A. 8B. 9C. 10D. 11【答案】D【解析】分析:作DH⊥x轴,CG⊥x轴,BF⊥CG,AE⊥DH,通过证明△BCF≌△ADE得CF=DE,BF=AE,故可分别求出a、b的值,从而得解.详解:如图,作DH⊥x轴,CG⊥x轴,BF⊥CG,AE⊥DH,∵四边形ABCD是平行四边形,∴BC=AD.易证∠DAE=∠CBF∴△BCF≌△ADE∵B(2,2),C(b,3.4)∴CF=1.4∴DE=1.4∴HE=6-1.4=4.6∵A(3.6,a), D(8,6),∴AE=8-3.6=4.4∴BF=4.4∴b=4.4+2=6.4∴a+b=4.4+6.4=11.故选D.点睛:本题主要考查了坐标与图形,解题的关键是根据平行四边形的性质求出点的坐标.二、填空题(本大题共10小题,每小题2分,共20分)7. -3的相反数是________;-3的倒数是________.【答案】(1). 3(2).【解析】相反数的定义是:如果两个数只有符号不同,我们称其中一个数为另一个数的相反数,特别地,0的相反数还是0。
江苏省南京市秦淮区2018-2019学年第二学期九年级数学一模试卷

6.4.数轴上的 A 、B 、C 三点所表示的数分别为 a 、b 、1,且│a -1│+│b -1│=│a -b │, A . a 1 b B . a b 1 A C B A B C C .b a 1D .1 a bBACCAB5.如图,在 Rt △ ABC 中,∠ C =90°,∠ A >∠ B , 则下列结论正确的是A .sinA< sinB B . cosA<cosB如图,在平面直角坐标系 xOy 中,点 A 、 C 、F 在坐标轴上, 四边形 AOCB 是矩形,四边形 BDEF 是正方形, 点 D 的坐标为2018-2019 学年度第二学期第一阶段学业质量监测试卷九年级数学注意事项:1. 本试卷共 6 页.全卷满分 120分.考试时间为 120分钟.2. 答选择题必须用 2B 铅笔将答题卷上对应的答案标号涂黑.如需改动,请用橡皮擦干净后,再选涂其他答案.答非选择题必须用 0.5 毫米黑色墨水签字笔写在答题卷上的指定位置, 在其他位置答题一律无效.、选择题 (本大题共 6小题,每小题 2 分,共 12分.在每小题所给出的四个选项中,恰有一项是符合 题目要求的,请将正确选项前的字母代号填涂在答题 ..卷.相.应.位.置. 上) 1.计算 (a 2)3÷(a 2)2 的结果是2 A .a B .a4 个千亿台阶、达到 1 171 500 000 000 元,成为全国第 11 个突破 1 171 500 000 000 是C .a 3D .a 2. 2018 年南京市地区生产总值,连跨13A .0.11715× 11B . 1.1715×12 13C .1.1715×10D . 1.1715×103.小明参加射击比赛, 环数6 7 8 9 10 次数31213若小明再射击 2次,分别命中 7环、9环,与前 10 次相比,小明 12 次射击的成绩 A .平均数变大,方差不变C .平均数不变,方差B .平均数不变,方差不变D .平均数不变,方差10 次射击的成绩如则下列选项中,满足 A 、B 、C 三点位置关系的数轴为 AE 是 若点 C 的坐标二、填空题(本大题共 10 小题,每小题 2 分,共 20分. 不需写出解答过程,请把答案直接填写在答题卷. 相.应.位.置. 上)7.- 2的相反数是 ▲ ;-2 的绝对值是 ▲ .8.若式子 x + 1在实数范围内有意义,则 x 的取值范围是 ▲ . 9.计算 3 27- 8× 12的结果是 ▲ . 10.分解因式 6a 2b -9ab 2-a 3 的结果是 ▲ .k11.已知反比例函数 y =x 的图像经过点(- 3,- 1),则 k = ▲ .x12.设 x 1、x 2是方程 x 2-mx +3=0 的两个根,且 x 1= 1,则 m -x 2= ▲13.如图,⊙ O 的半径为 6, AB 是⊙ O 的弦,半径 OC ⊥AB , 则 AB = ▲ .则 S六边形 ABCDEF S 六边形GHIJKL11 小题,共 88分.请在答.题.卷.指.定.区.域.内. 作答,解答时应写出文字说明、证明过程或演算步骤)3x ≥x + 2,17.(6 分)解不等式组4x -2<x + 4.2- 1 18.( 6分)计算 1+1x ÷x -x 119.( 8分)已知二次函数 y =(x -m )2+2(x -m )(m 为常数).D 是⊙O 上一点,∠ CDB =22.5 ,°14.如图,正六边形 (第 13 题)ABCDEF 内接于⊙ O ,顺次连接正六边形 ABCDEF 各边的中点 I 、J 、K 、 L , 15.如图,四边形 ABCD 是菱形,以 DC 为边在菱形的外部作正三角形 CDE ,连接 BD ,AE 与 BD 相交于点 F ,则∠ AFB = ▲16.如图,矩形 ABCD 中, AB =5, BC=8,点 P 在 AB 上, AP =1.将矩形 ABCD 沿 CP 折叠, 则 EF =点 B 落在点 B ′处,B ′P 、B ′C 分别与 AD 交于点 E 、F ,三、解答题(本大题共 DCEG 、 H 、( 1)求证:不论 m 为何值,该函数的图像与 x 轴总有两个不同的公共点;(2)当 m取什么值时,该函数的图像关于 y 轴对称?20.(8分)如图,在“飞镖形” ABCD 中,E 、F 、G 、H 分别是 AB 、BC 、CD 、DA 的中点.1)求证:四边形 EFGH 是平行四边形;2)“飞镖形” ABCD 满足条件 ▲ 时,四边形 EFGH 是菱形 .21.( 8 分)某中学九年级男生共 250 人,现随机抽取了部分九年级男生进行引体向上测试,相关数据的 统计图如下.设学生引体向上测试成绩为 x (单位:个) .学校规定:当 0≤ x< 2 时成绩等级为不及格,当 2≤x<4时成绩等级为及格,当 4≤x<6 时成绩等级为良好,当 x ≥6 时成绩等级为优秀.样本 中引体向上成绩优秀的人数占 30%,成绩为 1 个和 2 个的人数相同.2)估计全校九年级男生引体向上测试不及格的人数.1)补全统计图;抽取的九年级男生引体向上测试成绩统计图22.( 8分)把 3 颗算珠放在计数器的 3 根插棒上构成一个数字,例如,如图摆放的算珠表示数颗算珠任意摆放在这 3 根插棒上.( 1)若构成的数是两位数,则十位数字为 1 的概率为▲ ;( 2)求构成的数是三位数的概率.百十个第22 题)23.( 8分)如图,一辆轿车在经过某路口的感应线B和 C处时,悬臂灯杆上的电子警察拍摄到两张照片,两感应线之间距离BC为6m,在感应线 B、C两处测得电子警察 A的仰角分别为∠ ABD=18°,∠ACD= 14°.求电子警察安装在悬臂灯杆上的高度 AD 的长.(参考数据: sin14 °≈ 0.242,cos14°≈ 0.97,tan14 °≈ 0.25,sin18 °≈0.309,cos18°≈0.951,tan18°≈0.325)24.( 8分)某校为迎接市中学生田径运动会,计划由八年级(1)班的 3 个小组制作 240面彩旗,后因 1个小组另有任务,其余 2个小组的每名学生要比原计划多做 4 面彩旗才能完成任务.如果这3个小组的人数相等,那么每个小组有学生多少名?300.现将 325.( 8分)如图,在□ABCD 中,过 A、B、C三点的⊙ O交 AD 于点 E,连接 BE、CE,BE=BC.1)求证△ BEC∽△ CED;2)若 BC=10,DE=3.6,求⊙O 的半径.D26.(9 分)换个角度看问题.【原题重现】(2008 年南京市中考第28 题节选)一列快车从甲地匀速驶往乙地,一列慢车从乙地匀速驶往甲地,两车同时出发,设慢车行驶的时间为x(h),两.车.之.间.的.距.离.为y(km ),图中的折线表示y 与x 之间的函数关系.若第二列快车也从甲地出发驶往乙地,速度与第一列快车相同.在第一列快车与慢车相遇30 分钟后,第二列快车与慢车相遇.求第二列快车比第一列快车晚出发多少小时?问题再研】若设慢车行驶的时间为x(h),慢车与甲地的距离为s1(km ),第一列快车与甲地的距离为s2(km),第二列快车与甲地的距离为 s3 (km ),根据原题中所给信息解决下列问题:( 1)在同一直角坐标系中,分别画出s1、s2 与 x之间的函数图像;(2)求 s3与 x 之间的函数表达式;(3)求原题的答案.27.( 11 分)数学概念 在两个等腰三角形中,如果其中一个三角形的底边长和底角的度数分别等于另一个三角形的腰长和顶 角的度数,那么称这两个等腰三角形互为姊妹三角形. 概念理解1)如图①,在△ ABC 中, AB =AC ,请用直尺和圆规作出它的姊妹三角形(保留作图痕迹,不写作 法).特例分析AB = AC ,∠ A =30°,BC = 6- 2,求它的姊妹三角形的顶角的度数和腰长;② 如图②,在△ ABC 中, AB =AC ,D 是 AC 上一点,连接 BD .若△ ABC 与△ABD 互为姊妹 三角形,且△ ABC ∽△ BCD ,则∠ A = ▲ °.深入研究(3)下列关于姊妹三角形的结论:①每一个等腰三角形都有姊妹三角形; ②等腰三角形的姊妹三角形是锐角三角形;③ 如果两个等腰三角形互为姊妹三角形,那么这两个三角形可能全等;④ 如果一个等腰三角形存在两个不同的姊妹三角形,那么这两个三角形也一定互为姊妹三角形.2)①在△ ABC 中, C其中所有正确结论的序号是▲2018-2019学年度第二学期第一阶段学业质量监测 九年级数学参考答案及评分标准 说明:本评分标准每题给出了一种或几种解法供参考,如果考生的解法与本解答不同,参照本评分标准的 精神给分. 一、选择题 (每小题 2 分,共 12分)题号1 2 3 4 5 6 答案BCDABC二、填空(每小题 2 分,共 207.2;2 8.x ≥-1 9.1210.- a (a - 3b )11.312.113. 6 24 14.315. 6035 16. 16.1217.(本题 6 分)解: 解不等式①,得 x ≥1. ··· ········· ······· ········· · 2 分解不等式②,得 x<2. ··· ········· ······· ········· · 4分所以,不等式组的解集是 1≤x<2. ········ ·············· · · 6 分 18.(本题 6 分)2分4分 1x -119.(本题 8 分) 解法一:1)令 y =0,(x -m )(x -m +2)=0. ·· ······ · ······ ··· ···· · · 1 分解这个方程,得 x 1= m ,x 2=m - 2. · ····· · ··········· · · 3 分 因为 m ≠ m - 2,所以不论 m 为何值,该方程总有两个不相等的实数根.· ··· ··· 4 分不论 m 为何值,该函数的图像与 x 轴总有两个不同的公共点.········ 5 分2)因为函数的图像关于 y 轴对称,三、解答题 (本大题共 11 小题,共计 88 分) 6分解(x +1)(x -1)x所以 m- 2+ m=0.················· ···· ··· ··· 7 分解这个方程,得 m= 1.所以 m 的值为 1.········ ············· ······ ··· 8 分解法二:(1)令 y=0,即(x-m)2+2(x-m)=0.······ ·········· ····· 1 分x2-(2m- 2)x+m2-2m=0.因为 a=1,b=-(2m-2),c=m2-2m,所以 b2-4ac=[-(2m-2)]2-4(m2-2m)=4>0.····· ·········· 3 分所以不论 m为何值,该方程总有两个不相等的实数根.········· · · 4 分不论 m 为何值,该函数的图像与 x 轴总有两个不同的公共点.··· ····· 5 分(2)因为函数的图像关于 y轴对称,所以-b=0 即--(2m-2)=0.······· 7分2a 2解这个方程,得 m= 1.所以 m 的值为 1.········ ····· ·....... ... ... (8)分20.(本题 8 分)(1)证明:连接 AC.·············· ·········· ····· 1 分∵E、F、G、H 分别是 AB、BC、CD、AD 的中点.∴EF、GH 分别是△ ABC、△ ACD 的中位线. 11∴EF∥ AC,EF=2AC,GH∥AC,GH=2AC.·· 3分∴EF=GH,EF∥GH.···· ······ ·· 5分∴四边形 EFGH 是平行四边形.··· ······ · 6 分2)AC=BD.21.(本题 8 分)解:( 1) 1个和 2 个人数均为 4 个.8分4分HECFBG D1+42) 250× 50=25(人).答:全校九年级男生引体向上测试不及格的人数为 25 人.··· ········ · ·8 分22.(本题 8 分)解:( 1)73.···· ······· ···· ······ · ····· ········· · 2 分(2)将 3 颗算珠任意摆放在 3 根插棒上,所有可能出现的结果有:(百,百,百)、(百,百,十)、(百,百,个)、(百,十,百)、(百,十,十)、(百,十,个)、(百,个,百)、(百,个,十)、(百,个,个)、(十,百,百)、⋯⋯、(十、个、个)、(个、百、百)、⋯⋯、(个,个,个),共有27 种,它们出现的可能性相同.所有的结果中,满足“构成的数是三位数”(记为事件A)的结果有 19种,所以 P(A)=2197.···· · 8分23.(本题 8 分)解:设 电子警察安装在悬臂灯杆上的高度ADx ∴ CD =tan ∠ ACD =tan14 °. ···· ······ · ····· ···· ··在 Rt △ ACD 中,3分BC = CD -BD ,在 Rt △ ADB 中, tan ∠ ABD = AD,1分 BD = ADtan ∠ ABDx tan18 2分 AD 的长 为 xm .tan ∠ACD = ADCDxtan14 x tan18 =6. 4x -1403x =6.6分 解这个方程,得 x = 6.5.7分 答:电子警察安装在悬臂灯杆上的高度 AD 的长为 6.5 m . 8分24.(本题 8 分) 解:设每个小组有学生 x 名. ··· ···· ············· ······ ··· 1 分根据题意,得 240-240=4. ·········· · ················ 4 分2x 3x解这个方程,得 x =10. ··· ···· ······ ······· ······ ··· 6 分 说明:如果学生只设了未知数,没有用未知数表示相关量不给分)25.(本题 8 分)解:( 1)证明:∵ BE = BC ,∴∠ BEC =∠ BCE . ···· ····· ·· 1分∵四边形 ABCD 是平行四边形,∴AD ∥BC ,AB ∥CD . 2分∵四边形 ABCD 内接于⊙ O ,∴∠A +∠ BCE = 180°. ∴∠ BCE =∠ D . ···· ··· ······ · ··········· ····· · 3 分2)过点 O 作 OF ⊥ CE ,垂足为 F ,连接 OC . ∴CF =12CE .5分D∴直线 OF 垂直平分 CE . ∵BE =BC ,∴直线 OF 经过点 B .∵△ BEC ∽△ CED ,又由( 1)可知 CE =CD , ∴BC =CE . ∴CE =DE .∵BC =10,DE =3.6,∴CE =CD =6. ···· ··· · ····· · ····· ····· ····· · 6 分 ∴CF =21CE =3. 设⊙ O 的半径为 r .易得 BF = BC 2- CF 2= 91,OF = 91-r . 在 Rt △OCF 中, OF 2+CF 2 =OC 2, ∴( 91-r )2+9=r 2. ∴r =509191. ··26.(本题 9 分)解:( 1) s 1、s 2与 x 之间的函数图像如图所示.当 x =4.5 时, s 1=562.5,设 s 3与 x 之间的函数表达式为 s 3=150x + b . 当 x =4.5 时, s 3=562.5,s 3=150x -112.5. ····· ········· · ····· ········· · 7 分3)根据题意,当 s 3=0时,x =0.75.········ · ······ ······· · · 8分所以第二列快车比第一列快车晚出发 0.75 小时. · ····· ··· ······ · 9 分7分 8分27.(本题 11 分)解:( 1)如图,△ DEF 即为所求.· ···· ··········· ····· ······ · ···· ··· ·· · 7 分 ②36. ··· ················· ····· ··· ···· · · 9 分 3)①③. ··· ················· ····· ··· ···· ··11 分2分2)①设△ ABC 的姊妹三角形为△ DEF ,且 DE =DF .∵在△ ABC 中, AB =AC ,∠ A =30°, BC = 6- 2, ∴∠B =∠ C =75°.过点 B 作 BG ⊥AC ,垂足为 G .设 BG = x , 则 AB = AC = 2x ,AG = 3x .∴CG =AC -AG = 2x - 3x = (2- 3)x . 在 Rt △BGC 中, BG 2+CG 2=BC 2, ∴ x 2+ (2- 3)2x 2=( 6- 2)2.∴AB =AC =2. ····· ··· ······ · ····· ···· ···· · 3 分第一种情形:∠ D =∠ABC =75°, · ······ · ······ ··· ···· · · EF = AB = 2.过点 D 作 DH ⊥ EF ,垂足为 H .1 ∵DE =DF ,∴EH =21EF =1.EH =2 3cos30 °=∴△ABC 的姊妹三角形的顶角为 75°时,腰长为 6- 2;顶角为 120°时,腰长为233。
2018秦淮区一模

2017/2018学年度第二学期第一阶段学业质量监测试卷九年级数学注意事项:1.本试卷共6页.全卷满分120分.考试时间为120分钟.2.答选择题必须用2B铅笔将答题..卡.上对应的答案标号涂黑.如需改动,请用橡皮擦干净后,再选涂其他答案.答非选择题必须用毫米黑色墨水签字笔写在答题卷...上的指定位置,在其他位置答题一律无效.一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题..卡.相应位置....上)1.计算错误!的结果是A.3 B.-3 C.9 D.-92.据某数据库统计,仅2018年第一个月,区块链行业融资额就达到680 000 000元.将680 000 000用科学记数法表示为A.×109 B.×107C.×108D.×1093.下列计算正确的是A.a3+a2=a5 B.a10÷a2=a5C.(a2)3=a5D.a2·a3=a5 4.某校航模兴趣小组共有30位同学,他们的年龄分布如下表:由于表格污损,15和16岁人数不清,则下列关于年龄的统计量可以确定的是A.平均数、中位数 B.众数、中位数C.平均数、方差 D.中位数、方差5.将二次函数y=-x2的图像向右平移2个单位长度,再向上平移3个单位长度,所得图像的函数表达式为A.y=-(x-2)2+3 B.y=-(x-2)2-3C.y=-(x+2)2+3 D.y=-(x+2)2-3 6.如图,在平面直角坐标系中,□ABCD的顶点坐标分别为A (,a),B(2,2),C(b,),D(8,6),则a+b的值为A.8 B.9C.10 D.11二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题卷相应位置.......上) 7.-3的相反数是 ▲ ;-3的倒数是 ▲ .8.若式子x -1在实数范围内有意义,则x 的取值范围是 ▲ . 9.计算 3×122的结果是 ▲ .10.方程1x -2=3x 的解是 ▲ . 11.若关于x 的一元二次方程的两个根x 1,x 2满足x 1+x 2=3,x 1·x 2=2,则这个方程是 ▲ .(写出一个..符合要求的方程) 12.将函数y =x 的图像绕坐标原点O 顺时针旋转 13.已知⊙O 的半径为10cm ,弦AB ∥CD ,AB =12cm ,CD =16cm ,则AB 和CD 的距离为 ▲cm .14.在照明系统模拟控制电路实验中,研究人员发现光敏电阻值R (单位:Ω)与光照度E (单位:lx )之间成反比例函数关系,部分数据如下表所示,则光敏电阻值R 与光照度E 的函数表达式为 ▲ .E 、F ,则⌒EF 的度数为 ▲ °.16.如图,在正方形ABCD 中,E 是BC 上一点,BE =13BC ,连接AE ,作BF ⊥AE ,分别与AE 、CD 交于点K 、F ,G 、H 分别在AD 、AE 上,且四边形KFGH 是矩形,则HGAB= ▲ . (第15题)A (第16题)CB A DEF G HK三、解答题(本大题共11小题,共88分.请在答题卷指定区域内........作答,解答时应写出文字说明、证明过程或演算步骤)17.(6分)计算( 1 a -b - b a 2-b 2 )÷a a +b.18.(8分)解一元二次不等式x 2-4>0.请按照下面的步骤,完成本题的解答. 解:x 2-4>0可化为(x +2)(x -2)>0.(1)依据“两数相乘,同号得正”,可得不等式组①⎩⎨⎧x +2>0,x -2>0或不等式组② ▲ .(2)解不等式组①,得 ▲ . (3)解不等式组②,得 ▲ .(4)一元二次不等式x 2-4>0的解集为 ▲ .19.(8分)已知关于x 的一元二次方程(x -m )2-2(x -m )=0(m 为常数). (1)求证:不论m 为何值,该方程总有两个不相等的实数根. (2)若该方程一个根为3,求m 的值.20.(8分)如图,□ABCD 中,∠BAD 的平分线交BC 于点E ,∠ABC 的平分线交AD 于点F ,连接EF . 求证:四边形ABEF 是菱形.21.(8分)中国的茶文化源远流长,根据制作方法和茶多酚氧化(发酵)程度的不同,可分为六大类:绿茶(不发酵)、白茶(轻微发酵)、黄茶(轻发酵)、青茶(半发酵)、黑茶(后发酵)、红茶(全发酵).春节将至,为款待亲朋好友,小叶去茶庄选购茶叶.茶庄有碧螺春、龙井两种绿茶,一种青茶——武夷岩茶及一种黄茶——银针出售. (1)随机购买一种茶叶,是绿茶的概率为 ▲ ;(2)随机购买两种茶叶,求一种是绿茶、一种是银针的概率.A BCDEF (第20题)22.(8分)如图,甲、乙两人在一次射击比赛中击中靶的情况(击中靶中心“×”所在的圆面为10环,靶中各数字表示该数所在圆环被击中所得的环数),每人射击了6次. (1)请选择适当的统计图描述甲、乙两人成绩;(2)请你运用所学的统计知识做出分析,从两个不同角度评价甲、乙两人的打靶成绩.23.(8分)某商场在“双十一”促销活动中决定对购买空调的顾客实行现金返利.规定每 购买一台空调,商场返利若干元.经调查,销售空调数量y 1(单位:台)与返利x (单位:元)之间的函数表达式为y 1=x +800.每台空调的利润y 2(单位:元)与返利x 的函数图像如图所示.(1)求y 2与x 之间的函数表达式;(2)每台空调返利多少元才能使销售空调的总利润最大?最大总利润是多少?24.(8分)一铁棒欲通过一个直角走廊.如图,是该铁棒紧挨着墙角E 通过时的两个特殊位置:当铁棒位于AB 位置时,它与墙面OG 所成的角∠ABO =51°18';当铁棒底端B 向上滑动1 m (即BD =1 m )到达CD 位置时,它与墙面OG 所成的角∠CDO =60°. 求铁棒的长.(参考数据:sin51°18'≈,cos51°18'≈,tan51°18'≈)甲射击的靶乙射击的靶(第22题)y 2/元(第23题)(第24题)A OB CDEG25.(8分)如图,在Rt △ABC 中,∠C =90°,AC =BC ,AD 是△ABC 的角平分线,以D 为圆心,DC 为半径作⊙D ,交AD 于点E . (1)判断直线AB 与⊙D 的位置关系并证明. (2)若AC =1,求⌒CE 的长.(答案保留根号和π)26.(9分)书籍开本有数学开本指书刊幅面的规格大小.如图①,将一张矩形印刷用纸对折后可以得到2开纸,再对折得到4开纸,以此类推可以得到8开纸、16开纸…… 若这张矩形印刷用纸的短边长为a .(1)如图②,若将这张矩形印刷用纸ABCD (AB >BC )进行折叠,使得BC 与AB 重合,点C 落在点F 处,得到折痕BE ;展开后,再次折叠该纸,使点A 落在E 处,此时折痕恰好经过点B ,得到折痕BG ,求AB BC的值.(2)如图③,2开纸BCIH 和4开纸AMNH 的对角线分别是HC 、HM .说明HC ⊥HM .(3)将图①中的2开纸、4开纸、8开纸和16开纸按如图④所示的方式摆放,依次连接点A 、B 、M 、I ,则四边形ABMI 的面积是 ▲ .(用含a 的代数式表示)ABC D (第25题)E2开 4开8开16开 ①②A BCD FEGH ③… ④MIAB2开4开8开 16开27.(9分)【数学概念】若四边形ABCD 的四条边满足AB ·CD =AD ·BC ,则称四边形ABCD 是和谐四边形. 【特例辨别】(1)下列四边形:①平行四边形,②矩形,③菱形,④正方形,其中一定是和谐四边形的是 ▲ .(填写所有符合要求的四边形的序号) 【概念判定】(2)如图①,过⊙O 外一点P 引圆的两条切线PS 、PT ,切点分别为A 、C ,过点P 作一条射线PM ,分别交⊙O 于点B 、D ,连接AB 、BC 、CD 、DA . 求证:四边形ABCD 是和谐四边形.【知识应用】(3)如图②,CD 是⊙O 的直径,和谐四边形ABCD 内接于⊙O ,且BC =AD .请直接写出AB 与CD 的关系.①②C2017/2018学年度第二学期第一阶段学业质量监测试卷九年级数学参考答案及评分标准说明:本评分标准每题给出了一种或几种解法供参考,如果考生的解法与本解答不同,参照本评分标准的精神给分.二、填空题(每小题2分,共20分)7.3;-13 8.x ≥1 9.3 2 10.x =3 11.答案不唯一,如x 2-3x +2=012.y =-x 13.2或14 14.R =30E 15.40 16.71030三、解答题(本大题共11小题,共计88分) 17.(本题6分)解:( 1 a -b - b a 2-b 2)÷ aa +b. =(a +b(a +b )(a -b )- b (a +b )(a -b ))÷ a a +b···················· 2 =a(a +b )(a -b )· a +b a (4)=1a -b. (6)18.(本题8分) 解:(1)⎩⎨⎧x +2<0,x -2<0. (2)(2)x >2. .................................. 4(3)x <-2. ................................. 6(4)x >2或x <-2. (8)19.(本题8分)解法一:(1)原方程可化为(x -m )(x -m -2)=0. (1)解这个方程,得x1=m,x2=m+2. (3)所以不论m为何值,该方程总有两个不相等的实数根. (4)(2)当x1=3时,m=3. (6)当x2=3时,m=1.所以m的值为3或1. (8)解法二:(1)原方程可化为x2-(2m+2)x+m2+2m=0. (1)因为a=1,b=-(2m+2),c=m2+2m, (2)所以b2-4ac=[-(2m+2)]2-4(m2+2m)=4>0. (3)所以不论m为何值,该方程总有两个不相等的实数根. (4)(2)因为一个根为3,将x=3代入(x-m)2-2(x-m)=0得(3-m)2-2(3-m)=0.解这个方程,得m1=3,m2=1.所以m的值为3或1. (8)20.(本题8分)证明:∵∠BAD的平分线交BC于点E,∴∠BAE=∠EAF. (1)∵四边形ABCD是平行四边形,∴AD∥BC. (2)∴∠EAF=∠AEB. (3)∴∠BAE=∠AEB.∴AB=BE. (4)同理,AB=AF. (5)∴BE=AF. (6)∵AD∥BC,∴四边形ABEF是平行四边形. (7)∵AB=BE,∴□ABEF是菱形. (8)21.(本题8分)解:(1)12. (2)(2)随机购买两种茶叶,所有可能出现的结果有:(碧螺春,龙井)、(碧螺春,武夷岩茶)、(碧螺春,银针)、(龙井,武夷岩茶)、(龙井,银针)、(武夷岩茶,银针),共有6种,它们出现的可能性相同.所有的结果中,满足“一种是绿茶、一种是银针”(记为事件A )的结果有2种,所以P(A )=26=13. (8)(说明:通过枚举、画树状图或列表得出全部正确等可能结果得4分;没有说明等可能性扣1分.)22.(本题8分)解:(1)图略.(注:统计图的标题不写不扣分) (2)(2)答案不唯一,如从数据的集中程度——平均数看,-x 甲=10+10+9+9+8+86=9(环); (3)-x 乙=10+10+9+9+9+76=9(环). ····················· 4 因为 -x 甲=-x 乙,所以两人成绩相当. ······················ 5 从数据的离散程度——方差看,S 2甲=(10-9)2+(10-9)2+(9-9)2+(9-9)2+(8-9)2+(8-9)26=23(环2); ····S 2乙=(10-9)2+(10-9)2+(9-9)2+(9-9)2+(9-9)2+(7-9)26=1(环2); ····因为S 2甲<S 2乙,所以乙比甲成绩稳定,乙的成绩较好. (8)23.(本题8分)解:(1)设y 2=kx +b .根据题意,得⎩⎨⎧200k +b =160,b =200.解得⎩⎪⎨⎪⎧k =-15,b =200.······························ 3所以y 2=-15x +200. (4)(2)设该商场销售空调的总利润为w 元.根据题意,得w =(x +800) (-15x +200)=-15(x -100)2+162000. (7)当x =100时,w 的值最大,最大值是162000.所以商场每台空调返利100元时,总利润最大,最大总利润为162000元. (8)24.(本题8分)解:设铁棒的长为x m .在Rt △AOB 中,cos ∠ABO =OB AB, ························· 1∴ OB =AB ·cos ∠ABO =x ·cos60°=12x . (3)在Rt △COD 中,cos ∠CDO =OD CD, ························· 4∴ OD =CD ·cos ∠CDO =x·cos51°18'≈ x . ···················· 6∵ BD =OD -OB ,∴ - 12x =1. (7)解这个方程,得x =8.答:该铁棒的长为8m . (8)25.(本题8分)解:(1)AB 与⊙D 相切. ·············· 1分证明:过点D 作DF ⊥AB ,垂足为F . ····· 2分 ∵AD 是Rt △ABC 的角平分线,∠C =90°,∴DF =DC , ················ 3分 即d =r .∴AB 与⊙D 相切. ············· 4分(2)∵∠C =90°,AC =BC =1,∴∠BAC =∠B =45°,AB =2. ∵DF ⊥AB ,∴∠BDF =∠B =45°. ∴BF =DF .∵AB 、AC 分别与⊙D 相切, ∴AF =AC =1.ABC DEF设⊙D 的半径为r .易得BF =2-1,BD =1-r . ∴2(2-1)=1-r .∴r =2-1. ······························ 6∵AD 是Rt △ABC 的角平分线,∠BAC =45°, ∴∠DAC =12∠BAC =°.又∵∠C =90°,∴∠CDE =°. ······················· 7∴l CE ︵=π(2-1)×180=(32-3)π8. (8)(说明:答案中分母未有理化不扣分)26.(本题9分)解:(1)∵四边形ABCD 是矩形,∴∠ABC =∠C =90°.∵第一次折叠使点C 落在AB 上的F 处,并使折痕经过点B , ∴∠CBE =∠FBE =45°. ∴∠CBE =∠CEB =45°.∴BC =CE =a ,BE =2a . ·························· 2∵第二次折叠纸片,使点A 落在E 处,得到折痕BG , ∴AB =BE =2a . ∴ABBC= 2 (3)(2)根据题意和(1)中的结论,有AH =BH =22a ,AM =12a .∴AM BH =AH BC =22. ································· 4∵四边形ABCD 是矩形, ∴∠A =∠B =90°.∴△MAH ∽△HBC . ................................ 5∴∠AHM =∠BCH . .. (6)∵∠BCH +∠BHC =90°. ∴∠AHM +∠BHC =90°. ∴∠MHC =90°.∴HC ⊥HM . (7)(3)27232a 2. (9)27.(本题9分)解:(1)③④. (2)(说明:只答对1个得1分,答错一个不给分) (2)证明:连接CO 并延长,交⊙O 于点E ,连接BE .∵PT 是⊙O 的切线,切点为C , ∴∠PCE =90°. ∴∠PCB +∠ECB =90°. ∵CE 是⊙O 的直径, ∴∠CBE =90°. ∴∠BEC +∠ECB =90°. ∴∠BEC =∠PCB .又∵∠BEC =∠BDC ,∴∠PCB =∠BDC . 又∵∠BPC =∠CPD , ∴△PBC ∽△PCD . ∴CB CD =PCPD. ····························· 3同理,AB AD =PA PD. ··························· 4∵PA 、PC 为⊙O 的切线,∴PA =PC . ····························· 5∴CB CD =ABAD. ∴AB ·CD =AD ·BC .∴四边形ABCD 是和谐四边形. (6)(3)AB ∥CD ,CD =3AB . (9)(说明:结论“AB ∥CD ”1分,“CD =3AB ”2分)。
2018年江苏省南京市联合体中考一模数学试卷含答案 精品

2018年中考模拟试卷(一)数 学注意事项:1.本试卷共6页。
全卷满分120分。
考试时间为120分钟。
考生答题全部答在答题卡上,答在本试卷上无效。
2.请认真核对监考教师在答题卡上所粘贴条形码的姓名、考试证号是否与本人相符合,再将自己的姓名、考试证号用0.5毫米黑色墨水签字笔填写在答题卡及本试卷上。
3.答选择题必须用2B 铅笔将答题卡上对应的答案标号涂黑。
如需改动,请用橡皮擦干净后,再选涂其他答案。
答非选择题必须用0.5毫米黑色墨水签字笔写在答题卡上的指定位置,在其他位置答题一律无效。
4.作图必须用2B 铅笔作答,并请加黑加粗,描写清楚。
一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡...相应位置....上) 1.2的算术平方根是A .4B .2C .-2D .±22.计算(﹣ab 2)3的结果是A .a 3b 5B .﹣a 3b 5C .﹣a 3b 6D .a 3b 63.下列图形中,既是轴对称图形,又是中心对称图形的是A .正五边形B .正方形C .平行四边形D .等边三角形 4.已知反比例函数的图像经过点P (a ,a ),则这个函数的图像位于A .第一、三象限B .第二、三象限C .第二、四象限D .第三、四象限5.如图,给出下列四个条件,AB =DE ,BC =EF ,∠B =∠E ,∠C =∠F ,从中任选三个条件能使△ABC ≌△DEF 的共有6.已知 A (x 1,y 1)是一次函数y =﹣x +b +1图像上一点,若x 1<0,y 1<0,则b 的取值范围是A .b <0B .b >0C .b >―1D .b <―1二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题卡...相应位置....上) 7.﹣3的相反数为 ▲ ;﹣3的倒数为 ▲ . 8.计算12-13的结果是 ▲ . 9.函数y =x1-x中,自变量x 的取值范围是 ▲ .10.2018年春节放假期间,夫子庙游客总数达到1800000人,将1800000用科学记数法表示为 ▲ .A .1组B .2组C .3组D .4组ABC DEF(第5题)11. 某公司全体员工年薪的具体情况如下表:则该公司全体员工年薪的中位数比众数多 ▲ 万元.12.已知关于x 的方程x 2-3x+1=0的两个根为x 1、x 2,则x 1+ x 2-x 1x 2= ▲ .13.如图,在△ABC 中,DE ∥BC ,AD =2BD ,则S △ADES △ABC = ▲ .14.如图,在⊙O 的内接五边形ABCDE 中,∠B +∠E = 222°,则∠CAD = ▲ °.15.如图,在△ABC 中,∠C =90°,BC =3,AC =4,BD 平分∠ABC 交AC 于点D ,则点D 到AB 的距离为 ▲ . 16.如图,抛物线y =﹣x 2﹣2x +3与x 轴交于点A 、B ,把抛物线在x 轴及其上方的部分记作C 1,将C 1关于点B 的中心对称得C 2,C 2与x 轴交于另一点C ,将C 2关于点C 的中心对称得C 3,连接C 1与C 3的顶点,则图中阴影部分的面积为 ▲ .三、解答题(本大题共11小题,共88分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤) 17.(6分)解不等式组⎩⎪⎨⎪⎧2-x >0,5x +12+1≥2x -13,并把解集在数轴上表示出来.18.(6分)化简(x +2 x2-2x -x -1x 2-4x +4)÷x -4x .0 1 2 3 4 5-5 -4 -3 -2 -1 (第17题)(第14题)(第15题)写出下列命题的已知、求证,并完成证明过程.命题:如果一个三角形的两条边相等,那么这两条边所对的角也相等(简称:“等边对等角”). 已知: ▲ . 求证: ▲ . 证明:20.(8分)小明和小红、小兵玩捉迷藏游戏.小红、小兵可以在A 、B 、C 三个地点中任意一处藏身,小明去寻找他们.(1)求小明在B 处找到小红的概率;(2)求小明在同一地点找到小红和小兵的概率. 21.(8分)某校课外活动小组采用简单随机抽样的方法,对本校九年级学生的睡眠时间(单位:h )进行了调查,并将所得数据整理后绘制出频数分布直方图的一部分(如图).设图中从左到右前5个小组的频率分别为0.04,0.08,0.24,0.28,0.24,第2 小组的频数为4(每组只含最小值,不含最大值).(1)该课外活动小组抽取的样本容量是多少?请补全图中的频数分布直方图. (2)样本中,睡眠时间在哪个范围内的人数最多?这个范围的人数是多少?(3)设该校有九年级学生900名,若合理的睡眠时间范围为7≤h <9,你对该校九年级学生的睡眠时间做怎样的分析、推断?B A C(第21题)如图,在四边形ABCD 中,AD =CD =8,AB =CB =6,点E 、F 、G 、H 分别是DA 、AB 、BC 、CD 的中点. (1)求证:四边形EFGH 是矩形;(2)若DA ⊥AB ,求四边形EFGH 的面积..23.(9分)甲、乙两公司为“见义勇为基金会”各捐款60000元,已知乙公司比甲公司人均多捐40元,甲公司的人数比乙公司的人数多20%.请你根据以上信息,提出一个用分式方程....解决的问题,并写出解答过程.24.(8分)一艘船在小岛A 的南偏西37°方向的B 处,AB =20海里,船自西向东航行1.5小时后到达C 处,测得小岛A 在点C 的北偏西50°方向,求该船航行的速度(精确到0.1海里/小时?).(参考数据:sin37°=cos53°≈0.60,sin53°=cos37°≈0.80,tan37°≈0.75,tan53°≈1.33,tan40°≈0.84,tan50°≈1.19)25.(9分)已知二次函数y =-x 2+mx +n .(1)若该二次函数的图像与x 轴只有一个交点,请用含m 的代数式表示n ;(2)若该二次函数的图像与x 轴交于A 、B 两点,其中点A 的坐标为(-1,0),AB =4.请求出该二次函数的表达式及顶点坐标.(第22题)HG FE D CBA如图①,C 地位于A ,B 两地之间,甲步行直接从C 地前往B 地;乙骑自行车由C 地先回A 地,再从A 地前往B 地(在A 地停留时间忽略不计).已知两人同时出发且速度不变,乙的速度是甲的2.5倍.设出发x min 后甲、乙两人离C 地的距离分别为y 1 m 、y 2 m ,图②中线段OM 表示y 1与x 的函数图像.(1)甲的速度为 m/min ,乙的速度为 m/ min ; (2)在图②中画出y 2与x 的函数图像; (3)求甲乙两人相遇的时间;(4)在上述过程中,甲乙两人相距的最远距离为 m.27.(9分)已知⊙O 的半径为5,且点O 在直线l 上,小明用一个三角板学具(∠ABC =90°,AB =BC =8)做数学实验:(1)如图①,若A 、B 两点在⊙O 上滑动,直线BC 分别与⊙O 、l 相交于点D 、E .①求BD 的长; ②当OE =6时,求BE 的长.(2)如图②,当点B 在直线l 上,点A 在⊙O 上,BC 与⊙O 相切于点P 时,则切线长PB = ▲ .Bl图①图②2018年中考数学模拟试题(一)参考答案及评分标准说明:本评分标准每题给出了一种或几种解法供参考,如果考生的解法与本解答不同,参照本评分标准的精神给分.一、选择题(本大题共6小题,每小题2分,共12分)二、填空题(本大题共10小题,每小题2分,共20分)三、解答题(本大题共11小题,共88分)17.解:解不等式①,得x <2. …………………………………………………………………………2分解不等式②,得x ≥-1.………………………………………………………………………4分 所以,不等式组的解集是-1≤x <2.…………………………………………………………5分 数轴表示略 ………………………………………………………………………………………6分18.解:原式=(x +2 x ( x -2)-x -1(x -2) 2)×xx -4…………………………………………………………3分 =((x +2) ( x -2) x ( x -2)2-x (x -1) x (x -2) 2)×xx -4 ……………………………………………………4分 = x -4 x (x -2)2×xx -4……………………………………………………………………………5分=1(x -2) 2……………………………………………………………………………………6分19.已知:在△ABC 中,AB =AC .…………………………………………………………………2分求证:∠B =∠C ………………………………………………………………………………3分 证法一:过点A 作AD ⊥BC ,垂足为D . …………………………………………………………4分在△ABD 和△ACD 中,∵∠ADB =∠ADC=90°,AB =AC ,AD =AD ,∴△ABD ≌△ACD . …………………………………………………………………………7分 ∴∠B =∠C . ……………………………………………………………………………8分 证法二:作∠BAC 的平分线AD ,交BC 于点D . ………………………………………………4分在△ABD 和△ACD 中,∵AB =AC ,∠BAD =∠CAD ,AD =AD ,∴△ABD ≌△ACD . ………………………………………………………………………7分 ∴∠B =∠C………………………………………………………………………………8分20. 解:(1)有A 、B 、C 3种等可能的藏身处,所以P(小明在B 处找到小红)=.31……………3分 (2)该实验有9种等可能性的结果,其中小红和小兵藏在一起的有3种情况,………………6分 所以P (小明在同一地点找到小红和小兵)=.31 ………………………………………………8分21.解:(1)样本容量为4÷0.08=50;……………………………………………………………………1分第6小组频数为50×(1-0.04-0.08-0.24-0.28-0.24)=6,补全图形 ………………3分(2)睡眠时间在6-7小时内的人数最多;………………………………………………………4分这个范围的人数为50×0.28=14人; ………………………………………………………5分 (3)因为在7≤h <9范围内数据的频率为0.24+0.12=0.36,…………………………………6分所以推断近 23的学生睡眠不足. ……………………………………………………………8分22.证明:(1)连接AC 、BD∵点E 、F 、G 、H 分别是DA 、AB 、BC 、CD 的中点. ∴EF 是△ABD 的中位线∴EF ∥BD …………………………………………………………2分 同理可得:EF ∥BD ∥HGEH ∥AC ∥FG∴四边形EFGH 是平行四边形…………………………………3分 ∵AD=CD ,AB=BC ,且BD=BD ∴△ADB ≌△CDB ∴∠ADB=∠CDB∴∠DPA=90°……………………………………………………4分 ∴∠HEF=∠DME=∠DPA=90°∴四边形EFGH 是矩形…………………………………………5分 (2)∵DA ⊥AB ,AD =8,AB =6∴DB=10=2EF , ∴EF=5……………………………………6分 ∴AP=AD ×AB ÷DB=4.8 ∴EH=12AC=AP=4.8……………………………………………7分 ∴矩形EFGH 的面积等于24.…………………………………8分M PAB CD E FG H23.问题:求甲、乙两公司的人数分别是多少? ………………………………………2分解:设乙公司的人数为x 人,则甲公司的人数为(1+20%)x 人,由题意得60000 x -60000(1+20%)x=40……………………………………………5分解得,x =250………………………………………………………………………7分经检验x =250是方程的解. 则(1+20%)x =300答: 甲公司有300人,乙公司有250人. …………………………………………9分 解法二:问题:求甲、乙两公司的人均捐款分别是多少元? ………………………2分 解:设甲公司的人均捐款为x 元,则乙公司的人均捐款为(x +40)元,由题意得60000 x =(1+20%)60000x+40…………………………………………5分解得,x =200…………………………………………………………………7分经检验x =200是方程的解. 则x +40=240答: 甲公司的人均捐款是200元,乙公司的人均捐款是240元.………………9分24.解:过点A 作AD ⊥BC 垂足为D ,∴∠ADB =∠ADC =90°. 由题意得:∠BAD =37°,∠C AD =50°. 在Rt △ABD 中,∠BAD =37°, ∴sin ∠BAD =BD AB ,cos ∠BAD =AD AB;∴BD =AB •sin ∠BAD =20• sin37°=20×0.6=12;AD =AB •cos ∠BAD =20• cos37°=20×0.8=16.………………………………………4分 在Rt △ACD 中,∠C AD =50°; ∴tan ∠C AD =CD AD;∴CD =AD • tan ∠C AD =16• tan 50°=16×1.19=19.04.……………………………………6分 ∴BC =BD +CD =12+19.04=31.04. ∴小船航行的速度为31.04÷1.5≈20.7.答:小船航行的速度为20.7海里/小时.……………………………………………………8分25.解:(1)∵二次函数y =-x 2+mx +n 的图像与x 轴只有一个交点,∴△=m 2+4n =0…………………………………………………………………… 2分 ∴n =-14m 2……………………………………………………………………… 3分 (2)A (-1,0),AB =4,∴B (3,0)或(-5,0).…………………………………… 4分 将A (-1,0),B (3,0)或A (-1,0),(-5,0)代入y =-x 2+mx +n 得23m n =⎧⎨=⎩或65m n =-⎧⎨=-⎩,……………………………………………………………… 6分 ∴二次函数的关系式为223y x x =-++或265y x x =---.…………………… 7分 顶点坐标分别为(1,4)、(-3,4) …………………………………………………9分26.(1)80;200;……………………………………… 2分 (2)如图 …………………………………………… 4分 (3)80x +1200=200 x ,解得x =10;……………… 7分 解法二:求得y 1=80x ,y 2=200 x -1200…………6分解方程组得x =10.…………………………7分(4)960. ……………………………………………… 9分27.(1)①连接AD ,∵∠ABC =90°,∴AD 为⊙O 的直径,∴AD =10,∵AB =8,∴BD =6. …………………………………………………………………… 3分 ②如图①,作OF ⊥BE 于F ,∵BD =6,半径为5,则OF =4∵OE =6,∴ EF =25,∴BE=25+3……………………………………… 5分如图②,作OF ⊥BD 于F ,∵BD =6,半径为5,则OF =4∵OE =6,∴ EF =25,∴BE=25-3……………………………………… 7分当BC 的延长线与l 相交于点E 时,不满足条件OE =6.(2)4. …………………………………………………………………………………………… 9分提示:解法一:如图③连接OP ,OA ,作OQ ⊥AB 于Q ,易证BPOQ 为矩形, ∴BQ =5,∴AQ =3,∴OQ =4=BP .解法二:如图④连接PO ,并延长交⊙O 于点Q ,连AQ ,AP ,证△ABP ∽△P AQ , ∴P A 2=80,∴BP =4.Bl图①DC图②图④图③。
<合集试卷3套>2018届江苏省名校中考数学毕业升学考试一模试题

中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.制作一块3m×2m 长方形广告牌的成本是120元,在每平方米制作成本相同的情况下,若将此广告牌的四边都扩大为原来的3倍,那么扩大后长方形广告牌的成本是( ) A .360元 B .720元C .1080元D .2160元【答案】C【解析】根据题意求出长方形广告牌每平方米的成本,根据相似多边形的性质求出扩大后长方形广告牌的面积,计算即可. 【详解】3m×2m=6m 2,∴长方形广告牌的成本是120÷6=20元/m 2, 将此广告牌的四边都扩大为原来的3倍, 则面积扩大为原来的9倍,∴扩大后长方形广告牌的面积=9×6=54m 2, ∴扩大后长方形广告牌的成本是54×20=1080元, 故选C . 【点睛】本题考查的是相似多边形的性质,掌握相似多边形的面积比等于相似比的平方是解题的关键.2.如图,在Rt △ABC 中,∠ACB=90°,AC=BC=1,将绕点A 逆时针旋转30°后得到Rt △ADE ,点B 经过的路径为弧BD ,则图中阴影部分的面积是( )A .6π B .3π C .2π-12D .12【答案】A【解析】先根据勾股定理得到2,再根据扇形的面积公式计算出S 扇形ABD ,由旋转的性质得到Rt △ADE ≌Rt △ACB ,于是S 阴影部分=S △ADE +S 扇形ABD -S △ABC =S 扇形ABD . 【详解】∵∠ACB=90°,AC=BC=1, ∴2, ∴S 扇形ABD =2302=3606ππ⨯,又∵Rt △ABC 绕A 点逆时针旋转30°后得到Rt △ADE ,∴Rt △ADE ≌Rt △ACB ,∴S 阴影部分=S △ADE +S 扇形ABD −S △ABC =S 扇形ABD =6π, 故选A. 【点睛】本题考查扇形面积计算,熟记扇形面积公式,采用作差法计算面积是解题的关键. 3.如图,AB ∥ED ,CD=BF ,若△ABC ≌△EDF ,则还需要补充的条件可以是( )A .AC=EFB .BC=DFC .AB=DED .∠B=∠E【答案】C【解析】根据平行线性质和全等三角形的判定定理逐个分析. 【详解】由//AB ED ,得∠B=∠D, 因为CD BF =, 若ABC ≌EDF ,则还需要补充的条件可以是:AB=DE,或∠E=∠A, ∠EFD=∠ACB, 故选C 【点睛】本题考核知识点:全等三角形的判定. 解题关键点:熟记全等三角形判定定理.4.已知图中所有的小正方形都全等,若在右图中再添加一个全等的小正方形得到新的图形,使新图形是中心对称图形,则正确的添加方案是( )A .B .C .D .【答案】B【解析】观察图形,利用中心对称图形的性质解答即可. 【详解】选项A ,新图形不是中心对称图形,故此选项错误; 选项B ,新图形是中心对称图形,故此选项正确;选项C ,新图形不是中心对称图形,故此选项错误; 选项D ,新图形不是中心对称图形,故此选项错误; 故选B . 【点睛】本题考查了中心对称图形的概念,熟知中心对称图形的概念是解决问题的关键.5.小刚从家去学校,先匀速步行到车站,等了几分钟后坐上了公交车,公交车匀速行驶一段时后到达学校,小刚从家到学校行驶路程s (单位:m )与时间r (单位:min )之间函数关系的大致图象是( )A .B .C .D .【答案】B【解析】根据小刚行驶的路程与时间的关系,确定出图象即可.【详解】小刚从家到学校,先匀速步行到车站,因此S 随时间t 的增长而增长,等了几分钟后坐上了公交车,因此时间在增加,S 不增长,坐上了公交车,公交车沿着公路匀速行驶一段时间后到达学校,因此S 又随时间t 的增长而增长, 故选B .【点睛】本题考查了函数的图象,认真分析,理解题意,确定出函数图象是解题的关键.6.若二元一次方程组3,354x y x y +=⎧⎨-=⎩的解为,,x a y b =⎧⎨=⎩则-a b 的值为( )A .1B .3C .14-D .74【答案】D【解析】先解方程组求出74x y -=,再将,,x a y b =⎧⎨=⎩代入式中,可得解.【详解】解:3,354,x y x y +=⎧⎨-=⎩①②+①②,得447x y -=, 所以74x y -=,因为,,x a y b =⎧⎨=⎩所以74x y a b -=-=. 故选D. 【点睛】本题考查二元一次方程组的解,解题的关键是观察两方程的系数,从而求出a-b 的值,本题属于基础题型. 7.下列说法正确的是( )A .对角线相等且互相垂直的四边形是菱形B .对角线互相平分的四边形是正方形C .对角线互相垂直的四边形是平行四边形D .对角线相等且互相平分的四边形是矩形 【答案】D【解析】分析:根据菱形,正方形,平行四边形,矩形的判定定理,进行判定,即可解答. 详解:A 、对角线互相平分且垂直的四边形是菱形,故错误; B 、四条边相等的四边形是菱形,故错误;C 、对角线相互平分的四边形是平行四边形,故错误;D 、对角线相等且相互平分的四边形是矩形,正确; 故选D .点睛:本题考查了菱形,正方形,平行四边形,矩形的判定定理,解决本题的关键是熟记四边形的判定定理.8.如图,四边形ABCD 是正方形,点P ,Q 分别在边AB ,BC 的延长线上且BP=CQ ,连接AQ ,DP 交于点O ,并分别与边CD ,BC 交于点F ,E ,连接AE ,下列结论:①AQ ⊥DP ;②△OAE ∽△OPA ;③当正方形的边长为3,BP =1时,cos ∠DFO=35,其中正确结论的个数是( )A .0B .1C .2D .3【答案】C【解析】由四边形ABCD 是正方形,得到AD=BC,90DAB ABC ∠=∠=︒, 根据全等三角形的性质得到∠P=∠Q ,根据余角的性质得到AQ ⊥DP ;故①正确;根据勾股定理求出5,AQ ==,DFO BAQ ∠=∠直接用余弦可求出.【详解】详解:∵四边形ABCD 是正方形, ∴AD=BC,90DAB ABC ∠=∠=, ∵BP=CQ , ∴AP=BQ ,在△DAP 与△ABQ 中, AD ABDAP ABQ AP BQ =⎧⎪∠=∠⎨⎪=⎩,∴△DAP ≌△ABQ , ∴∠P=∠Q ,∵90Q QAB ∠+∠=, ∴90P QAB ∠+∠=, ∴90AOP ∠=, ∴AQ ⊥DP ; 故①正确;②无法证明,故错误. ∵BP=1,AB=3, ∴4BQ AP ==,5,AQ == ,DFO BAQ ∠=∠∴3cos cos .5AB DFO BAQ AQ ∠=∠== 故③正确, 故选C . 【点睛】考查正方形的性质,三角形全等的判定与性质,勾股定理,锐角三角函数等,综合性比较强,对学生要求较高.9.某商场试销一种新款衬衫,一周内售出型号记录情况如表所示:商场经理要了解哪种型号最畅销,则上述数据的统计量中,对商场经理来说最有意义的是( )A .平均数B .中位数C .众数D .方差【答案】B【解析】分析:商场经理要了解哪些型号最畅销,所关心的即为众数.详解:根据题意知:对商场经理来说,最有意义的是各种型号的衬衫的销售数量,即众数. 故选:C .点睛:此题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义.反映数据集中程度的统计量有平均数、中位数、众数方差等,各有局限性,因此要对统计量进行合理的选择和恰当的运用. 10.青藏高原是世界上海拔最高的高原,它的面积是 2500000 平方千米.将 2500000 用科学记数法表示应为( ) A .70.2510⨯ B .72.510⨯C .62.510⨯D .52510⨯【答案】C【解析】分析:在实际生活中,许多比较大的数,我们习惯上都用科学记数法表示,使书写、计算简便. 解答:解:根据题意:2500000=2.5×1. 故选C .二、填空题(本题包括8个小题)11.如图,将三角形AOC 绕点O 顺时针旋转120°得三角形BOD ,已知OA=4,OC=1,那么图中阴影部分的面积为_____.(结果保留π)【答案】5π【解析】根据旋转的性质可以得到阴影部分的面积=扇形OAB 的面积﹣扇形OCD 的面积,利用扇形的面积公式计算即可求解.【详解】∵△AOC ≌△BOD ,∴阴影部分的面积=扇形OAB 的面积﹣扇形OCD 的面积2212041201360360ππ⨯⨯⨯⨯=-=5π.故答案为:5π. 【点睛】本题考查了旋转的性质以及扇形的面积公式,正确理解:阴影部分的面积=扇形OAB 的面积﹣扇形OCD 的面积是解题的关键.12.如图是利用直尺和三角板过已知直线l 外一点P 作直线l 的平行线的方法,其理由是__________.【答案】同位角相等,两直线平行.【解析】试题解析:利用三角板中两个60°相等,可判定平行 考点:平行线的判定13.一个正多边形的一个外角为30°,则它的内角和为_____. 【答案】1800°【解析】试题分析:这个正多边形的边数为=12,所以这个正多边形的内角和为(12﹣2)×180°=1800°. 故答案为1800°.考点:多边形内角与外角.14.老师在黑板上书写了一个正确的演算过程,随后用手掌捂住了一个多项式,形式如﹣2x 2﹣2x+1=﹣x 2+5x ﹣3:则所捂住的多项式是___. 【答案】x 2+7x-4【解析】设他所捂的多项式为A ,则22(53)(221)A x x x x =-+-++-;接下来利用去括号法则对其进行去括号,然后合并同类项即可.【详解】解:设他所捂的多项式为A ,则根据题目信息可得22(53)(221),A x x x x =-+-++- 2253221,x x x x =-+-++- 27 4.x x =+-他所捂的多项式为27 4.x x +- 故答案为27 4.x x +- 【点睛】本题是一道关于整数加减运算的题目,解答本题的关键是熟练掌握整数的加减运算; 15.观察下列图形:它们是按一定的规律排列的,依照此规律,第n 个图形共有___个★.【答案】13n【解析】分别求出第1个、第2个、第3个、第4个图形中★的个数,得到第5个图形中★的个数,进而找到规律,得出第n个图形中★的个数,即可求解.【详解】第1个图形中有1+3×1=4个★,第2个图形中有1+3×2=7个★,第3个图形中有1+3×3=10个★,第4个图形中有1+3×4=13个★,第5个图形中有1+3×5=16个★,…第n个图形中有1+3×n=(3n+1)个★.故答案是:1+3n.【点睛】考查了规律型:图形的变化类;根据图形中变化的量和n的关系与不变的量得到图形中★的个数与n的关系是解决本题的关键.16.如图所示,摆第一个“小屋子”要5枚棋子,摆第二个要11枚棋子,摆第三个要17枚棋子,则摆第30个“小屋子”要___枚棋子.【答案】1.【解析】根据题意分析可得:第1个图案中棋子的个数5个,第2个图案中棋子的个数5+6=11个,…,每个图形都比前一个图形多用6个,继而可求出第30个“小屋子”需要的棋子数.【详解】根据题意分析可得:第1个图案中棋子的个数5个.第2个图案中棋子的个数5+6=11个.….每个图形都比前一个图形多用6个.∴第30个图案中棋子的个数为5+29×6=1个.故答案为1.【点睛】考核知识点:图形的规律.分析出一般数量关系是关键.17.如图,平面直角坐标系中,矩形OABC 的顶点A (﹣6,0),C (0,23).将矩形OABC 绕点O 顺时针方向旋转,使点A 恰好落在OB 上的点A 1处,则点B 的对应点B 1的坐标为_____.【答案】(-23,6)【解析】分析:连接OB 1,作B 1H ⊥OA 于H ,证明△AOB ≌△HB 1O ,得到B 1H=OA=6,OH=AB=23,得到答案.详解:连接OB 1,作B 1H ⊥OA 于H ,由题意得,OA=6,3则tan ∠BOA=3AB OA =, ∴∠BOA=30°, ∴∠OBA=60°,由旋转的性质可知,∠B 1OB=∠BOA=30°, ∴∠B 1OH=60°, 在△AOB 和△HB 1O ,111B HO BAOB OH ABO OB OB ∠∠⎧⎪∠∠⎨⎪⎩===, ∴△AOB ≌△HB 1O , ∴B 1H=OA=6,3 ∴点B 1的坐标为(3,6), 故答案为(36).点睛:本题考查的是矩形的性质、旋转变换的性质,掌握矩形的性质、全等三角形的判定和性质定理是解题的关键.18.如图,将矩形ABCD绕其右下角的顶点按顺时针方向旋转90°至图①位置,继续绕右下角的顶点按顺时针方向旋转90°至图②位置,以此类推,这样连续旋转2017次.若AB=4,AD=3,则顶点A在整个旋转过程中所经过的路径总长为_____.【答案】3026π.【解析】分析:首先求得每一次转动的路线的长,发现每4次循环,找到规律然后计算即可.详解:∵AB=4,BC=3,∴AC=BD=5,转动一次A的路线长是:90π42π180⨯=,转动第二次的路线长是:90π55π1802⨯=,转动第三次的路线长是:90π33π1802⨯=,转动第四次的路线长是:0,以此类推,每四次循环,故顶点A转动四次经过的路线长为:53ππ2π6π22++=,∵2017÷4=504…1,∴顶点A转动四次经过的路线长为:6π5042π3026π.⨯+=故答案为3026π.点睛:考查旋转的性质和弧长公式,熟记弧长公式是解题的关键.三、解答题(本题包括8个小题)19.今年3月12日植树节期间,学校预购进A,B两种树苗.若购进A种树苗3棵,B种树苗5棵,需2100元;若购进A种树苗4棵,B种树苗10棵,需3800元.求购进A,B两种树苗的单价;若该学校准备用不多于8000元的钱购进这两种树苗共30棵,求A种树苗至少需购进多少棵.【答案】(1)A种树苗的单价为200元,B种树苗的单价为300元;(2)10棵【解析】试题分析:(1)设B种树苗的单价为x元,则A种树苗的单价为y元.则由等量关系列出方程组解答即可;(2)设购买A种树苗a棵,则B种树苗为(30﹣a)棵,然后根据总费用和两种树苗的棵数关系列出不等式解答即可.试题解析:(1)设B种树苗的单价为x元,则A种树苗的单价为y元,可得:352100{4103800y xy x+=+=,解得:300200x y =⎧⎨=⎩, 答:A 种树苗的单价为200元,B 种树苗的单价为300元.(2)设购买A 种树苗a 棵,则B 种树苗为(30﹣a )棵,可得:200a+300(30﹣a )≤8000,解得:a≥10,答:A 种树苗至少需购进10棵.考点:1.一元一次不等式的应用;2.二元一次方程组的应用20.在平面直角坐标系中,抛物线y =(x ﹣h )2+k 的对称轴是直线x =1.若抛物线与x 轴交于原点,求k 的值;当﹣1<x <0时,抛物线与x 轴有且只有一个公共点,求k 的取值范围.【答案】(1)k =﹣1;(2)当﹣4<k <﹣1时,抛物线与x 轴有且只有一个公共点.【解析】(1)由抛物线的对称轴直线可得h ,然后再由抛物线交于原点代入求出k 即可;(2)先根据抛物线与x 轴有公共点求出k 的取值范围,然后再根据抛物线的对称轴及当﹣1<x <2时,抛物线与x 轴有且只有一个公共点,进一步求出k 的取值范围即可.【详解】解:(1)∵抛物线y =(x ﹣h )2+k 的对称轴是直线x =1,∴h =1,把原点坐标代入y =(x ﹣1)2+k ,得,(2﹣1)2+k =2,解得k =﹣1;(2)∵抛物线y =(x ﹣1)2+k 与x 轴有公共点,∴对于方程(x ﹣1)2+k =2,判别式b 2﹣4ac =﹣4k≥2,∴k≤2.当x =﹣1时,y =4+k ;当x =2时,y =1+k ,∵抛物线的对称轴为x =1,且当﹣1<x <2时,抛物线与x 轴有且只有一个公共点,∴4+k >2且1+k <2,解得﹣4<k <﹣1,综上,当﹣4<k <﹣1时,抛物线与x 轴有且只有一个公共点.【点睛】抛物线与一元二次方程的综合是本题的考点,熟练掌握抛物线的性质是解题的关键.21.如图,菱形ABCD 中,,E F 分别是,BC CD 边的中点.求证:AE AF =.【答案】证明见解析.【解析】根据菱形的性质,先证明△ABE≌△ADF,即可得解. 【详解】在菱形ABCD中,AB=BC=CD=AD,∠B=∠D.∵点E,F分别是BC,CD边的中点,∴BE=12BC,DF=12CD,∴BE=DF.∴△ABE≌△ADF,∴AE=AF.22.如图,△ABC三个定点坐标分别为A(﹣1,3),B(﹣1,1),C(﹣3,2).请画出△ABC关于y轴对称的△A1B1C1;以原点O为位似中心,将△A1B1C1放大为原来的2倍,得到△A2B2C2,请在第三象限内画出△A2B2C2,并求出S△A1B1C1:S△A2B2C2的值.【答案】(1)见解析;(2)图见解析;1 4 .【解析】(1)根据网格结构找出点A、B、C关于y轴的对称点A1、B1、C1的位置,然后顺次连接即可.(2)连接A1O并延长至A2,使A2O=2A1O,连接B1O并延长至B2,使B2O=2B1O,连接C1O并延长至C2,使C2O=2C1O,然后顺次连接即可,再根据相似三角形面积的比等于相似比的平方解答.【详解】解:(1)△A1B1C1如图所示.(2)△A2B2C2如图所示.∵△A1B1C1放大为原来的2倍得到△A2B2C2,∴△A1B1C1∽△A2B2C2,且相似比为12.∴S△A1B1C1:S△A2B2C2=(12)2=14.23.解不等式组:3(1)72323x xxx x--<⎧⎪-⎨-≤⎪⎩,并把解集在数轴上表示出来.【答案】x≥3 5【解析】分析:分别求解两个不等式,然后按照不等式的确定方法求解出不等式组的解集,然后表示在数轴上即可.详解:()3172323x xxx x⎧--<⎪⎨--≤⎪⎩①②,由①得,x>﹣2;由②得,x≥35,故此不等式组的解集为:x≥35.在数轴上表示为:.点睛:本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.24.俄罗斯世界杯足球赛期间,某商店销售一批足球纪念册,每本进价40元,规定销售单价不低于44元,且获利不高于30%.试销售期间发现,当销售单价定为44元时,每天可售出300本,销售单价每上涨1元,每天销售量减少10本,现商店决定提价销售.设每天销售量为y本,销售单价为x元.请直接写出y 与x之间的函数关系式和自变量x的取值范围;当每本足球纪念册销售单价是多少元时,商店每天获利2400元?将足球纪念册销售单价定为多少元时,商店每天销售纪念册获得的利润w元最大?最大利润是多少元?【答案】(1)y=﹣10x+740(44≤x≤52);(2)当每本足球纪念册销售单价是50元时,商店每天获利2400元;(3)将足球纪念册销售单价定为52元时,商店每天销售纪念册获得的利润w元最大,最大利润是2640元.【解析】(1)售单价每上涨1元,每天销售量减少10本,则售单价每上涨(x﹣44)元,每天销售量减少10(x﹣44)本,所以y=300﹣10(x﹣44),然后利用销售单价不低于44元,且获利不高于30%确定x的范围;(2)利用每本的利润乘以销售量得到总利润得到(x﹣40)(﹣10x+740)=2400,然后解方程后利用x的范围确定销售单价;(3)利用每本的利润乘以销售量得到总利润得到w=(x﹣40)(﹣10x+740),再把它变形为顶点式,然后利用二次函数的性质得到x=52时w最大,从而计算出x=52时对应的w的值即可.【详解】(1)y=300﹣10(x﹣44),即y=﹣10x+740(44≤x≤52);(2)根据题意得(x﹣40)(﹣10x+740)=2400,解得x1=50,x2=64(舍去),答:当每本足球纪念册销售单价是50元时,商店每天获利2400元;(3)w=(x﹣40)(﹣10x+740)=﹣10x2+1140x﹣29600=﹣10(x﹣57)2+2890,当x<57时,w随x的增大而增大,而44≤x≤52,所以当x=52时,w有最大值,最大值为﹣10(52﹣57)2+2890=2640,答:将足球纪念册销售单价定为52元时,商店每天销售纪念册获得的利润w元最大,最大利润是2640元.【点睛】本题考查了二次函数的应用,一元二次方程的应用,解决二次函数应用类问题时关键是通过题意,确定出二次函数的解析式,然后利用二次函数的性质确定其最大值;在求二次函数的最值时,一定要注意自变量x的取值范围.25.画出二次函数y=(x﹣1)2的图象.【答案】见解析【解析】首先可得顶点坐标为(1,0),然后利用对称性列表,再描点,连线,即可作出该函数的图象.【详解】列表得:如图:.【点睛】此题考查了二次函数的图象.注意确定此二次函数的顶点坐标是关键.26.小明和小亮玩一个游戏:取三张大小、质地都相同的卡片,上面分别标有数字2、3、4(背面完全相同),现将标有数字的一面朝下.小明从中任意抽取一张,记下数字后放回洗匀,然后小亮从中任意抽取一张,计算小明和小亮抽得的两个数字之和.请你用画树状图或列表的方法,求出这两数和为6的概率.如果和为奇数,则小明胜;若和为偶数,则小亮胜.你认为这个游戏规则对双方公平吗?做出判断,并说明理由.【答案】(1)列表见解析;(2)这个游戏规则对双方不公平.【解析】(1)首先根据题意列表,然后根据表求得所有等可能的结果与两数和为6的情况,再利用概率公式求解即可;(2)分别求出和为奇数、和为偶数的概率,即可得出游戏的公平性.【详解】(1)列表如下:由表可知,总共有9种结果,其中和为6的有3种,则这两数和为6的概率31 93 =;(2)这个游戏规则对双方不公平.理由如下:因为P(和为奇数)49=,P(和为偶数)59=,而4599≠,所以这个游戏规则对双方是不公平的.【点睛】本题考查了列表法求概率.注意树状图与列表法可以不重不漏的表示出所有等可能的情况.用到的知识点为:概率=所求情况数与总情况数之比.中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.在刚刚结束的中考英语听力、口语测试中,某班口语成绩情况如图所示,则下列说法正确的是()A.中位数是9 B.众数为16 C.平均分为7.78 D.方差为2【答案】A【解析】根据中位数,众数,平均数,方差等知识即可判断;【详解】观察图象可知,共有50个学生,从低到高排列后,中位数是25位与26位的平均数,即为1.故选A.【点睛】本题考查中位数,众数,平均数,方差的定义,解题的关键是熟练掌握基本知识,属于中考常考题型.2.已知代数式x+2y的值是5,则代数式2x+4y+1的值是()A.6 B.7 C.11 D.12【答案】C【解析】根据题意得出x+2y=5,将所求式子前两项提取2变形后,把x+2y=5代入计算即可求出值.【详解】∵x+2y=5,∴2x+4y=10,则2x+4y+1=10+1=1.故选C.【点睛】此题考查了代数式求值,利用了整体代入的思想,是一道基本题型.3.如图,一次函数y1=x+b与一次函数y2=kx+4的图象交于点P(1,3),则关于x的不等式x+b>kx +4的解集是()A.x>﹣2 B.x>0 C.x>1 D.x<1【答案】C【解析】试题分析:当x>1时,x+b>kx+4,即不等式x+b >kx+4的解集为x >1.故选C .考点:一次函数与一元一次不等式.4.如图,在△ABC 中,点D 是AB 边上的一点,若∠ACD=∠B,AD=1,AC=2,△ADC 的面积为1,则△BCD 的面积为( )A .1B .2C .3D .4 【答案】C【解析】∵∠ACD=∠B ,∠A=∠A ,∴△ACD ∽△ABC , ∴12AC AD AB AC ==, ∴2ACDABC S AD SAC ⎛⎫= ⎪⎝⎭, ∴2112ABCS ⎛⎫= ⎪⎝⎭, ∴S △ABC =4,∴S △BCD = S △ABC - S △ACD =4-1=1.故选C考点:相似三角形的判定与性质.5.在同一平面直角坐标系中,一次函数y =kx ﹣2k 和二次函数y =﹣kx 2+2x ﹣4(k 是常数且k≠0)的图象可能是( )A .B .C .D .【答案】C【解析】根据一次函数与二次函数的图象的性质,求出k 的取值范围,再逐项判断即可.【详解】解:A 、由一次函数图象可知,k >0,∴﹣k <0,∴二次函数的图象开口应该向下,故A 选项不合题意;B、由一次函数图象可知,k>0,∴﹣k<0,-22k-=1k>0,∴二次函数的图象开口向下,且对称轴在x轴的正半轴,故B选项不合题意;C 、由一次函数图象可知,k<0,∴﹣k>0,-22k-=1k<0,,∴二次函数的图象开口向上,且对称轴在x轴的负半轴,一次函数必经过点(2,0),当x=2时,二次函数值y=﹣4k>0,故C选项符合题意;D、由一次函数图象可知,k<0,∴﹣k>0,-22k-=1k<0,,∴二次函数的图象开口向上,且对称轴在x轴的负半轴,一次函数必经过点(2,0),当x=2时,二次函数值y=﹣4k>0,故D选项不合题意;故选:C.【点睛】本题考查一次函数与二次函数的图象和性质,解决此题的关键是熟记图象的性质,此外,还要主要二次函数的对称轴、两图象的交点的位置等.6.下列计算或化简正确的是()A.234265+=B.842=C.2(3)3-=-D.2733÷=【答案】D【解析】解:A.不是同类二次根式,不能合并,故A错误;B.822=,故B错误;C.2(3)3-=,故C错误;D.27327393÷=÷==,正确.故选D.7.方程5x+2y=-9与下列方程构成的方程组的解为212xy=-⎧⎪⎨=⎪⎩的是()A.x+2y=1 B.3x+2y=-8C.5x+4y=-3 D.3x-4y=-8【答案】D【解析】试题分析:将x与y的值代入各项检验即可得到结果.解:方程5x+2y=﹣9与下列方程构成的方程组的解为的是3x﹣4y=﹣1.故选D.点评:此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程成立的未知数的值.8.若△ABC与△DEF相似,相似比为2:3,则这两个三角形的面积比为()A.2:3 B.3:2 C.4:9 D.9:4【答案】C【解析】由△ABC与△DEF相似,相似比为2:3,根据相似三角形的性质,即可求得答案.【详解】∵△ABC与△DEF相似,相似比为2:3,∴这两个三角形的面积比为4:1.故选C.【点睛】此题考查了相似三角形的性质.注意相似三角形的面积比等于相似比的平方.9.如图,AB与⊙O相切于点A,BO与⊙O相交于点C,点D是优弧AC上一点,∠CDA=27°,则∠B的大小是()A.27°B.34°C.36°D.54°【答案】C【解析】由切线的性质可知∠OAB=90°,由圆周角定理可知∠BOA=54°,根据直角三角形两锐角互余可知∠B=36°.【详解】解:∵AB与⊙O相切于点A,∴OA⊥BA.∴∠OAB=90°.∵∠CDA=27°,∴∠BOA=54°.∴∠B=90°-54°=36°.故选C.考点:切线的性质.10.我国古代数学家刘徽创立的“割圆术”可以估算圆周率π,理论上能把π的值计算到任意精度.祖冲之继承并发展了“割圆术”,将π的值精确到小数点后第七位,这一结果领先世界一千多年,“割圆术”的第一步是计算半径为1的圆内接正六边形的面积S6,则S6的值为()A.3B.23C 33D.233【答案】C【解析】根据题意画出图形,结合图形求出单位圆的内接正六边形的面积.【详解】如图所示,单位圆的半径为1,则其内接正六边形ABCDEF 中,△AOB 是边长为1的正三角形,所以正六边形ABCDEF 的面积为S 6=6×12×1×1×sin60°=332. 故选C .【点睛】本题考查了已知圆的半径求其内接正六边形面积的应用问题,关键是根据正三角形的面积,正n 边形的性质解答.二、填空题(本题包括8个小题)11.因式分解:2xy 4x -= .【答案】.【解析】要将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否是完全平方公式或平方差公式,若是就考虑用公式法继续分解因式.因此,先提取公因式x 后继续应用平方差公式分解即可:()()()22xy 4x x y 4x y 2y 2-=-=+-. 12.已知关于 x 的函数 y=(m ﹣1)x 2+2x+m 图象与坐标轴只有 2 个交点,则m=_______.【答案】1 或 0 15± 【解析】分两种情况讨论:当函数为一次函数时,必与坐标轴有两个交点;当函数为二次函数时,将(0,0)代入解析式即可求出m 的值.【详解】解:(1)当 m ﹣1=0 时,m=1,函数为一次函数,解析式为 y=2x+1,与 x 轴交点坐标为(﹣12,0);与 y 轴交点坐标(0,1).符合题意. (2)当 m ﹣1≠0 时,m≠1,函数为二次函数,与坐标轴有两个交点,则过原点,且与 x 轴有两个不同的交点,于是△=4﹣4(m ﹣1)m >0,解得,(m ﹣12)2<54, 解得 m <52 或 m >1-52.将(0,0)代入解析式得,m=0,符合题意.(3)函数为二次函数时,还有一种情况是:与 x 轴只有一个交点,与 Y 轴交于交于另一点, 这时:△=4﹣4(m ﹣1)m=0,解得: .故答案为1 或 0 . 【点睛】此题考查一次函数和二次函数的性质,解题关键是必须分两种情况讨论,不可盲目求解.13.已知a +b =1,那么a 2-b 2+2b =________.【答案】1【解析】解:∵a+b=1,∴原式=()()()2122 1.a b a b b a b b a b b a b +-+=⨯-+=-+=+=故答案为1.【点睛】本题考查的是平方差公式的灵活运用.14.写出一个一次函数,使它的图象经过第一、三、四象限:______.【答案】y=x ﹣1 (答案不唯一)【解析】一次函数图象经过第一、三、四象限,则可知y=kx+b 中k>0,b<0,由此可得如:y=x ﹣1 (答案不唯一).15.不等式组2x+1x {4x 3x+2>≤的解集是 ▲ . 【答案】﹣1<x≤1【解析】解一元一次不等式组.【分析】解一元一次不等式组,先求出不等式组中每一个不等式的解集,再利用口诀求出这些解集的公共部分:同大取大,同小取小,大小小大中间找,大大小小解不了(无解).因此,解第一个不等式得,x >﹣1,解第二个不等式得,x≤1,∴不等式组的解集是﹣1<x≤1.16.如图,点A 在双曲线k y x=上,AB ⊥x 轴于B ,且△AOB 的面积S △AOB =2,则k=______.【答案】-4【解析】:由反比例函数解析式可知:系数k x y =⋅, ∵S △AOB =2即122k x y =⋅=,∴224k xy ==⨯=; 又由双曲线在二、四象限k <0,∴k=-417.如图,把△ABC 绕点C 按顺时针方向旋转35°,得到△A’B’C ,A’B’交AC 于点D ,若∠A’DC=90°,则∠A= °.【答案】55.【解析】试题分析:∵把△ABC 绕点C 按顺时针方向旋转35°,得到△A’B’C∴∠ACA’=35°,∠A =∠A’,.∵∠A’DC=90°,∴∠A’ =55°.∴∠A=55°.考点:1.旋转的性质;2.直角三角形两锐角的关系.18.中国古代的数学专著《九章算术》有方程组问题“五只雀,六只燕,共重1斤(等于16两),雀重燕轻.互换其中一只,恰好一样重.”设每只雀、燕的重量各为x 两,y 两,则根据题意,可得方程组为___.【答案】561645x y x y y x +=⎧⎨+=+⎩【解析】设每只雀、燕的重量各为x 两,y 两,由题意得:5616{45x y x y y x+++==。
最新-2018年江苏省南京市秦淮区九年级数学第一次模拟

秦淮区2018—2018年初三数学模拟试卷(一)满分120分.考试时间120分钟小 计题 号 一 二 三 四 五 六 七 八 得 分下列各题所附的四个选项中,有且只有一个是正确的.一、选择题(每小题2分,共20分)1.比-1小的数是A . 1B .-1C .-2D .0 2.计算x 3·x 的结果是A .x 2B .x 3C .x 4D .2 x 4 3.嫦娥一号运行1小时的行程约28 600 000 m ,用科学记数法可表示为A .0.286×118 mB .2.86×118 mC .28.6×118 mD .2.86×118 m 4.化简 4 等于A .-2B .2C .±2D .16 5.下列二次根式中,与2是同类二次根式的是A . 4B . 6C .8D .12 6.方程x 2-4x +4=0的根的情况是A .有两个不相等的实数根B .有两个相等的实数根C .有一个实数根D .没有实数根7.小华拿一个矩形木框在阳光下玩,矩形木框在地面上形成的投影不可能是A .B .C .D . 8.分式方程 1x –2 = 3x 的解为A .x = 1B .x = 2C .x = 3D .原方程无解 9.如图,在Rt △ABC 中,∠C = 90°,∠BAC 的角平分线AD 交BC于点D ,CD=2,则点D 到AB 的距离是A .1B .2C .3D .410.观察图中两组数据的折线图,你认为下列说法中正确的是 A.离散程度较大的是甲组数据 B.离散程度较大的是乙组数据C.甲、乙两组数据离散程度一样大 D.仅凭本图不能作出判断二、填空题(每小题3分,共18分) 11.x – 1在实数范围内有意义,则x 的取值范围是 . 12.如图,直线a b ,被直线c 所截,若a b ∥,160∠=°, 则2∠= °.1 2第12c abAB CD8%DCB A16%20%56%13.在一次抽奖活动中,中奖概率是0.12,则不中奖的概率是 . 14.如果2x – 1的值为 12,那么4x 2-4x – 14 = .15.写出反比例函数y = – 1x 图象上一个点的坐标是 . 16.如图,点E (0,4),O (0,0),C (5,0)在⊙A 上,B E 是⊙A 上的一 条弦.则tan ∠OBE = . 三、(每小题6分,共18分) 17.计算: 8+(2)0-12 .18.先化简,再求值:23111x x x----,其中x =2.19.如图,已知:E 、F 是ABCD 的对角线AC 上的两点. DE ⊥AC , BF ⊥AC .求证: DE = BF .四、(每题6分,共18分)20.某校九年级对最近一次月考进行了抽样分析,其中某道单选题的答题情况如下图所示.(1)该校对多少名学生进行了抽样?(2)如果正确答案是C ,本次抽样中,答对此道题的有多少人?(3)若该校九年级共有750名学生参加考试,请你估计本次考试中答对此道题的人数约为多少?21.为迎接2018北京奥运会,某校举行班级乒乓球对抗赛,每个班级选派1对男女混合双打选手参赛,小明、小亮两名男生准备在小敏、小颖、小丽三名女生中各自随机选择一名组成一对参赛.(1)列出所有可能的配对结果;(2)如果小明与小丽、小亮与小敏是最佳组合,那么组成最佳组合的概率是多少?BACEOxy22.如图,在等边△ABC 中,AD ⊥BC 于点D ,一个直径与AD 相等的圆与AB 相切于点E ,与BC 相切于点F ,连接EF .⑴ 判断EF 与AC 的位置关系(不必说明理由);⑵ FG 是圆的一条直径,连接AG .判断AG 与圆的位置关系,并说明理由.五、(每小题7分,共14分)23.2001年以来,我国曾五次实施药品降价,累计降价的总金额为269亿元,五次药品降价的年份与相应降价金额如表所示,表中缺失了2018年、2018年相关数据.已知2018年药品降价金额是2018年药品降价金额的3倍,结合表中信息,求2018年和2018年的药品降价金额.年份 2001 2003 2004 2018 2018 降价金额(亿元)5420 3524.已知二次函数y = ax 2 – 2 ax + 3在直角坐标平面内的部分图象如图所示. (1)求该二次函数的关系式; (2)将该二次函数的图象沿x 轴向左平移几个单位,可使平移后所得图象经过坐标原点?写出平移后所得图象与x 轴的另一个交点的坐标.六、(每小题7分,共14分)25.为了测量学校旗杆AB 的高度,学校数学实践小组做了如下实验:在阳光的照射下,旗杆AB 的影子恰好落在水平地面BC 和斜坡坡面CD 上,测得BC = 20 m ,CD = 18 m ,太阳光线AD 与水平面夹角为30°且与斜坡CD 垂直.根据以上数据,请你求出旗杆AB 的高度.(结果精确到0.1 m ,参考数据:2 = 1.41,3 = 1.73)26.南京电视台在黄金时段的2分钟广告时间内,计划插播分别为15秒和30秒的两种广告.电视台规定黄金时段的广告收费标准是:时长为15秒的广告每播一次收费0.8万元,时长为30秒的广告每播一次收费1.2万元.设插播时长为15秒的广告x 次,2分钟广告时间内的总收益为y 万元.(1)求y 与x 之间的的函数关系式; (2)如果要求两种时长广告插播的次数都不少于2次,那么插播时长为15秒的广告多少次时,2分钟广告时间内电视台的总收益最大?最大收益是多少万元?A BC D 30°七、(本题8分)27.阅读下列材料:任意给定一个矩形ABCD,一定存在另一个矩形A´B´C´D´,使它的周长和面积分别是矩形ABCD周长和面积的k倍(k≥2,且k 是整数).我们把矩形A´B´C´D´叫做矩形ABCD的k倍矩形.例:矩形ABCD的长和宽分别为3和1,它的周长和面积分别为8和3;矩形A´B´C´D´的长和宽分别为4+10和4–10,它的周长和面积分别为16和6.这时,矩形A´B´C´D´的周长和面积分别是矩形ABCD周长和面积的2倍,则矩形A´B´C´D´叫做矩形ABCD的2倍矩形.解答下列问题:(1)填空:一个矩形的周长和面积分别为10和6,则它的2倍的矩形的周长为,面积为;(2)已知矩形ABCD的长和宽分别为2和1,那么是否存在它的k倍矩形A´B´C´D´,使A´B´:AB=B´C´:BC?若存在,请求出k的值;若不存在,请说明理由.八、(本题10分)28.如图所示,在平面直角坐标系中,四边形OABC是等腰梯形,BC∥OA,OA=7,AB=4,∠COA=60°,点P为x轴上的一个动点(点P与点0,A不重合).连结CP,过点P作PD 交AB于点D.(1)求点B 的坐标;(2)当点P 运动什么位置时,△OCP 为等腰三角形,求这时点P 的坐标; (3)当点P 运动什么位置时,使得∠CPD =∠OAB ,且AB BD =85,求这时点P 的坐标。
2018年南京市中考数学第一次模拟试卷-含答案

2018年南京市中考数学第一次模拟试卷注意事项:1.本试卷共6页.全卷满分120分.考试时间为120分钟.考生答题全部答在答题卡上,答在本试卷上无效.2.请认真核对监考教师在答题纸上所粘贴条形码的姓名、考试证号是否与本人相符合,再将自己的姓名、准考证号用0.5毫米黑色墨水签字笔填写在答题卡上.3.答选择题必须用2B 铅笔将答题卡上对应的答案标号涂黑.如需改动,请用橡皮擦干净后,再选涂其他答案.答非选择题必须用0.5毫米黑色墨水签字笔写在答题卡上的指定位置,在其它位置答题一律无效.4.作图必须用2B 铅笔作答,并请加黑加粗,描写清楚.一、选择题(本大题共6小题,每小题2分,共计12分.在每小题所给出的四个选项中,恰有一项....是符合题目要求的,请将正确选项的序号填涂在答题卡上) 1.下列实数中,无理数是A .2B .-12C .3.14D .32.下列运算正确的是A .a 2+a 3=a 5B .a 2 a 3=a 6C .a 4÷a 2=a 2D .(a 2)4=a 63.不透明的布袋中有2个红球和3个白球,所有球除颜色外无其它差别.某同学从布袋里任意摸出一个球,则他摸出红球的概率是A .35B .25C .23D .124.某篮球兴趣小组7名学生参加投篮比赛,每人投10个,投中的个数分别为:8,5,7,5,8,6,8,则这组数据的众数和中位数分别为 A .5,7 B .6,7 C .8,5 D .8,7 5.如图,AB 是⊙O 的弦,半径OC ⊥AB ,AC ∥OB ,则∠BOC 的度数为A .30°B .45°C .60°D .75°6.如图,△ABC 三个顶点分别在反比例函数y = 1 x ,y = kx 的图像上,若∠C =90°,AC ∥y 轴,BC ∥x 轴,S △ABC =8,则k 的值为A .3B .4C .5D .6(第5题)Cy二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题卡相应位置.......上) 7. 若式子x -22在实数范围内有意义,则x 的取值范围是 ▲ . 8.2017南京国际马拉松于4月16日在本市正式开跑.本次参赛选手共12629人,将12629用科学记数法表示为 ▲ .9.因式分解:a 3-2a 2+a = ▲ .10.计算:42-8 = ▲ .11.已知 x 1,x 2是方程 x 2-4x +3=0 的两个实数根,则x 1+x 2= ▲ .12.将点A (2,-1)向左平移3个单位,再向上平移4个单位得到点A ′,则点A ′的坐标是 ▲ . 13.如图,点A 、B 、C 、D 都在方格纸的格点上,若△AOB 绕点O 按逆时针方向旋转到△COD的位置,则旋转角为 ▲ °.14.如图,在平行四边形ABCD 中,点E 为AB 边上一点,将△AED 沿直线DE 翻折,点A落在点P 处,且DP ⊥BC ,则∠EDP = ▲ °.15.如图,正五边形ABCDE 的边长为2,分别以点C 、D 为圆心,CD 长为半径画弧,两弧交于点F ,则⌒BF 的长为 ▲ .16.如图,在等腰△ABC 中,AB =AC =5,BC =6,半径为1的⊙O 分别与AB 、AC 相切于E 、F 两点,BG 是⊙O 的切线,切点为G ,则BG 的长为 ▲ .ABCDEP(第14题)A(第16题) BC D EF(第15题)AABCD O (第13题)三、解答题(本大题共11小题,共88分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤)17.(6分)先化简,再求代数式的值:(1-1m +2)÷ m 2+2m +1m 2-4 ,其中m =1.18.(7分)解不等式组⎩⎪⎨⎪⎧x +32≥x +1,3+4(x -1)>-9,并把解集在数轴上表示出来.19.(7分)某学校以随机抽样的方式开展了“中学生喜欢数学的程度”的问卷调查,调查的结果分为A (不喜欢)、B (一般)、C (比较喜欢)、D (非常喜欢)四个等级,图1、图2是根据采集的数据绘制的两幅不完整的统计图. 请根据统计图提供的信息,回答下列问题:(1)C 等级所占的圆心角为 ▲ °; (2)请直接在图2中补全条形统计图; (3)若该校有学生1000人,请根据调查结果,估计“比较喜欢”的学生人数为多少人.某校“中学生喜欢数学的程度”的扇形统计图某校“中学生喜欢数学的程度”的条形统计图20.(8分)如图,在平行四边形ABCD 中,对角线AC 、BD 交于点O ,DE ∥AC 交BC 的延长线于点E .(1)求证:△ABC ≌△DCE ;(2)若CD =CE ,求证:AC ⊥BD .0 1 -4 -3 -2 -1 2 3 4 (第20题)A B CDE O (第19题) 等级 图2C 10% A BD 23% 32% 图121.(7分)运动会上,甲、乙、丙三位同学进行跳绳比赛,通过“手心手背”游戏决定谁先跳,规则如下:三个人同时各用一只手随机出示手心或手背,若其中有一个人的手势与另外两个不同,则此人先进行比赛;若三个人手势相同,则重新决定.那么通过一次“手心手背”游戏,甲同学先跳绳的概率是多少?22.(6分)如图,已知点P 为∠ABC 内一点,利用直尺和圆规确定一条过点P 的直线,分别交AB 、BC 于点E 、F ,使得BE =BF .(不写作法,保留作图痕迹)23.(7分)如图,用细线悬挂一个小球,小球在竖直平面内的A 、C 两点间来回摆动,A 点与地面距离AN =14cm ,小球在最低点B 时,与地面距离BM =5cm ,∠AOB =66°,求细线OB 的长度. (参考数据:sin66°≈0.91,cos66°≈0.40,tan66°≈2.25)A(第22题)M N O (第23题)24.(7分)某水果店销售樱桃,其进价为40元/千克,按60元/千克出售,平均每天可售出100千克.经调查发现,这种樱桃每降价1元/千克,每天可多售出10千克,若该水果店销售这种樱桃要想每天获利2240元,每千克樱桃应降价多少元?25.(9分)已知一元二次方程x2-4mx+4m2+2m-4=0,其中m为常数.(1)若该一元二次方程有实数根,求m的取值范围.(2)设抛物线y=x2-4mx+4m2+2m-4的顶点为M,点O为坐标原点,当m变化时,求线段MO长度的最小值.26.(12分)今年暑假,小勇、小红打算从城市A到城市B旅游,他们分别选择下列两种交通方案:方案一:小勇准备从城市A坐飞机先到城市C,再从城市C坐汽车到城市B,整个行程中,乘飞机所花的时间比汽车少用3h.如图1所示,城市A、B、C在一条直线上,且A、C两地的距离为2400km,飞机的平均速度是汽车的8倍.方案二:小红准备坐高铁直达城市B,其离城市A的距离y2(km)与出发时间x(h)之间的函数关系如图2所示.(1)AB两地的距离为▲km;(2)求飞机飞行的平均速度;(3)若两家同时出发,请在图2中画出小勇离城市A的距离y1与x之间的函数图像,并求出y1与x的函数关系式.A BC图1h)3 4 5 6 7图2(第26题)27.(12分)定义:当点P 在射线OA 上时,把OPOA的值叫做点P 在射线OA 上的射影值;当点P 不在射线OA 上时,把射线OA 上与点P 最近点的射影值,叫做点P 在射线OA 上的射影值.例如:如图1,△OAB 三个顶点均在格点上,BP 是OA 边上的高,则点P 和点B 在射线OA 上的射影值均为OP OA =13.(1)在△OAB 中,①点B 在射线OA 上的射影值小于1时,则△OAB 是锐角三角形; ②点B 在射线OA 上的射影值等于1时,则△OAB 是直角三角形; ③点B 在射线OA 上的射影值大于1时,则△OAB 是钝角三角形. 其中真命题有A .①②B .②③C .①③D .①②③(2)已知:点C 是射线OA 上一点,CA =OA =1,以O 为圆心,OA 为半径画圆,点B 是⊙O 上任意点. ①如图2,若点B 在射线OA 上的射影值为12.求证:直线BC 是⊙O 的切线.②如图3,已知D 为线段BC 的中点,设点D 在射线OA 上的射影值为x ,点D 在射线OB 上的射影值为y ,直接写出y 与x 之间的函数关系式.图2BCDOA图3图1 (第27题)数学参考答案及评分标准说明:本评分标准每题给出了一种或几种解法供参考,如果考生的解法与本解答不同,参照本评分标准的精神给分.一、选择题(每小题2分,共计12分)二、填空题(每小题2分,共计20分)7.x ≥2 8.1.2629×104 9.a (a -1)2 10.0 11.4 12.(-1,3) 13.90° 14.45° 15.815π 16.113三、解答题(本大题共10小题,共计88分) 17.(本题6分)解:原式=m +1m +2 (m +2)(m -2)(m +2)2········································································· 2分=m -2m +1······························································································ 4分 当m =1时,原式=1-21+1=-12. ·························································· 6分18.(本题7分)解:解不等式①,得x ≤1. ·············································································· 2分解不等式②,得x >-2. ·········································································· 4分 所以,不等式组的解集是-2<x ≤1. ······················································· 5分 画图正确(略). ····················································································· 7分 19.(本题7分)(1)126; ···································································································· 2分 (2)图略; ·································································································· 4分 (3)在抽取的样本中,“比较喜欢”数学的人数所占的百分比为1-32%-10%-23%=35%, ····································································· 5分 由此可估计,该校1000名学生中,“比较喜欢”数学的人数所占的百分比35%, 1000×35%=350(人). ··········································································· 6分 答:估计这些学生中,“比较喜欢”数学的人数约有350人. ······························ 7分20.(本小题满分8分)证明:(1)∵ 四边形ABCD 是平行四边形,∴ AB //CD ,AB =DC .∴ ∠ABC =∠DCE . ∵ AC //DE ,∴ ∠ACB =∠DEC . ································································· 3分在△ABC 和△DCE 中,∠ABC =∠DCE ,∠ACB =∠DEC ,AB =DC .∴△ABC ≌△DCE (AAS ). ······································································ 4分(2)由(1)知△ABC ≌△DCE ,则有BC =CE . ∵ CD =CE , ∴ BC =CD .∴四边形ABCD 为菱形. ·········································································· 7分 ∴AC ⊥BD . ··························································································· 8分 21.(本题7分)列表或树状图表示正确; ·········································································· 3分22方法1: 方法2: ··············································································· 6分 23.(本题7分)解:过点A 作AD ⊥OB 于点D .由题意得AN ⊥MN ,OB ⊥MN ,AD ⊥OB ,∴四边形ANMD 是矩形,∴DM =AN , ·············································分设OB =OA =x cm ,在Rt ∆OAD 中,∠ODA =90°cos ∠AOD =OD OA = x +5-14x≈0.6. ················分解得x =15cm .经检验,x =15为原方程的解. 答:细线OB 的长度是15cm . ······················分 24.(本小题满分7分)解:设每千克樱桃应降价x 元,根据题意,得 ······················································ 1分(60-x -40)(100+10x )=2240. ···························································· 4分 解得:x 1=4,x 2=6. ··············································································· 6分 答:每千克樱桃应降价4元或6元. ··························································· 7分 25.(本小题满分9分)(1)解法一:∵关于x 的一元二次方程x 2-4mx +4m 2+2m -4=0有实数根, ∴△=(-4m )2-4(4m 2+2m -4)=-8m +16≥0, ··································· 3分 ∴m ≤2. ······························································································· 4分解法二:∵x 2-4mx +4m 2+2m -4=0,∴(x -2m )2=4-2m . ······················· 3分 ∴m ≤2. ······························································································· 4分 (2)解法一:y =x 2-4mx +4m 2+2m -4的顶点为M 为(2m ,2m -4), ············ 6分 ∴MO 2=(2m )2+(2m -4)2=8(m -1)2+8. ········································· 7分 ∴MO 长度的最小值为22. ····································································· 9分 解法二:y =x 2-4mx +4m 2+2m -4的顶点为M 为(2m ,2m -4), ···················· 6分 ∴点M 在直线l :y=x -4上, ···································································· 7分 ∴点O 到l 的距离即为MO 长度的最小值22. ············································ 9分 26.(本小题满分12分)解:(1)3000;······························································································ 2分 (2)设汽车的速度为x km/h ,则飞机的速度为8x km/h ,根据题意得:3000-2400x -24008x =3, ············································································ 4分 解之得:x =100.经检验,x =100为原方程的解.则飞机的速度为8×100=800 km/h .答:飞机的速度为800km/h . ····································································· 6分 (3)图略. ··························································································· 8分 当0≤x ≤3,y 1=800x .当3<x ≤9,,设函数关系式为y 1=kx +b ,代入点(3,2400),(9,3000)得:⎩⎨⎧3k +b =2400,9k +b =3000解得⎩⎨⎧k =100,b =2100.∴函数关系式为:y 1=100x +2100 ···························································· 12分 27.(本题10分)解:(1)B . ·································································································· 2分(2)解法一:过点B 作BH 垂直OC ,垂足为H .∵B 在射线OA 上的射影值为12,∴OH OA =12,∵OB =OA ,∴OH OB =12,∵CA =OA ,∴OB OC =12,∴OH OB =OBOC.又∵∠O =∠O , ∴△OHB ∽△OBC . ····························································∴∠OBC =∠OHB =90°.∴OB ⊥BC ,∵点B 是圆O 上的一点, ∴BC 是圆O 的切线. ·············································································· 8分 解法二:连接AB ,过点B 作BH 垂直OC ,垂足为H .∵B 在射线OA 上的射影值为12,∴OH OA =12,∵OB =OA ,∴OH OB =12=cos ∠O ,∴∠O =60°.∵OB =OA ,∴△OBA 是等边三角形,∴∠OAB =60°. ·············· 4分∵AC =OA ,∴AB =AC ,∴∠ABC =∠C ,∴∠C =30°. ··································· 6分 ∴∠OBC =90°.∴OB ⊥BC ,∵点B 是圆O 上的一点, ∴BC 是圆O 的切线. ·············································································· 8分 (3)y =0 (12≤x <34); ··············································································· 10分y =2x -32(34≤x ≤32) ········································································· 12分。
2018秦淮区一模(含答案)

2017/2018学年度第二学期第一阶段学业质量监测试卷九年级数学注意事项:1.本试卷共6页.全卷满分120分.考试时间为120分钟.2.答选择题必须用2B铅笔将答题..卡.上对应的答案标号涂黑.如需改动,请用橡皮擦干净后,再选涂其他答案.答非选择题必须用0.5毫米黑色墨水签字笔写在答题卷...上的指定位置,在其他位置答题一律无效.一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题..卡.相应位置....上)1.计算(-3)2的结果是A.3 B.-3 C.9 D.-92.据某数据库统计,仅2018年第一个月,区块链行业融资额就达到680 000 000元.将680 000 000用科学记数法表示为A.0.68×109 B.6.8×107C.6.8×108D.6.8×1093.下列计算正确的是A.a3+a2=a5 B.a10÷a2=a5C.(a2)3=a5D.a2·a3=a5 4.某校航模兴趣小组共有30位同学,他们的年龄分布如下表:由于表格污损,15和16岁人数不清,则下列关于年龄的统计量可以确定的是A.平均数、中位数 B.众数、中位数C.平均数、方差 D.中位数、方差5.将二次函数y=-x2的图像向右平移2个单位长度,再向上平移3个单位长度,所得图像的函数表达式为A.y=-(x-2)2+3 B.y=-(x-2)2-3C.y=-(x+2)2+3 D.y=-(x+2)2-3 6.如图,在平面直角坐标系中,□ABCD的顶点坐标分别为A (3.6,a),B(2,2),C(b,3.4),D(8,6),则a+b 的值为A.8 B.9C.10 D.11二、填空题(本大题共10小题,每小题2分,共20分. 不需写出解答过程,请把答案直接填写在答题卷相应位置.......上) 7.-3的相反数是 ▲ ;-3的倒数是 ▲ . 8.若式子x -1在实数围有意义,则x 的取值围是 ▲ . 9.计算 3×122的结果是 ▲ .10.方程1x -2=3x 的解是 ▲ . 11.若关于x 的一元二次方程的两个根x 1,x 2满足x 1+x 2=3,x 1·x 2=2,则这个方程是▲ .(写出一个..符合要求的方程) 12.将函数y =x 的图像绕坐标原点O 顺时针旋转 13.已知⊙O 的半径为10cm ,弦AB ∥CD ,AB =12cm ,CD =16cm ,则AB 和CD 的距离为 ▲cm .14.在照明系统模拟控制电路实验中,研究人员发现光敏电阻值R (单位:Ω)与光照度E (单位:lx )之间成反比例函数关系,部分数据如下表所示,则光敏电阻值R 与光照度E 的函数表达式为 ▲ .F ,则⌒EF 的度数为 ▲ °.16.如图,在正方形ABCD 中,E 是BC 上一点,BE =13BC ,连接AE ,作BF ⊥AE ,分别与AE 、CD 交于点K 、F ,G 、H 分别在AD 、AE 上,且四边形KFGH 是矩形,则HGAB= ▲ . (第15题)(第16题)CBA DEF GHK三、解答题(本大题共11小题,共88分.请在答题卷指定区域.......作答,解答时应写出文字说明、证明过程或演算步骤)17.(6分)计算( 1 a -b - b a 2-b 2 )÷a a +b.18.(8分)解一元二次不等式x 2-4>0.请按照下面的步骤,完成本题的解答. 解:x 2-4>0可化为(x +2)(x -2)>0.(1)依据“两数相乘,同号得正”,可得不等式组①⎩⎨⎧x +2>0,x -2>0或不等式组② ▲ .(2)解不等式组①,得 ▲ . (3)解不等式组②,得 ▲ .(4)一元二次不等式x 2-4>0的解集为 ▲ .19.(8分)已知关于x 的一元二次方程(x -m )2-2(x -m )=0(m 为常数). (1)求证:不论m 为何值,该方程总有两个不相等的实数根. (2)若该方程一个根为3,求m 的值.20.(8分)如图,□ABCD 中,∠BAD 的平分线交BC 于点E ,∠ABC 的平分线交AD 于点F ,连接EF . 求证:四边形ABEF 是菱形.21.(8分)中国的茶文化源远流长,根据制作方法和茶多酚氧化(发酵)程度的不同,可分为六大类:绿茶(不发酵)、白茶(轻微发酵)、黄茶(轻发酵)、青茶(半发酵)、黑茶(后发酵)、红茶(全发酵).春节将至,为款待亲朋好友,小叶去茶庄选购茶叶.茶庄有碧螺春、龙井两种绿茶,一种青茶——武夷岩茶及一种黄茶——银针出售. (1)随机购买一种茶叶,是绿茶的概率为 ▲ ;(2)随机购买两种茶叶,求一种是绿茶、一种是银针的概率.A BCDEF (第20题)22.(8分)如图,甲、乙两人在一次射击比赛中击中靶的情况(击中靶中心“×”所在的圆面为10环,靶中各数字表示该数所在圆环被击中所得的环数),每人射击了6次. (1)请选择适当的统计图描述甲、乙两人成绩;(2)请你运用所学的统计知识做出分析,从两个不同角度评价甲、乙两人的打靶成绩.23.(8分)某商场在“双十一”促销活动中决定对购买空调的顾客实行现金返利.规定每 购买一台空调,商场返利若干元.经调查,销售空调数量y 1(单位:台)与返利x (单位:元)之间的函数表达式为y 1=x +800.每台空调的利润y 2(单位:元)与返利x 的函数图像如图所示.(1)求y 2与x 之间的函数表达式;(2)每台空调返利多少元才能使销售空调的总利润最大?最大总利润是多少?24.(8分)一铁棒欲通过一个直角走廊.如图,是该铁棒紧挨着墙角E 通过时的两个特殊位置:当铁棒位于AB 位置时,它与墙面OG 所成的角∠ABO =51°18';当铁棒底端B 向上滑动1 m (即BD =1 m )到达CD 位置时,它与墙面OG 所成的角∠CDO =60°. 求铁棒的长.(参考数据:sin51°18'≈0.780,cos51°18'≈0.625,tan51°18'≈1.248)甲射击的靶乙射击的靶(第22题)y 2/元(第23题)(第24题)A OB CDEG25.(8分)如图,在Rt △ABC 中,∠C =90°,AC =BC ,AD 是△ABC 的角平分线,以D 为圆心,DC 为半径作⊙D ,交AD 于点E . (1)判断直线AB 与⊙D 的位置关系并证明. (2)若AC =1,求⌒CE 的长.(答案保留根号和π)26.(9分)书籍开本有数学开本指书刊幅面的规格大小.如图①,将一矩形印刷用纸对折后可以得到2开纸,再对折得到4开纸,以此类推可以得到8开纸、16开纸…… 若这矩形印刷用纸的短边长为a .(1)如图②,若将这矩形印刷用纸ABCD (AB >BC )进行折叠,使得BC 与AB 重合,点C 落在点F 处,得到折痕BE ;展开后,再次折叠该纸,使点A 落在E 处,此时折痕恰好经过点B ,得到折痕BG,求AB BC的值.(2)如图③,2开纸BCIH 和4开纸AMNH 的对角线分别是HC 、HM .说明HC ⊥HM .(3)将图①中的2开纸、4开纸、8开纸和16开纸按如图④所示的方式摆放,依次连接点A 、B 、M 、I ,则四边形ABMI 的面积是 ▲ .(用含a 的代数式表示)ABD (第25题)E2开4开8开16开 ①②A BCD FEG③… ④MIAB2开4开8开16开27.(9分)【数学概念】若四边形ABCD的四条边满足AB·CD=AD·BC,则称四边形ABCD是和谐四边形.【特例辨别】(1)下列四边形:①平行四边形,②矩形,③菱形,④正方形,其中一定是和谐四边形的是▲.(填写所有符合要求的四边形的序号)【概念判定】(2)如图①,过⊙O外一点P引圆的两条切线PS、PT,切点分别为A、C,过点P 作一条射线PM,分别交⊙O于点B、D,连接AB、BC、CD、DA.求证:四边形ABCD是和谐四边形.①【知识应用】(3)如图②,CD是⊙O的直径,和谐四边形ABCD接于⊙O,且BC=AD.请直接写出AB与CD的关系.②2017/2018学年度第二学期第一阶段学业质量监测试卷九年级数学参考答案及评分标准说明:本评分标准每题给出了一种或几种解法供参考,如果考生的解法与本解答不同,参照本评分标准的精神给分.二、填空题(每小题2分,共20分)7.3;-13 8.x ≥1 9.3 2 10.x =3 11.答案不唯一,如x 2-3x +2=012.y =-x 13.2或14 14.R =30E 15.40 16.71030三、解答题(本大题共11小题,共计88分) 17.(本题6分)解:( 1 a -b - b a 2-b 2 )÷aa +b. =(a +b(a +b )(a -b )- b (a +b )(a -b ))÷ a a +b········································· 2 =a(a +b )(a -b )· a +ba (4)=1a -b. (6)18.(本题8分) 解:(1)⎩⎨⎧x +2<0,x -2<0. (2)(2)x >2. (4)(3)x <-2. ................................................................... 6(4)x >2或x <-2. (8)19.(本题8分)解法一:(1)原方程可化为(x -m )(x -m -2)=0. (1)解这个方程,得x1=m,x2=m+2. (3)所以不论m为何值,该方程总有两个不相等的实数根. (4)(2)当x1=3时,m=3. (6)当x2=3时,m=1.所以m的值为3或1. (8)解法二:(1)原方程可化为x2-(2m+2)x+m2+2m=0. (1)因为a=1,b=-(2m+2),c=m2+2m, (2)所以b2-4ac=[-(2m+2)]2-4(m2+2m)=4>0. (3)所以不论m为何值,该方程总有两个不相等的实数根. (4)(2)因为一个根为3,将x=3代入(x-m)2-2(x-m)=0得(3-m)2-2(3-m)=0.解这个方程,得m1=3,m2=1.所以m的值为3或1. (8)20.(本题8分)证明:∵∠BAD的平分线交BC于点E,∴∠BAE=∠EAF. (1)∵四边形ABCD是平行四边形,∴AD∥BC. (2)∴∠EAF=∠AEB. (3)∴∠BAE=∠AEB.∴AB=BE. (4)同理,AB=AF. (5)∴BE=AF. (6)∵AD∥BC,∴四边形ABEF是平行四边形. (7)∵AB=BE,∴□ABEF是菱形. (8)21.(本题8分)解:(1)12. (2)(2)随机购买两种茶叶,所有可能出现的结果有:(碧螺春,龙井)、(碧螺春,武夷岩茶)、(碧螺春,银针)、(龙井,武夷岩茶)、(龙井,银针)、(武夷岩茶,银针),共有6种,它们出现的可能性相同.所有的结果中,满足“一种是绿茶、一种是银针”(记为事件A )的结果有2种,所以P(A )=26=13. (8)(说明:通过枚举、画树状图或列表得出全部正确等可能结果得4分;没有说明等可能性扣1分.)22.(本题8分)解:(1)图略.(注:统计图的标题不写不扣分) (2)(2)答案不唯一,如从数据的集中程度——平均数看,-x 甲=10+10+9+9+8+86=9(环); (3)-x 乙=10+10+9+9+9+76=9(环). (4)因为 -x 甲=-x 乙,所以两人成绩相当. (5)从数据的离散程度——方差看,S 2甲=(10-9)2+(10-9)2+(9-9)2+(9-9)2+(8-9)2+(8-9)26=23(环2); ···········S 2乙=(10-9)2+(10-9)2+(9-9)2+(9-9)2+(9-9)2+(7-9)26=1(环2); ···········因为S 2甲<S 2乙,所以乙比甲成绩稳定,乙的成绩较好. (8)23.(本题8分)解:(1)设y 2=kx +b .根据题意,得⎩⎨⎧200k +b =160,b =200.解得⎩⎪⎨⎪⎧k =-15,b =200. (3)所以y 2=-15x +200. (4)(2)设该商场销售空调的总利润为w 元.根据题意,得w =(x +800) (-15x +200)=-15(x -100)2+162000. (7)当x =100时,w 的值最大,最大值是162000.所以商场每台空调返利100元时,总利润最大,最大总利润为162000元. (8)24.(本题8分)解:设铁棒的长为x m .在Rt △AOB 中,cos ∠ABO =OB AB, ·················································· 1∴ OB =AB ·cos ∠ABO =x ·cos60°=12x . (3)在Rt △COD 中,cos ∠CDO =OD CD, ··················································· 4∴ OD =CD ·cos ∠CDO =x·cos51°18'≈0.625 x . ······································· 6∵ BD =OD -OB ,∴ 0.625x - 12x =1. (7)解这个方程,得x =8.答:该铁棒的长为8m . (8)25.(本题8分)解:(1)AB 与⊙D 相切. ···························· 1分证明:过点D 作DF ⊥AB ,垂足为F . ··········· 2分 ∵AD 是Rt △ABC 的角平分线,∠C =90°,∴DF =DC , ································ 3分 即d =r .∴AB 与⊙D 相切. ·························· 4分(2)∵∠C =90°,AC =BC =1,∴∠BAC =∠B =45°,AB =2. ∵DF ⊥AB ,∴∠BDF =∠B =45°. ∴BF =DF .∵AB 、AC 分别与⊙D 相切, ∴AF =AC =1.ABDEF设⊙D 的半径为r .易得BF =2-1,BD =1-r . ∴2(2-1)=1-r .∴r =2-1. (6)∵AD 是Rt △ABC 的角平分线,∠BAC =45°,∴∠DAC =12∠BAC =22.5°. 又∵∠C =90°,∴∠CDE =67.5°. (7)∴l CE ︵=π(2-1)×67.5180= (32-3)π8. (8)(说明:答案中分母未有理化不扣分)26.(本题9分)解:(1)∵四边形ABCD 是矩形,∴∠ABC =∠C =90°.∵第一次折叠使点C 落在AB 上的F 处,并使折痕经过点B ,∴∠CBE =∠FBE =45°.∴∠CBE =∠CEB =45°.∴BC =CE =a ,BE =2a . ···················································· 2∵第二次折叠纸片,使点A 落在E 处,得到折痕BG ,∴AB =BE =2a .∴AB BC = 2 (3)(2)根据题意和(1)中的结论,有AH =BH =22a ,AM =12a .∴AM BH =AHBC =22. ·································································· 4∵四边形ABCD 是矩形,∴∠A =∠B =90°.∴△MAH ∽△HBC . ................................................................. 5∴∠AHM =∠BCH . .. (6)∵∠BCH +∠BHC =90°.∴∠AHM +∠BHC =90°.∴∠MHC =90°.∴HC ⊥HM . (7)(3)27232a 2. (9)27.(本题9分)解:(1)③④. (2)(说明:只答对1个得1分,答错一个不给分)(2)证明:连接CO 并延长,交⊙O 于点E ,连接BE .∵PT 是⊙O 的切线,切点为C ,∴∠PCE =90°.∴∠PCB +∠ECB =90°.∵CE 是⊙O 的直径,∴∠CBE =90°.∴∠BEC +∠ECB =90°.∴∠BEC =∠PCB .又∵∠BEC =∠BDC ,∴∠PCB =∠BDC .又∵∠BPC =∠CPD ,∴△PBC ∽△PCD .∴CB CD =PC PD. ··························································· 3同理,AB AD =PAPD . (4)∵PA 、PC 为⊙O 的切线,∴PA =PC . (5)∴CB CD =AB AD. ∴AB ·CD =AD ·BC .∴四边形ABCD 是和谐四边形. (6)(3)AB ∥CD ,CD =3AB . (9)(说明:结论“AB ∥CD ”1分,“CD =3AB ”2分)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018年江苏省南京市秦淮区中考数学一模试卷
一、选择题(本大题共6小题,每小题2分,共12分)
1.(2分)计算的结果是()
A.3B.﹣3C.9D.﹣9
2.(2分)据某数据库统计,仅2018年第一个月,区块链行业融资额就达到680 000 000元.将680 000 000用科学记数法表示为()
A.0.68×109B.6.8×107C.6.8×108D.6.8×109 3.(2分)下列计算正确的是()
A.a3+a2=a5B.a10÷a2=a5C.(a2)3=a5D.a2•a3=a5 4.(2分)某校航模兴趣小组共有30位同学,他们的年龄分布如下表:年龄/岁1314 15 16
人数515
由于表格污损,15和16岁人数不清,则下列关于年龄的统计量可以确定的是()
A.平均数、中位数B.众数、中位数
C.平均数、方差D.中位数、方差
5.(2分)将二次函数y=﹣x2的图象向右平移2个单位长度,再向上平移3个单位长度,所得图象的函数表达式为()
A.y=﹣(x﹣2)2+3B.y=﹣(x﹣2)2﹣3
C.y=﹣(x+2)2+3D.y=﹣(x+2)2﹣3
6.(2分)如图,在平面直角坐标系中,▱ABCD的顶点坐标分别为A(3.6,a),B(2,2),C(b,3.4),D(8,6),则a+b的值为()
A.8B.9C.10D.11
二、填空题(本大题共10小题,每小题2分,共20分)
7.(2分)﹣3的相反数是;﹣3的倒数是.
8.(2分)若二次根式在实数范围内有意义,则x的取值范围是.9.(2分)计算的结果是.
10.(2分)方程的根是.
11.(2分)若关于x的一元二次方程的两个根x1,x2满足x1+x2=3,x1x2=2,则这个方程是.(写出符合要求的方程)
12.(2分)将函数y=x的图象绕坐标原点O顺时针旋转90°,所得图象的函数表达式为.
13.(2分)⊙O的半径为10cm,弦AB∥CD,AB=12cm,CD=16cm,则AB 与CD的距离为.
14.(2分)在照明系统模拟控制电路实验中,研究人员发现光敏电阻值R(单位:Ω)与光照度E(单位:lx)之间成反比例函数关系,部分数据如下表所示:
光照度E/lx0.51 1.52 2.53
光敏电阻阻值R/Ω603020151210
则光敏电阻值R与光照度E的函数表达式为.
15.(2分)如图,在△ABC中,∠A=70°,∠B=55°,以BC为直径作⊙O,分别交AB、AC于点E、F,则的度数为°.
16.(2分)如图,在正方形ABCD中,E是BC上一点,BE=BC,连接AE,作BF⊥AE,分别与AE、CD交于点K、F,G、H分别在AD、AE上,且四边形KFGH是矩形,则=.
三、解答题(本大题共11小题,共88分)
17.(6分)计算:(﹣)÷.
18.(8分)解一元二次不等式x2﹣4>0.
请按照下面的步骤,完成本题的解答.
解:x2﹣4>0可化为(x+2)(x﹣2)>0.
(1)依据“两数相乘,同号得正”,可得不等式组①或不等式组
②.
(2)解不等式组①,得.
(3)解不等式组②,得.
(4)一元二次不等式x2﹣4>0的解集为.
19.(8分)已知关于x的一元二次方程(x﹣m)2﹣2(x﹣m)=0(m为常数).(1)求证:不论m为何值,该方程总有两个不相等的实数根;
(2)若该方程一个根为3,求m的值.
20.(8分)如图,在▱ABCD中,∠BAD的平分线交BC于点E,∠ABC的平分线交AD于点F,连接EF.求证:四边形ABEF是菱形.
21.(8分)中国的茶文化源远流长,根据制作方法和茶多酚氧化(发酵)程度的不同,可分为六大类:绿茶(不发酵)、白茶(轻微发酵)、黄茶(轻发酵)、青茶(半发酵)、黑茶(后发酵)、红茶(全发酵).春节将至,为款待亲朋好友,小叶去茶庄选购茶叶.茶庄有碧螺春、龙井两种绿茶,一种青茶﹣﹣武夷岩茶及一种黄茶﹣﹣银针出售.
(1)随机购买一种茶叶,是绿茶的概率为;
(2)随机购买两种茶叶,求一种是绿茶、一种是银针的概率.
22.(8分)如图,甲、乙两人在一次射击比赛中击中靶的情况(击中靶中心“×”
所在的圆面为10环,靶中各数字表示该数所在圆环被击中所得的环数),每人射击了6次.
(1)请选择适当的统计图描述甲、乙两人成绩;
(2)请你运用所学的统计知识做出分析,从两个不同角度评价甲、乙两人的打靶成绩.
23.(8分)某商场在“双十一”促销活动中决定对购买空调的顾客实行现金返利.规定每购买一台空调,商场返利若干元.经调查,销售空调数量y1(单位:台)与返利x(单位:元)之间的函数表达式为y1=x+800.每台空调的利润y2(单位:元)与返利x的函数图象如图所示.
(1)求y2与x之间的函数表达式;
(2)每台空调返利多少元才能使销售空调的总利润最大?最大总利润是多少?
24.(8分)一铁棒欲通过一个直角走廊.如图,是该铁棒紧挨着墙角E通过时的两个特殊位置:当铁棒位于AB位置时,它与墙面OG所成的角∠ABO=51°18′;当铁棒底端B向上滑动1m(即BD=1m)到达CD位置时,它与墙面OG所成的角∠CDO=60°,求铁棒的长.
(参考数据:sin51°18′≈0.780,cos51°18′≈0.625,tan51°18′≈0.248)
25.(8分)如图,在Rt△ABC中,∠C=90°,AC=BC,AD是△ABC的角平分线,以D为圆心,DC为半径作⊙D,交AD于点E.
(1)判断直线AB与⊙D的位置关系并证明.
(2)若AC=1,求的长.
26.(9分)书籍开本有数学开本指书刊幅面的规格大小.如图①,将一张矩形印刷用纸对折后可以得到2开纸,再对折得到4开纸,以此类推可以得到8开纸、16开纸……
若这张矩形印刷用纸的短边长为a.
(1)如图②,若将这张矩形印刷用纸ABCD(AB>BC)进行折叠,使得BC与AB重合,点C落在点F处,得到折痕BE;展开后,再次折叠该纸,使点A 落在E处,此时折痕恰好经过点B,得到折痕BG,求的值.
(2)如图③,2开纸BCIH和4开纸AMNH的对角线分别是HC、HM.说明HC⊥HM.
(3)将图①中的2开纸、4开纸、8开纸和16开纸按如图④所示的方式摆放,依次连接点A、B、M、I,则四边形ABMI的面积是.(用含a的代数式表示)
27.(9分)【数学概念】
若四边形ABCD的四条边满足AB•CD=AD•BC,则称四边形ABCD是和谐四边形.
【特例辨别】
(1)下列四边形:①平行四边形,②矩形,③菱形,④正方形.其中一定是和谐四边形的是.
【概念判定】
(2)如图①,过⊙O外一点P引圆的两条切线PS、PT,切点分别为A、C,过点P作一条射线PM,分别交⊙O于点B、D,连接AB、BC、CD、DA.求证:四边形ABCD是和谐四边形.
【知识应用】
(3)如图②,CD是⊙O的直径,和谐四边形ABCD内接于⊙O,且BC=AD.请直接写出AB与CD的关系.
2018年江苏省南京市秦淮区中考数学一模试卷
参考答案
一、选择题(本大题共6小题,每小题2分,共12分)
1.A;2.C;3.D;4.B;5.A;6.D;
二、填空题(本大题共10小题,每小题2分,共20分)
7.3;﹣;8.x≥1;9.;10.x=3;11.x2﹣3x+2=0;12.y=﹣x;13.14cm或2cm;14.;15.40;16.;
三、解答题(本大题共11小题,共88分)
17.;18.;x>2;x<﹣2;x>2或x<﹣2;19.;
20.;21.;22.;23.;24.;25.;
26.;27.③④;。