高等数学下册试题及参考答案

合集下载

高数下册试题及答案

高数下册试题及答案

高数下册试题及答案一、选择题(每题5分,共20分)1. 已知函数f(x) = x^3 - 3x,求f'(x)。

A. 3x^2 - 3B. x^2 - 3xC. 3x^2 + 3D. 3x^2 - 3x答案:A2. 设函数f(x) = sin(x) + cos(x),则f'(x)等于:A. cos(x) - sin(x)B. cos(x) + sin(x)C. -sin(x) - cos(x)D. -sin(x) + cos(x)答案:B3. 求极限lim(x→0) (sin(x)/x)的值。

A. 0B. 1C. 2D. 3答案:B4. 若函数f(x) = e^x,则f'(x)等于:A. e^xB. e^(-x)C. x * e^xD. 1答案:A二、填空题(每题5分,共20分)1. 已知曲线y = x^2 + 2x + 1,求该曲线在x = 1处的切线斜率。

答案:42. 设函数f(x) = ln(x),则f'(x) = ________。

答案:1/x3. 求定积分∫(0,1) x^2 dx的值。

答案:1/34. 若函数f(x) = x^3 - 6x^2 + 9x + 15,求f'(x)。

答案:3x^2 - 12x + 9三、解答题(每题10分,共60分)1. 求函数f(x) = x^3 - 6x^2 + 11x - 6的极值。

答案:首先求导数f'(x) = 3x^2 - 12x + 11。

令f'(x) = 0,解得x = 1 和 x = 11/3。

计算f''(x) = 6x - 12,可以判断x = 1处为极大值点,x = 11/3处为极小值点。

极大值为f(1) = 0,极小值为f(11/3) = -2/27。

2. 计算定积分∫(0,2) (3x^2 - 2x + 1) dx。

答案:首先求原函数F(x) = x^3 - x^2 + x。

高等数学(同济)下册期末考试题及答案(5套)

高等数学(同济)下册期末考试题及答案(5套)

精品文档高等数学(下册)考试试卷(一)一、填空题(每小题 3分,共计24分)1、 z = log a (x 2 y 2)(a 0)的定义域为 D= ____________________2 22、 二重积分 In(x y )dxdy 的符号为 _____________ 。

|x| |y| 16、 微分方程dy y tan#的通解为 ________________________dx x x7、 方程y ⑷ 4y 0的通解为 ___________________ 。

&级数的和为 ___________________ 。

n in(n 1)二、选择题(每小题 2分,共计16分)1、二元函数z f (x, y)在(x 0, y 0)处可微的充分条件是()(A ) f (x, y)在(x °, y °)处连续;f x (x, y ), f y (x, y)在(X 0,y °)的某邻域内存在;(C ) f x (x 0,y 。

)x f y (x 0,y 。

)y 当.(x)2 y)2时,是无穷小;(D ) lim xf x (x °,y °) x f y (x °,y °) y 2 2 x) ( y) 2、设U x yf (一)y y xf(),其中 xf 具有二阶连续导数,则ux 2 y xU 2 y等于(A ) x y ;(B ) x ;(C) y ;(D)0 o3、设2 :x 2 y z 2 1,z0,则二重积分 I zdV 等于()(A ) 4和2d13 . r sincos dr ; (B )"d.1 2 .d r sin0 0dr ;2 2y3、由曲线y ln x 及直线xye 1 , y 1所围图形的面积用二重积分表示为为。

4、设曲线 L 的参数方程表示为x (t) ( x ),则弧长元素dsy(t)5、设曲面刀为 2 9x y 9介于 z0及z 3间的部分的外侧,贝U (x 2 y 2 1)ds,其值(B )精品文档2 (C) d0 13o r sin cos dr;(D)2 1 •d d r sin cos dr。

(完整word版)高等数学下册试卷及答案

(完整word版)高等数学下册试卷及答案

高等数学(下册)考试试卷(一)、填空题(每小题 3分,共计24分)1、 z=<log a (x 2 y 2)(a 0)的定义域为 D = 重积分ln(x 2 y 2 )dxdy 的符号为|x| |y| 1皿八 皿…、…, x (t )4、设曲线L 的参数方程表示为y (t )5、设曲面习2-入一y 9介于z(x 2的和为n 1n(n 1)二、选择题(每小题 2分,共计16分)1、二元函数z f (x, y )在(x 0,y 0)处可微的充分条件是(f (x, y)在(X o ,y o )处连续;3、由曲线 y ln x 及直线x y e 1,1所围图形的面积用二重积分表示6、微分方程 dy dxy taM 的通解为 x x7、方程y(4)4y0的通解为(C) z f x (x 0,y °) x f y (x 0,y °) y 当 v( x)2 ( y)2 。

时,是无穷小;(D) 12、设uz f x (x 0,y °) hmy 0(x)2yf(-) xf(Y),其中x f y (x 0,y 。

)y (y )2f 具有一阶连续导数,0。

2mU则x22y —U 等于((A)xy x y; (B) x;(C) y ;x (D)0 。

y3、设 :2x22y z 1, z0,则三重积分IzdV 等于( )f x (x ,y ) , f y (x, y )在(X 0, y o )的某邻域内存在;2、x ),则弧长元素ds分的外侧,则1)ds (B)(A) 4o 2do 2d1r 3sin cos dr ;(A)方程xy 2y x 2y 0是三阶微分方程;(B)方程y — x — ysin x 是一阶微分方程;dx dx(C) 方程(x 2 2xy 3)dx (y 2 3x 2y 2)dy 。

是全微分方程; (D)方程 曳 1x 宣是伯努利方程。

dx 2 x7、已知曲线y y(x)经过原点,且在原点处的切线与直线 2x y 6 0平行,而y(x)(B)典 °d ;「2sin dr ;2 (C) d1 3 .r sincos dr ; (D)1 3.r sincos dr 。

大学高数下册试题及答案

大学高数下册试题及答案

大学高数下册试题及答案《高等数学》测试题一一、选择题1.设有直线及平面,则直线A.平行于平面;B.在平面上;C.垂直于平面;D.与平面斜交. 2.二元函数在点处A.连续、偏导数存在; B.连续、偏导数不存在;C.不连续、偏导数存在;D.不连续、偏导数不存在. 3.设为连续函数,,则=A.; B.;C.D.. 4.设是平面由,,所确定的三角形区域,则曲面积分=A.7;B.;C.;D.. 5.微分方程的一个特解应具有形式A.;B.;C.;D.. 二、填空题1.设一平面经过原点及点,且与平面垂直,则此平面方程为;2.设,则=;3.设为正向一周,则0 ;4.设圆柱面,与曲面在点相交,且它们的交角为,则正数; 5.设一阶线性非齐次微分方程有两个线性无关的解,若也是该方程的解,则应有 1 . 三、设由方程组确定了,是,的函数,求及与. 解:方程两边取全微分,则解出从而四、已知点及点,求函数在点处沿方向的方向导数. 解:,从而五、计算累次积分). 解:依据上下限知,即分区域为作图可知,该区域也可以表示为从而六、计算,其中是由柱面及平面围成的区域. 解:先二后一比较方便,七.计算,其中是抛物面被平面所截下的有限部分. 解:由对称性从而八、计算,是点到点在上半平面上的任意逐段光滑曲线. 解:在上半平面上且连续,从而在上半平面上该曲线积分与路径无关,取九、计算,其中为半球面上侧. 解:补取下侧,则构成封闭曲面的外侧十、设二阶连续可导函数,适合,求.解:由已知即十一、求方程的通解. 解:解:对应齐次方程特征方程为非齐次项,与标准式比较得,对比特征根,推得,从而特解形式可设为代入方程得十二、在球面的第一卦限上求一点,使以为一个顶点、各面平行于坐标面的球内接长方体的表面积最小. 解:设点的坐标为,则问题即在求最小值。

令,则由推出,的坐标为附加题:1.判别级数是否收敛?如果是收敛的,是绝对收敛还是条件收敛?解:由于,该级数不会绝对收敛,显然该级数为交错级数且一般项的单调减少趋于零,从而该级数条件收敛2.求幂级数的收敛区间及和函数. 解:从而收敛区间为,3.将展成以为周期的傅立叶级数. 解:已知该函数为奇函数,周期延拓后可展开为正弦级数。

高等数学下册试题及参考答案

高等数学下册试题及参考答案

高等数学下册试题一、选择题(每题4分,共20分)1. 已知A (1,0,2), B (1,2,1)是空间两点,向量 AB 的模是:( A ) A )5 B ) 3 C ) 6 D )9解 ={1-1,2-0,1-2}={0,2,-1},||=5)1(20222=-++.2. 设a ={1,-1,3}, b ={2,-1,2},求c =3a -2b 是:( B )A ){-1,1,5}.B ) {-1,-1,5}.C ) {1,-1,5}.D ){-1,-1,6}.解 (1) c =3a -2b =3{1,-1,3}-2{2,-1,2}={3-4,-3+2,9-4}={-1,-1,5}.3. 设a ={1,-1,3}, b ={2, 1, -2},求用标准基i , j , k 表示向量c=a-b ; ( A ) A )-i -2j +5k B )-i -j +3k C )-i -j +5k D )-2i -j +5k解c ={-1,-2,5}=-i -2j +5k .4. 求两平面032=--+z y x 和052=+++z y x 的夹角是:(C )A )2πB )4πC )3π D )π 解 由公式(6-21)有21112)1(211)1(1221cos 2222222121=++⋅-++⨯-+⨯+⨯=⋅⋅=n n n n α,因此,所求夹角321arccos πα==.5. 求平行于z 轴,且过点)1,0,1(1M 和)1,1,2(2-M 的平面方程.是:(D ) A )2x+3y=5=0 B )x-y+1=0 C )x+y+1=0 D )01=-+y x .解 由于平面平行于z 轴,因此可设这平面的方程为 0=++D By Ax 因为平面过1M 、2M 两点,所以有⎩⎨⎧=+-=+020D B A D A解得D B D A -=-=,,以此代入所设方程并约去)0(≠D D ,便得到所求的平面方程01=-+y x6.微分方程()043='-'+''y y y x y xy 的阶数是( D ).A .3B .4C .5D . 27.微分方程152=-''-'''x y x y 的通解中应含的独立常数的个数为(A ).A .3B .5C .4D . 28.下列函数中,哪个是微分方程02=-xdx dy 的解( B ). A .x y 2= B .2x y = C .x y 2-= D . x y -=9.微分方程323y y ='的一个特解是( B).A .13+=x yB .()32+=x yC .()2C x y +=D . ()31x C y +=10.函数x y cos =是下列哪个微分方程的解(C).A .0=+'y yB .02=+'y yC .0=+y y nD . x y y cos =+'' 11.x x e C e C y -+=21是方程0=-''y y 的(A),其中1C ,2C 为任意常数. A .通解 B .特解 C .是方程所有的解 D . 上述都不对12.y y ='满足2|0==x y 的特解是( B).A .1+=x e yB .xe y 2= C .22x e y ⋅= D . x e y ⋅=3 13.微分方程x y y sin =+''的一个特解具有形式( C ). A .x a y sin *= B .x a y cos *⋅= C .()x b x a x y cos sin *+= D . x b x a y sin cos *+= 14.下列微分方程中,( A )是二阶常系数齐次线性微分方程. A .02=-''y y B .032=+'-''y y x y C .045=-''x y D . 012=+'-''y y15.微分方程0=-'y y 满足初始条件()10=y 的特解为( A ). A .x e B .1-x e C .1+x e D . x e -216.在下列函数中,能够是微分方程0=+''y y 的解的函数是( C ). A .1=y B .x y = C .x y sin = D . x e y =17.过点()3,1且切线斜率为x 2的曲线方程()x y y =应满足的关系是( C ). A .x y 2=' B .x y 2='' C .x y 2=',()31=y D . x y 2='',()31=y 18.下列微分方程中,可分离变量的是( B ). A .e x y dx dy =+ B .()()y b a x k dx dy--=(k ,a ,b 是常数) C .x y dxdy=-sin D . x e y xy y ⋅=+'219.方程02=-'y y 的通解是( C ).A .x y sin =B .x e y 24⋅=C .x e C y 2⋅=D .x e y =20.微分方程0=+xdy y dx 满足4|3==x y 的特解是( A ). A .2522=+y x B .C y x =+43 C .C y x =+22 D . 722=-y x 21.微分方程01=⋅-y xdx dy 的通解是=y ( B ). A .xC B .Cx C .C x +1D . C x +22.微分方程0=+'y y 的解为( B ).A .x eB .x e -C .x x e e -+D . x e -23.下列函数中,为微分方程0=+ydy xdx 的通解是( B ).A .C y x =+B .C y x =+22 C .0=+y CxD . 02=+y Cx 24.微分方程02=-dx ydy 的通解为( A ).A .C x y =-2B .C x y =- C .C x y +=D .C x y +-= 25.微分方程xdx ydy sin cos =的通解是( D ). A .C y x =+cos sin B .C x y =-sin cos C .C y x =-sin cos D . C y x =+sin cos 26.x e y -=''的通解为=y ( C ).A .x e --B .x e -C .21C x C e x ++-D .21C x C e x ++-- 27.按照微分方程通解定义,x y sin =''的通解是( A ). A .21sin C x C x ++- B .21sin C C x ++- C .21sin C x C x ++ D . 21sin C C x ++一、单项选择题2.设函数()y x f ,在点()00,y x 处连续是函数在该点可偏导的 ( D )(A) 充分而不必要条件; (B) 必要而不充分条件; (C) 必要而且充分条件; (D) 既不必要也不充分条件.3.函数()y x f ,在点()00,y x 处偏导数存在是函数在该点可微分的 ( B ).(A) 充分而不必要条件; (B) 必要而不充分条件; (C) 必要而且充分条件; (D) 既不必要也不充分条件. 4.对于二元函数(,)z f x y =, 下列结论正确的是 ( ). CA. 若0lim (,)x xy y f x y A →→=, 则必有0lim (,)x x f x y A →=且有0lim (,)y y f x y A →=; B. 若在00(,)x y 处z x ∂∂和zy ∂∂都存在, 则在点00(,)x y 处(,)z f x y =可微; C. 若在00(,)x y 处z x ∂∂和zy∂∂存在且连续, 则在点00(,)x y 处(,)z f x y =可微;D. 若22z x ∂∂和22z y ∂∂都存在, 则. 22z x ∂∂=22z y ∂∂.6.向量()()3,1,2,1,2,1a b =--=-r r ,则a b =rr g ( A ) (A) 3 (B) 3- (C) 2- (D) 25.已知三点M (1,2,1),A (2,1,1),B (2,1,2) ,则→→•AB MA = ( C ) (A) -1; (B) 1; (C) 0 ; (D) 2;6.已知三点M (0,1,1),A (2,2,1),B (2,1,3) ,则||→→+AB MA =( B )(A);2-(B) ;(C)2; (D)-2;7.设D 为园域222x y ax +≤ (0)a >, 化积分(,)DF x y d σ⎰⎰为二次积分的正确方法是_________. DA. 20(,)aa adx f x y dy -⎰⎰B. 202(,)adx f x y dy ⎰C. 2cos 0(cos ,sin )a a ad f d θθρθρθρρ-⎰⎰D. 2cos 202(cos ,sin )a d f d πθπθρθρθρρ-⎰⎰8.设3ln 10(,)x I dx f x y dy =⎰⎰, 改变积分次序, 则______.I = BA. ln30(,)y e dy f x y dx ⎰⎰ B. ln330(,)y e dy f x y dx ⎰⎰C. ln330(,)dy f x y dx ⎰⎰D. 3ln 1(,)x dy f x y dx ⎰⎰9. 二次积分cos 20(cos ,sin )d f d πθθρθρθρρ⎰⎰可以写成___________. DA. 1(,)dy f x y dx ⎰⎰B. 100(,)dy f x y dx ⎰C. 11(,)dx f x y dy ⎰⎰ D. 1(,)dx f x y dy ⎰10. 设Ω是由曲面222x y z +=及2z =所围成的空间区域,在柱面坐标系下将三重积分(,,)I f x y z dx dy dz Ω=⎰⎰⎰表示为三次积分,________.I = CA . 22120(cos ,sin ,)d d f z dz ρπθρρθρθ⎰⎰⎰B. 22220(cos ,sin ,)d d f z dz ρπθρρθρθρ⎰⎰⎰C . 22222(cos ,sin ,)d d f z dz πρθρρθρθρ⎰⎰⎰D . 222(cos ,sin ,)d d f z dz πθρρθρθρ⎰⎰⎰11.设L 为y x 0面内直线段,其方程为d y c a x L ≤≤=,:, 则()=⎰Ldx y x P ,( C )(A ) a (B ) c(C ) 0 (D ) d12.设L 为y x 0面内直线段,其方程为d x c a y L ≤≤=,:,则()=⎰Ldy y x P ,( C )(A ) a (B ) c (C ) 0 (D ) d13.设有级数∑∞=1n nu,则0lim =∞→n n u 是级数收敛的( D )(A) 充分条件; (B) 充分必要条件; (C) 既不充分也不必要条件; (D) 必要条件;14.幂级数∑∞=1n nnx的收径半径R =( D )(A) 3 (B) 0 (C) 2 (D) 115.幂级数∑∞=11n n x n的收敛半径=R( A )(A) 1 (B) 0 (C) 2 (D) 316.若幂级数∑∞=0n nnx a的收敛半径为R ,则∑∞=+02n n nx a的收敛半径为( A )(A) R (B) 2R(C) R (D) 无法求得17. 若lim 0n n u →∞=, 则级数1n n u ∞=∑( ) DA. 收敛且和为B. 收敛但和不一定为C. 发散D. 可能收敛也可能发散 18. 若1n n u ∞=∑为正项级数, 则( )A. 若lim 0n n u →∞=, 则1n n u ∞=∑收敛 B. 若1n n u ∞=∑收敛, 则21n n u ∞=∑收敛BC. 若21n n u ∞=∑, 则1n n u ∞=∑也收敛 D. 若1n n u ∞=∑发散, 则lim 0n n u →∞≠19. 设幂级数1n n n C x ∞=∑在点3x =处收敛, 则该级数在点1x =-处( )AA. 绝对收敛B. 条件收敛C. 发散D. 敛散性不定 20. 级数1sin (0)!n nx x n ∞=≠∑, 则该级数( ) BA. 是发散级数B. 是绝对收敛级数C. 是条件收敛级数D. 可能收敛也可能发散二、填空题(每题4分,共20分)1. a ∙b = (公式)答案∣a ∣∙∣b ∣cos(∧b a ,)2. a =(a x ,a y ,a z ),b=(b x ,b y ,z b z )则 a ·b = (计算) 答案a x b x +a y b y +a z b z3. .=⨯b a ρρ答案zy x z y xb b b a a a k j i ρρρ 4. ][c b a ρρρ= 答案xy z xy z xyza a ab b bc c c 5. 平面的点法式方程是 答案0)()()(000=-+-+-z z C y y B x x A6.设()xy y x z -+=22arcsin ,其定义域为 ((){}0,1,22≥>≤+x y y xy x )7.设()()⎪⎩⎪⎨⎧=≠=000sin ,2xy xy xyy x y x f ,则()=1,0x f (()11,0=x f )8.()y x f ,在点()y x ,处可微分是()y x f ,在该点连续的 的条件,()y x f ,在点()y x ,处连续是()y x f ,在该点可微分的 的条件. (充分,必要)9.()y x f z ,=在点()y x ,的偏导数x z ∂∂及yz ∂∂存在是()y x f ,在该点可微分的 条件.(必要)10.在横线上填上方程的名称①()0ln 3=-⋅-xdy xdx y 方程的名称是 答案 可分离变量微分方程;②()()022=-++dy y x y dx x xy 方程的名称是 答案 可分离变量微分方程; ③xyy dx dy xln ⋅=方程的名称是 答案 齐次方程;④x x y y x sin 2+='方程的名称是 答案 一阶线性微分方程;⑤02=-'+''y y y 方程的名称是 答案 二阶常系数齐次线性微分方程.11. 在空间直角坐标系{O ;k j i ρρρ,,}下,求P (2,-3,-1),M (a , b , c )关于 (1) 坐标平面;(2) 坐标轴;(3) 坐标原点的各个对称点的坐标. [解]:M (a , b , c )关于xOy 平面的对称点坐标为(a , b , -c ),M (a , b , c )关于yOz 平面的对称点坐标为(-a , b , c ), M (a , b , c )关于xOz 平面的对称点坐标为(a ,-b , c ), M (a , b , c )关于x 轴平面的对称点坐标为(a ,-b ,-c ), M (a , b , c )关于y 轴的对称点的坐标为(-a , b ,-c ), M (a , b , c )关于z 轴的对称点的坐标为(-a ,-b , c ). 类似考虑P (2,-3,-1)即可.12.要使下列各式成立,矢量,应满足什么条件?(1-=+ (2+=+(3=+ (4+=-(5-=-[解]:(1)b a ,=+;(2)b a ,+=+(3≥且b a ,-=+(4)b a ,+=-(5)b a ,≥=-13.下列情形中的矢量终点各构成什么图形?(1)把空间中一切单位矢量归结到共同的始点;(2)把平行于某一平面的一切单位矢量归结到共同的始点; (3)把平行于某一直线的一切矢量归结到共同的始点;(4)把平行于某一直线的一切单位矢量归结到共同的始点. [解]:(1)单位球面; (2)单位圆(3)直线; (4)相距为2的两点二、填空题1.设22(,)sin (1)ln()f x y x y x y =+-+,则 =')1,0(x f ___1___.2.设()()()22ln 1cos ,y x y x y x f +-+=,则 )1,0('x f =____0______.3.二重积分的变量从直角坐标变换为极坐标的公式是()()⎰⎰⎰⎰=DDd d f dxdy y x f θρρθρθρsin ,cos ,4.三重积分的变量从直角坐标变换为柱面坐标的公式是 ()()⎰⎰⎰⎰⎰⎰ΩΩ=dz d d z f dxdydz z y x f ϕρρϕρϕρ,sin ,cos ,,5.柱面坐标下的体积元素 z d d d dv θρρ=6.设积分区域222:D x y a +≤, 且9Ddxdy π=⎰⎰, 则a = 3 .7. 设D 由曲线sin ,a a ρθρ==所围成, 则Ddxdy =⎰⎰234a π 8. 设积分区域D 为2214x y ≤+≤, 2Ddxdy =⎰⎰6π9.设()y x f ,在[0, 1]上连续,如果()31=⎰dx x f ,则()()⎰⎰11dy y f x f dx =_____9________.10.设L 为连接(1, 0)与(0, 1)两点的直线段,则()Lx y ds +=⎰11.设L 为连接(1, 0)与(0, 1)两点的直线段,则 ().___________=-⎰Lds y x 012.等比级数∑∞=1n naq )0(≠a 当 1q < 时,等比级数∑∞=1n n aq 收敛.13.当__1ρ>__时,-p 级数∑∞=11n p n是收敛的.14.当_________时,级数()∑∞=--1111n p n n是绝对收敛的. 1ρ>15.若(,)f x y =则(2,1)_________.x f = 12,16.若23(,)(1)arccos 2y f x y xy x x=+-, 则(1,)_________.y f y = 23y17.设x y u z =, 则_________.du = ln ln x y xy z y xdx x zdy dz z ⎛⎫++ ⎪⎝⎭18.设ln xz y=, 则22__________.z x ∂=∂ ln 2ln (ln 1)xy y y x -19. 积分2220y x dx e dy -⎰⎰的值等于_________. 41(1)2e --,20.设D 为园域222x y a +≤, 若()228Dx y dxdy π+=⎰⎰, 则_______.a = 221.设2I dxdydz Ω=⎰⎰⎰, 其中2222:,0x y z a z Ω++≤≥, 则_______.I =343a π三、是非题(每题4分,共20分)1. 初等函数的定义域是其自然定义域的真子集. ( ⅹ )2. sin lim1x xx→∞=. ( ⅹ )3. 22lim33x x x →∞-=-+. (ⅹ )4. 对于任意实数x , 恒有sin x x ≤成立. (ⅹ )5. 0xy =是指数函数. ( ⅹ )6. 函数()log 01a y x a = <<的定义域是()0, +∞. (ⅹ )7. 23log 3log 21⋅=. (√ )8. 如果对于任意实数x R ∈, 恒有()0f x '=, 那么()y f x =为常函数. (√ ) 9. 存在既为等差数列, 又为等比数列的数列. ( √ ) 10. 指数函数是基本初等函数. (√ )11.0x →=. ( √ ) 12. 函数3234y x x =++为基本初等函数. (√ )13.111a a x dx x C a +=++⎰. ( ⅹ ) 14. ()arcsin x π+是基本初等函数. ( ⅹ ) 15. sin x 与x 是等价无穷小量. (ⅹ ) 16. 1xe -与x 为等价无穷小量. ( ⅹ )17. 若函数()f x 在区间[],a b 上单调递增, 那么对于任意[],x a b ∈ , 恒有()0f x '>. ( ⅹ )18. 存在既为奇函数又为偶函数的函数. ( ⅹ )19. 当奇函数()f x 在原点处有定义时, 一定成立()00f =. (√ )20. 若偶函数()[]()1,1y f x x = ∈- 连续, 那么函数()()()1,1y f x x '= ∈- 为奇函数. (√ )21. 若奇函数()[]()1,1y f x x =∈- 连续, 那么函数()()()1,1y f x x '= ∈- 为偶函数. (√ )22. 偶函数与奇函数的乘积为奇函数. (√ ) 23. 奇函数与奇函数的乘积为偶函数. ( √ )24. 若函数()f x 为奇函数, 那么一定成立()00f =. (√ ) 25. 若函数()f x 为偶函数, 那么一定成立()00f '=. ( ⅹ )26. ()()sin cos x x π'+=. (ⅹ )27. sin cos sin 2x x x =. (ⅹ ) 28. ()xxa a '=. (ⅹ )29. ()sin sin x x x π+=. ( ⅹ )30. 单调函数一定存在最大值与最小值. ( ⅹ ) 31. 单调函数一定存在反函数. (√ )32. 互为反函数的两个函数的图像关于直线y x =对称. ( √ )33. 若定义域为[]0,1 的函数()f x 存在反函数, 那么()f x 在区间[]0,1 上单调. ( √ )34. 221lim 212n n x n →∞+=+. (√ )35. 对于任意的,a b R +∈, 恒有a b +≥ √ )36. 函数的三要素为: 定义域, 对应法则与值域. (√ )37. 若函数()f x 在其定义域内处处有切线, 那么该函数在其定义域内处处可导. (ⅹ ) 38. 空集是任意初等函数的定义域的真子集. (ⅹ )39.sinii x +∞=∑为初等函数. (ⅹ )40. 对于任意的x R ∈, 恒有1x +≥ ⅹ ) 41. 左右导数处处存在的函数, 一定处处可导. ( ⅹ )下列题(1.×;2.×;3. √;4.×;5.√)1.任意微分方程都有通解.( × )2.微分方程的通解中包含了它所有的解.(× )3.函数x x y cos 4sin 3-=是微分方程0=+''y y 的解.( √ ) 4.函数x e x y ⋅=2是微分方程02=+'-''y y y 的解.(×) 5.微分方程0ln =-'x y x 的通解是()C x y +=2ln 21(C 为任意常数).(√ ) 下列是非题(1.×;2.√;3.√;4.×;5.×)1.可分离变量微分方程不都是全微分方程.( )2.若()x y 1,()x y 2都是()()x Q y x P y =+'的特解,且()x y 1与()x y 2线性无关,则通解可表为()()()()[]x y x y C x y x y 211-+=.( )3.函数x x e e y 21λλ+=是微分方程()02121=+'+-''y y y λλλλ的解.( ) 4.曲线在点()y x ,处的切线斜率等于该点横坐标的平方,则曲线所满足的微分方程是C x y +='2(C 是任意常数).( )5.微分方程y x e y -='2,满足初始条件0|0==x y 的特解为1212+=xy e e .( ) 是非题(1.×;2.√;)1.只要给出n 阶线性微分方程的n 个特解,就能写出其通解.2.已知二阶线性齐次方程()()0=⋅+'⋅+''y x Q y x P y 的一个非零解y ,即可 四、计算证明题(每题10分,共40分)1、判断积数收敛性∑∞=-1!2)1(2n n nn 解: 12lim )!1(2!2lim lim 12)1(122>∞==-=-∞→-∞→-∞→n n n u u n n n n n n n n由比值法,级数∑∞=-1!2)1(2n n nn 发散 2.ydy x xdy ydx 2=-解:两边同除以2x ,得:ydy x xdyydx =-2c y x y d+-=221即c y x y =+221 3.xyx ydx dy -=解:两边同除以x ,得xy x y dxdy -=1令u xy= 则dxduxu dx dy += 即dx duxu dx dy +=uu -=1 得到()2ln 211y c u -=,即2ln 21⎪⎭⎫ ⎝⎛-=y c y x另外0=y 也是方程的解.4.()01=-+xdy ydx xy解:0=+-xydx xdy ydxxdx yxdyydx -=-2得到c x y x d +-=⎪⎪⎭⎫⎝⎛221 即c x y x =+221 另外0=y 也是方程的解.5.求方程052=+'+''y y y 的通解.解: 所给方程的特征方程为0522=++r ri r i r 21,2121--=+-=所求通解为 )2sin 2cos (21x C x C e y x+=-.6.求.解7.求方程032=-'+''y y y 的通解.解 所给方程的特征方程为 0322=-+r r其根为 1,321=-=r r所以原方程的通解为 x xe C eC y 231+=- 8.证明()()()222220,0,limy x y x y x y x -+→极限不存在8)因为()1lim222220=-+=→y x y x y x yx x ,()0lim2222220=-+=→y x y x y x xy x 所以极限不存在9.证明()()4220,0,lim y x xy y x +→极限不存在9)设y 2=kx ,1lim 242202+=+=→k ky x xy kyx y 不等于定值,极限不存在 10.计算σd xy D⎰⎰, 其中D 是由直线y =1、x =2及y =x 所围成的闭区域.解: 画出区域D .可把D 看成是X --型区域: 1≤x ≤2, 1≤y ≤x . 于是⎰⎰⎰⎰=211][x Ddx xydy d xy σ⎰⎰-=⋅=2132112)(21]2[dx x x dx y x x 89]24[212124=-=x x . 注: 积分还可以写成⎰⎰⎰⎰⎰⎰==211211xx Dydy xdx xydy dx d xy σ.11.dxdy=2xy,并满足初始条件:x=0,y=1的特解. 解:ydy=2xdx 两边积分有:ln|y|=x 2+cy=e 2x +e c =cex 2另外y=0也是原方程的解,c=0时,y=0 原方程的通解为y= cex 2,x=0 y=1时 c=1 特解为y= e 2x .12. y 2dx+(x+1)dy=0 并求满足初始条件:x=0,y=1的特解. 解:y 2dx=-(x+1)dy2ydydy=-11+x dx 两边积分: -y1=-ln|x+1|+ln|c| y=|)1(|ln 1+x c另外y=0,x=-1也是原方程的解 x=0,y=1时 c=e 特解:y=|)1(|ln 1+x c13. 0)2()(2=-++dy y x dx y x 解:1=∂∂y M ,xN∂∂=1 . 则xN y M ∂∂=∂∂ 所以此方程是恰当方程.凑微分,0)(22=++-xdy ydx ydy dx x 得 :C y xy x =-+233114. 0)4()3(2=---dy x y dx x y解:1=∂∂y M ,1=∂∂xN. 则xN y M ∂∂=∂∂ . 所以此方程为恰当方程. 凑微分,0432=--+ydy dx x xdy ydx 得 C y xy x =+-23215. 求xyxy y x 11lim)0 ,0(),(-+→. 解:)11()11)(11(lim11lim)0 ,0(),()0 ,0(),(++++-+=-+→→xy xy xy xy xy xy y x y x 21111lim )0 ,0(),(=++=→xy y x .16. 求z =x 2+3xy +y 2在点(1, 2)处的偏导数. 解 y x xz 32+=∂∂, y x y z 23+=∂∂. 8231221=⋅+⋅=∂∂==y x x z, 7221321=⋅+⋅=∂∂==y x yz . 17. 设z =x 3y 2-3xy 3-xy +1, 求22x z ∂∂、33xz ∂∂、x y z ∂∂∂2和y x z ∂∂∂2. 解 y y y x xz --=∂∂32233, x xy y x y z --=∂∂2392;2226xy xz =∂∂, 2336yx z =∂∂;196222--=∂∂∂y y x y x z , 196222--=∂∂∂y y x xy z .18. 验证函数22ln y x z +=满足方程02222=∂∂+∂∂y z x z. 证 因为)ln(21ln 2222y x y x z +=+=, 所以22yx x x z +=∂∂, 22y x yy z +=∂∂,222222222222)()(2)(y x x y y x x x y x x z +-=+⋅-+=∂∂, 222222222222)()(2)(y x y x y x y y y x y z +-=+⋅-+=∂∂. 因此 0)()(22222222222222=+-++-=∂∂+∂∂y x x y y x y x y z x z . 19. 计算函数z =x 2y +y 2的全微分. 解 因为xy x z 2=∂∂, y x y z 22+=∂∂,所以dz =2xydx +(x 2+2y )dy .20. 函数z =3x 2+4y 2在点(0, 0)处有极小值.当(x , y )=(0, 0)时, z =0, 而当(x , y )≠(0, 0)时, z >0. 因此z =0是函数的极小值. 21.函数22y x z +-=在点(0, 0)处有极大值.当(x , y )=(0, 0)时, z =0, 而当(x , y )≠(0, 0)时, z <0. 因此z =0是函数的极大值. 22. 已知三角形ABC 的顶点分别是A (1, 2, 3)、B (3, 4, 5)、C (2, 4, 7), 求三角形ABC 的面积.解 根据向量积的定义, 可知三角形ABC 的面积→→→→||21sin ||||21AC AB A AC AB S ABC ⨯=∠=∆.由于→AB =(2, 2, 2), →AC =(1, 2, 4), 因此→→421222kj i =⨯AC AB =4i -6j +2k .于是 142)6(421|264|21222=+-+=+-=∆k j i ABC S .23. 设有点A (1, 2, 3)和B (2, -1, 4), 求线段AB 的垂直平分面的方程.解 由题意知道, 所求的平面就是与A 和B 等距离的点的几何轨迹. 设M (x , y , z )为所求平面上的任一点, 则有|AM |=|BM |,即 222222)4()1()2()3()2()1(-+++-=-+-+-z y x z y x . 等式两边平方, 然后化简得2x -6y +2z -7=0.这就是所求平面上的点的坐标所满足的方程, 而不在此平面上的点的坐标都不满足这个方程, 所以这个方程就是所求平面的方程.24. 求过点(2, -3, 0)且以n =(1, -2, 3)为法线向量的平面的方程. 解 根据平面的点法式方程, 得所求平面的方程为 (x -2)-2(y +3)+3z =0, 即 x -2y +3z -8=0.25.求通过x 轴和点(4, -3, -1)的平面的方程.解 平面通过x 轴, 一方面表明它的法线向量垂直于x 轴, 即A =0; 另一方面表明 它必通过原点, 即D =0. 因此可设这平面的方程为 By +Cz =0.又因为这平面通过点(4, -3, -1), 所以有 -3B -C =0,或 C =-3B .将其代入所设方程并除以B (B ≠0), 便得所求的平面方程为 y -3z =0. 26.求直线L 1:13411+=-=-z y x 和L 2:1222-=-+=z y x 的夹角. 解 两直线的方向向量分别为s 1 = (1, -4, 1)和s 2 = (2, -2, -1). 设两直线的夹角为ϕ , 则2221)1()2(21)4(1|)1(1)2()4(21|cos 222222==-+-+⋅+-+-⨯+-⨯-+⨯=ϕ ,所以4πϕ=.例1 求幂级数)1( 32)1(13211⋅⋅⋅+-+⋅⋅⋅-+-=--∞=-∑n x x x x n x n n n nn 的收敛半径与收敛域.解 因为1111lim ||lim 1=+==∞→+∞→nn a an n n n ρ,所以收敛半径为11==ρR .当x =1时, 幂级数成为∑∞=--111)1(n n n, 是收敛的; 当x =-1时, 幂级数成为∑∞=-1)1(n n, 是发散的. 因此, 收敛域为(-1, 1].例2 求幂级数∑∞=0!1n n x n!1 !31!21132⋅⋅⋅++⋅⋅⋅++++n x n x x x的收敛域.解 因为0)!1(!lim !1)!1(1lim||lim 1=+=+==∞→∞→+∞→n n n n a a n n n n n ρ, 所以收敛半径为R =+∞, 从而收敛域为(-∞, +∞).例3 求幂级数∑∞=0!n n x n 的收敛半径.解 因为+∞=+==∞→+∞→!)!1(lim ||lim 1n n a a n n n n ρ, 所以收敛半径为R =0, 即级数仅在x =0处收敛. 例5 计算⎰+L dy x xydx 22, 其中L 为抛物线y =x 2上从O (0, 0)到B (1, 1)的一段弧.解: 因为xxQ y P 2=∂∂=∂∂在整个xOy 面内都成立,所以在整个xOy 面内, 积分⎰+L dy x xydx 22与路径无关.⎰⎰⎰+++=+AB OA L dy x xydx dy x xydx dy x xydx 2222221112==⎰dy .讨论: 设L 为一条无重点、分段光滑且不经过原点的连续闭曲线, L 的方向为逆时针方向, 问022=+-⎰L y x ydxxdy 是否一定成立?提示:这里22y x y P +-=和22y x x Q +=在点(0, 0)不连续.因为当x 2+y 2≠0时,yP y x x y x Q ∂∂=+-=∂∂22222)(, 所以如果(0, 0)不在L 所围成的区域内, 则结论成立, 而当(0, 0)在L 所围成的区域内时, 结论未必成立.例6 验证: 在整个xOy 面内, xy 2dx +x 2ydy 是某个函数的全微分, 并求出一个这样的函数. 解 这里P =xy 2, Q =x 2y .因为P 、Q 在整个xOy 面内具有一阶连续偏导数, 且有yP xy x Q∂∂==∂∂2, 所以在整个xOy 面内, xy 2dx +x 2ydy 是某个函数的全微分.取积分路线为从O (0, 0)到A (x , 0)再到B (x , y )的折线, 则所求函数为 ⎰+=),()0 ,0(22),(y x ydy xdx xy y x u 2022022y x ydy xydy x yy==+=⎰⎰.。

高等数学(同济)下册期末考试题及答案(5套)

高等数学(同济)下册期末考试题及答案(5套)

高等数学(同济)下册期末考试题及答案(5套)高等数学(下册)考试试卷(一)一、填空题(每小题3分,共计24分)1、z=log(a,(x+y))的定义域为D={(x,y)|x+y>0}。

2、二重积分22ln(x+y)dxdy的符号为负号。

3、由曲线y=lnx及直线x+y=e+1,y=1所围图形的面积用二重积分表示为∬(x+y-e-1)dxdy,其值为1/2.4、设曲线L的参数方程表示为{x=φ(t),y=ψ(t)}(α≤t≤β),则弧长元素ds=sqrt(φ'(t)^2+ψ'(t)^2)dt。

5、设曲面∑为x+y=9介于z=0及z=3间的部分的外侧,则∬(x+y+1)ds=27√2.6、微分方程y'=ky(1-y)的通解为y=Ce^(kx)/(1+Ce^(kx)),其中C为任意常数。

7、方程y(4)d^4y/dx^4+tan(x)y'''=0的通解为y=Acos(x)+Bsin(x)+Ccos(x)e^x+Dsin(x)e^x,其中A、B、C、D为任意常数。

8、级数∑n(n+1)/2的和为S=1/2+2/3+3/4+。

+n(n+1)/(n+1)(n+2)=n/(n+2),n≥1.二、选择题(每小题2分,共计16分)1、二元函数z=f(x,y)在(x,y)处可微的充分条件是(B)f_x'(x,y),f_y'(x,y)在(x,y)的某邻域内存在。

2、设u=yf(x)+xf(y),其中f具有二阶连续导数,则x^2+y^2等于(B)x。

3、设Ω:x+y+z≤1,z≥0,则三重积分I=∭Ω2z dV等于(C)∫0^π/2∫0^1-rsinθ∫0^1-r sinθ-zrdrdφdθ。

4、球面x^2+y^2+z^2=4a^2与柱面x^2+y^2=2ax所围成的立体体积V=(A)4∫0^π/4∫0^2acosθ∫0^4a-rsinθ rdrdφdθ。

高等数学(下册)试题(含详细解答与点评,2020考研数学参考)

高等数学(下册)试题(含详细解答与点评,2020考研数学参考)

1高等数学(下册)试题(含详细解答与点评)一、单项选择题(本大题共5小题,每小题3分,共15分) 1.在空间直角坐标系下,方程2x 2+3y 2=6表示的图形为( ) A .椭圆 B .柱面 C .旋转抛物面 D .球面【答案】B【解析】考查了常见二次曲面的方程。

方程(,)0f x y =在空间表示母线平行于z 轴的柱面。

不难得到答案为B 。

注:一般来讲,关于x 、y 、z 的方程中不含哪一个字母,方程就表示母线平行于哪个轴的柱面。

2.极限021lim →→y x arcsin(x +y 2)=( )A .6πB .3π C .2π D .π【答案】A【解析】考查了二元函数极限的计算。

由于函数2arcsin()x y +在定义区域内是连续的,从而在点1,02⎛⎫⎪⎝⎭处是连续的,所以 221201limarcsin()arcsin(0)26x y x y π→→+=+=。

3.设积分区域22:y x Ω+≤R 2,0≤z ≤1,则三重积分⎰⎰⎰=+Ωdxdydz y x f )(22( )A .⎰⎰⎰π200102)(Rdz r f drd θ B .⎰⎰⎰π20012)(Rdz r f rdrd θC .⎰⎰⎰+π20122)(Rrdz y x f drd θD .⎰⎰⎰π12)(Rdz r f rdrd θ2【答案】B【解析】本题考查了在柱面坐标下二重积分的计算。

积分区域可表示为 :01,(,)z x y D Ω≤≤∈, 其中D 是上述区域在Oxy 平面上的投影,且 :0,02D r R θπ≤≤≤≤, 所以2122220()()()R ΩΩf xy dxdydz f r rdrd dz d rdr f r dz πθθ+==⎰⎰⎰⎰⎰⎰⎰⎰⎰。

4.以y =sin 3x 为特解的微分方程为( ) A .0=+''y y B .0=-''y y C .09=+''y y D .09=-''y y【答案】C【解析】考查了微分方程的解与特解的概念。

高等数学(下册)试题及详细解答

高等数学(下册)试题及详细解答

高等数学2一.填空题(每小题3分,本大题满分30分)1.已知(1,2,3)a =,(3,2,1)b = ,则a b ⨯= (4,8,4)--.2.yOz 面上的抛物线21z y =-绕z 轴旋转一周所得曲面方程为221z x y =--.3.(,)(0,2)lim x y →=18. 4.对函数yz x =利用近似计算公式d z z ∆≈,则 2.02(1.04)≈ 1.08.5.曲线2211x ty t z t =⎧⎪=-⎨⎪=+⎩上点(2,3,5)处的切线方程为35244y z x ---==.6.将下列函数展开成(1)x -的幂级数:13x =-101(1)2n n n x ∞+=-∑,(13x -<<). 7.微分方程xy y e -'+=的通解为y =()x e x C -+.8.微分方程690y y y '''-+=的通解为y =312()xC C x e +.9.设2x f xy '=,2y f x '=,则(1,2)(0,0)f f -=2.10.已知L 为球面2222x y z R ++=被平面0x y z ++=所截得的圆周,则2d Ly s =⎰323R π.二.解答下列各题(每小题8分,本大题满分16分)1.已知(,)z f x y =是由方程2sin z z x y +=确定的隐函数,求z x ∂∂和22zx∂∂.解:令2(,,)sin F x y z z z x y =+-,则2x F xy =-,cos 1z F z =+, 2cos 1x z z F xyx F z ∂=-=∂+, 。

(5分)2222(cos 1)2(sin )(cos 1)x z y z xy z z x z ∂+-⋅-⋅=∂+ 22232(cos 1)4sin (cos 1)y z x y z z ++=+. 。

(8分) 2.求函数2(,)624ln f x y x y xy y =+--的极值.解:解方程组2204620x yf x y f x y '=-=⎧⎪⎨'=--=⎪⎩, 得驻点(1,1),(2,2). 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高等数学下册试题库一、选择题(每题4分,共20分)1. 已知A (1,0,2), B (1,2,1)是空间两点,向量的模是:( A ) A )5 B ) 3 C ) 6 D )9解 ={1-1,2-0,1-2}={0,2,-1},||=.2. 设a ={1,-1,3}, b ={2,-1,2},求c =3a -2b 是:( B )A ){-1,1,5}.B ) {-1,-1,5}.C ) {1,-1,5}.D ){-1,-1,6}.解 (1) c =3a -2b =3{1,-1,3}-2{2,-1,2}={3-4,-3+2,9-4}={-1,-1,5}.3. 设a ={1,-1,3}, b ={2, 1, -2},求用标准基i , j , k 表示向量c=a-b ; ( A )A )-i -2j +5kB )-i -j +3kC )-i -j +5kD )-2i -j +5k解c ={-1,-2,5}=-i -2j +5k .4. 求两平面和的夹角是:(C )A )2πB )4πC )3π D )π 解 由公式(6-21)有 , 因此,所求夹角.5. 求平行于轴,且过点和的平面方程.是:(D ) A )2x+3y=5=0 B )x-y+1=0 C )x+y+1=0 D ).解 由于平面平行于轴,因此可设这平面的方程为 因为平面过、两点,所以有解得,以此代入所设方程并约去,便得到所求的平面方程6.微分方程()043='-'+''y y y x y xy 的阶数是( D )。

A .3B .4C .5D . 27.微分方程152=-''-'''x y x y 的通解中应含的独立常数的个数为(A )。

A .3B .5C .4D . 28.下列函数中,哪个是微分方程02=-xdx dy 的解( B )。

A .x y 2=B .2x y =C .x y 2-=D . x y -= 9.微分方程323y y ='的一个特解是( B)。

A .13+=x yB .()32+=x yC .()2C x y +=D . ()31x C y += 10.函数x y cos =是下列哪个微分方程的解(C)。

A .0=+'y yB .02=+'y yC .0=+y y nD . x y y cos =+'' 11.x x e C e C y -+=21是方程0=-''y y 的(A),其中1C ,2C 为任意常数。

A .通解 B .特解 C .是方程所有的解 D . 上述都不对 12.y y ='满足2|0==x y 的特解是( B)。

A .1+=xe y B .xe y 2= C .22x e y ⋅= D . x e y ⋅=3 13.微分方程x y y sin =+''的一个特解具有形式( C )。

A .x a y sin *= B .x a y cos *⋅= C .()x b x a x y cos sin *+= D . x b x a y sin cos *+= 14.下列微分方程中,( A )是二阶常系数齐次线性微分方程。

A .02=-''y y B .032=+'-''y y x y C .045=-''x y D . 012=+'-''y y15.微分方程0=-'y y 满足初始条件()10=y 的特解为( A )。

A .x e B .1-x e C .1+x e D . x e -216.在下列函数中,能够是微分方程0=+''y y 的解的函数是( C )。

A .1=y B .x y = C .x y sin = D . x e y =17.过点()3,1且切线斜率为x 2的曲线方程()x y y =应满足的关系是( C )。

A .x y 2=' B .x y 2='' C .x y 2=',()31=y D . x y 2='',()31=y 18.下列微分方程中,可分离变量的是( B )。

A .e x y dx dy =+ B .()()y b a x k dxdy--=(k ,a ,b 是常数)C .x y dxdy=-sin D . x e y xy y ⋅=+'2 19.方程02=-'y y 的通解是( C )。

A .x y sin =B .x e y 24⋅=C .x e C y 2⋅=D .x e y = 20.微分方程0=+xdy y dx 满足4|3==x y 的特解是( A )。

A .2522=+y x B .C y x =+43 C .C y x =+22 D . 722=-y x 21.微分方程01=⋅-y xdx dy 的通解是=y ( B )。

A .xC B .Cx C .C x +1D . C x +22.微分方程0=+'y y 的解为( B )。

A .x eB .x e -C .x x e e -+D . x e -23.下列函数中,为微分方程0=+ydy xdx 的通解是( B )。

A .C y x =+B .C y x =+22 C .0=+y CxD . 02=+y Cx 24.微分方程02=-dx ydy 的通解为( A )。

A .C x y =-2B .C x y =- C .C x y +=D .C x y +-= 25.微分方程xdx ydy sin cos =的通解是( D )。

A .C y x =+cos sin B .C x y =-sin cos C .C y x =-sin cos D . C y x =+sin cos 26.x e y -=''的通解为=y ( C )。

A .x e --B .x e -C .21C x C e x ++-D .21C x C e x ++-- 27.按照微分方程通解定义,x y sin =''的通解是( A )。

A .21sin C x C x ++- B .21sin C C x ++- C .21sin C x C x ++ D . 21sin C C x ++一、单项选择题2.设函数()y x f ,在点()00,y x 处连续是函数在该点可偏导的 ( D )(A) 充分而不必要条件; (B) 必要而不充分条件; (C) 必要而且充分条件; (D) 既不必要也不充分条件.3.函数()y x f ,在点()00,y x 处偏导数存在是函数在该点可微分的 ( B ).(A) 充分而不必要条件; (B) 必要而不充分条件; (C) 必要而且充分条件; (D) 既不必要也不充分条件. 4.对于二元函数(,)z f x y =, 下列结论正确的是 ( ). CA. 若0lim (,)x xy y f x y A →→=, 则必有0lim (,)x x f x y A →=且有0lim (,)y y f x y A →=; B. 若在00(,)x y 处z x ∂∂和zy ∂∂都存在, 则在点00(,)x y 处(,)z f x y =可微; C. 若在00(,)x y 处z x ∂∂和zy∂∂存在且连续, 则在点00(,)x y 处(,)z f x y =可微; D. 若22z x ∂∂和22z y ∂∂都存在, 则. 22z x ∂∂=22zy ∂∂.6.向量()()3,1,2,1,2,1a b =--=-r r ,则a b =rr g ( A ) (A) 3 (B) 3- (C) 2- (D) 25.已知三点M (1,2,1),A (2,1,1),B (2,1,2) ,则→→•AB MA = ( C ) (A) -1; (B) 1; (C) 0 ; (D) 2; 6.已知三点M (0,1,1),A (2,2,1),B (2,1,3) ,则||→→+AB MA =( B )(A);2-(B) ; (C)2; (D)-2;7.设D 为园域222x y ax +≤ (0)a >, 化积分(,)DF x y d σ⎰⎰为二次积分的正确方法是_________. DA. 20(,)aa adx f x y dy -⎰⎰B. 202(,)adx f x y dy ⎰C. 2cos 0(cos ,sin )a a ad f d θθρθρθρρ-⎰⎰D. 2cos 202(cos ,sin )a d f d πθπθρθρθρρ-⎰⎰8.设3ln 10(,)x I dx f x y dy =⎰⎰, 改变积分次序, 则______.I = B A. ln30(,)y e dy f x y dx ⎰⎰ B. ln330(,)y e dy f x y dx ⎰⎰C. ln33(,)dy f x y dx ⎰⎰ D. 3ln 1(,)x dy f x y dx ⎰⎰9. 二次积分cos 20(cos ,sin )d f d πθθρθρθρρ⎰⎰可以写成___________. DA. 1(,)dy f x y dx ⎰⎰B. 100(,)dy f x y dx ⎰C. 11(,)dx f x y dy ⎰⎰ D. 10(,)dx f x y dy ⎰10. 设Ω是由曲面222x y z +=及2z =所围成的空间区域,在柱面坐标系下将三重积分(,,)I f x y z dx dy dz Ω=⎰⎰⎰表示为三次积分,________.I = CA . 2212000(cos ,sin ,)d d f z dz ρπθρρθρθ⎰⎰⎰B. 22220(cos ,sin ,)d d f z dz ρπθρρθρθρ⎰⎰⎰C . 22222(cos ,sin ,)d d f z dz πρθρρθρθρ⎰⎰⎰D . 222(cos ,sin ,)d d f z dz πθρρθρθρ⎰⎰⎰11.设L 为y x 0面内直线段,其方程为d y c a x L ≤≤=,:, 则()=⎰Ldx y x P ,( C )(A ) a (B ) c(C ) 0 (D ) d12.设L 为y x 0面内直线段,其方程为d x c a y L ≤≤=,:,则()=⎰Ldy y x P ,( C )(A ) a (B ) c (C ) 0 (D ) d13.设有级数∑∞=1n nu,则0lim =∞→n n u 是级数收敛的( D )(A) 充分条件; (B) 充分必要条件; (C) 既不充分也不必要条件; (D) 必要条件;14.幂级数∑∞=1n nnx的收径半径R =( D )(A) 3 (B) 0 (C) 2 (D) 115.幂级数∑∞=11n n x n 的收敛半径=R( A )(A) 1 (B) 0 (C) 2 (D) 316.若幂级数∑∞=0n nnx a的收敛半径为R ,则∑∞=+02n n nx a的收敛半径为( A )(A) R (B) 2R(C) R (D) 无法求得17. 若lim 0n n u →∞=, 则级数1n n u ∞=∑( ) DA. 收敛且和为B. 收敛但和不一定为C. 发散D. 可能收敛也可能发散 18. 若1n n u ∞=∑为正项级数, 则( )A. 若lim 0n n u →∞=, 则1n n u ∞=∑收敛 B. 若1n n u ∞=∑收敛, 则21n n u ∞=∑收敛BC. 若21n n u ∞=∑, 则1n n u ∞=∑也收敛 D. 若1n n u ∞=∑发散, 则lim 0n n u →∞≠19. 设幂级数1n n n C x ∞=∑在点3x =处收敛, 则该级数在点1x =-处( )AA. 绝对收敛B. 条件收敛C. 发散D. 敛散性不定 20. 级数1sin (0)!n nx x n ∞=≠∑, 则该级数( ) BA. 是发散级数B. 是绝对收敛级数C. 是条件收敛级数D. 可能收敛也可能发散二、填空题(每题4分,共20分)1. a ∙b = (公式)答案∣a ∣∙∣b ∣cos()2. a =(a x ,a y ,a z ),b=(b x ,b y ,z b z )则 a ·b = (计算) 答案a x b x +a y b y +a z b z3. .=⨯b a ρρ答案zy xz yxb b b a a a kj i ρρρ 4. ][c b a ρρρ= 答案xy z xy z xyza a ab b bc c c 5. 平面的点法式方程是 答案 6.设()xy y x z -+=22arcsin ,其定义域为 ((){}0,1,22≥>≤+x y y xy x )7.设()()⎪⎩⎪⎨⎧=≠=000sin ,2xy xy xyy x y x f ,则()=1,0x f (()11,0=x f )8.()y x f ,在点()y x ,处可微分是()y x f ,在该点连续的 的条件,()y x f ,在点()y x ,处连续是()y x f ,在该点可微分的 的条件. (充分,必要) 9.()y x f z ,=在点()y x ,的偏导数x z ∂∂及yz ∂∂存在是()y x f ,在该点可微分的 条件.(必要)10.在横线上填上方程的名称①()0ln 3=-⋅-xdy xdx y 方程的名称是 答案 可分离变量微分方程;②()()022=-++dy y x y dx x xy 方程的名称是 答案 可分离变量微分方程; ③xyy dx dy xln ⋅=方程的名称是 答案 齐次方程;④x x y y x sin 2+='方程的名称是 答案 一阶线性微分方程;⑤02=-'+''y y y 方程的名称是答案 二阶常系数齐次线性微分方程.11. 在空间直角坐标系{O ;k j i ρρρ,,}下,求P (2,-3,-1),M (a , b , c )关于 (1) 坐标平面;(2) 坐标轴;(3) 坐标原点的各个对称点的坐标. [解]:M (a , b , c )关于xOy 平面的对称点坐标为(a , b , -c ),M (a , b , c )关于yOz 平面的对称点坐标为(-a , b , c ), M (a , b , c )关于xOz 平面的对称点坐标为(a ,-b , c ), M (a , b , c )关于x 轴平面的对称点坐标为(a ,-b ,-c ), M (a , b , c )关于y 轴的对称点的坐标为(-a , b ,-c ), M (a , b , c )关于z 轴的对称点的坐标为(-a ,-b , c ). 类似考虑P (2,-3,-1)即可.12.要使下列各式成立,矢量,应满足什么条件?(1-=+ (2+=+(3=+ (4+=-(5-=-[解]:(1),-=+;(2),+=+(3≥且,-=+(4),+=-(5),≥-=-13.下列情形中的矢量终点各构成什么图形?(1)把空间中一切单位矢量归结到共同的始点;(2)把平行于某一平面的一切单位矢量归结到共同的始点; (3)把平行于某一直线的一切矢量归结到共同的始点;(4)把平行于某一直线的一切单位矢量归结到共同的始点. [解]:(1)单位球面; (2)单位圆(3)直线; (4)相距为2的两点二、填空题1.设22(,)sin (1)ln()f x y x y x y =+-+,则 =')1,0(x f ___1___.2.设()()()22ln 1cos ,y x y x y x f +-+=,则)1,0('x f =____0______.3.二重积分的变量从直角坐标变换为极坐标的公式是()()⎰⎰⎰⎰=DDd d f dxdy y x f θρρθρθρsin ,cos ,4.三重积分的变量从直角坐标变换为柱面坐标的公式是()()⎰⎰⎰⎰⎰⎰ΩΩ=dz d d z f dxdydz z y x f ϕρρϕρϕρ,sin ,cos ,,5.柱面坐标下的体积元素 z d d d dv θρρ=6.设积分区域222:D x y a +≤, 且9Ddxdy π=⎰⎰, 则a = 3 。

相关文档
最新文档