北京科技大学高等数学下册试题

合集下载

2010-2011学年度第二学期高等数学期中考试试题答案

2010-2011学年度第二学期高等数学期中考试试题答案

北京科技大学2010——2011学年第二学期高 等 数 学A(II) 期中试卷答案一、单项选择题 (本题共45分,每小题5分)1. C2. B3. C A. 5. C 6. B 7. D 8. A 9. C二、填空题 (本题共45分,每小题5分)10. 0G ; 11. 12; 12. 222214(1)4x z y y +=+−或 2224174210x y z y −++−=; 13. 3; 14. 123()e 1sin()x y z x f f f x z x ⎛⎞−′′′−++⎜⎟−⎝⎠; 15. 4d 2d x y −; 16. π; 17. 22x y +; 18. 2(22)9i j k +−G G G 或244,,999⎛⎞−⎜⎟⎝⎠. 三、应用与证明题(共10分,每小题5分)19.假设某企业在两个相互分割的市场上出售同一种产品, 两个市场需求函数分别是11182p θ=−, 2212p θ=−, 其中12,p p 分别表示该产品在两个市场的价格(单位:万元/吨), 1θ和2θ分别表示该产品在两个市场的销售量(即需求量, 单位: 吨), 并且该企业生产这种产品的总成本函数是25C θ=+, 其中θ表示该产品在两个市场的销售量, 即12θθθ=+.(1) 如果该企业实行价格差别策略, 试确定两个市场上该产品的销售量和价格为多少才能使该企业获得最大利润?(2) 如果该企业实行价格无差别策略, 试确定两个市场上该产品的销售量及其统一价格为多少才能使该企业的总利润最大化? 并比较两种价格策略的总利润大小.解 总利润函数为2211221212(25)216105,L R C p p θθθθθθθ=−=+−+=−−++− 则112241602100L L θθθθ∂⎧=−+=⎪∂⎪⎨∂⎪=−+=⎪∂⎩ 124,5,θθ=⎧⇒⎨=⎩ 因此 110p =(万元), 27p =(万元). 由于驻点(4,5)唯一, 所以max 52L =(万元).当实行价格无差别策略时, 12p p =, 从而满足条件1218212θθ−=−, 即12260θθ−−=. 令 2212121212(,,)216105(26),F θθλθθθθλθθ=−−++−+−− 则11221241620,2100,260,F F F θλθθλθθθλ∂⎧=−++=⎪∂⎪∂⎪=−+−=⎨∂⎪⎪∂=−−=⎪∂⎩ 得125,4,2,θθλ=== 从而128p p ==, 此时max 49L =(万元).显然, 企业实行差别之价的总利润大于统一价格的总利润.20.证明: 曲面,0x a y b f z c z c −−⎛⎞=⎜⎟−−⎝⎠的切平面经过一定点. 证明 记(,,),x a y b F x y z f z c z c −−⎛⎞=⎜⎟−−⎝⎠, 则 11(,,),x F x y z f z c ′=− 21(,,),y F x y z f z c′=− []1221(,,)()(),()z F x y z x a f y b f z c −′′=−+−− 故切平面的方程为[]12122111()()()()()0()f X x f Y y x a f y b f Z z z c z c z c ′′′′−+−−−+−−=−−−, 即 [][]12()()()()()()()()0z c X x x a Z z f z c Y y y b Z z f ′′−−−−−+−−−−−=, 显然, 当(,,)(,,)X Y Z a b c =时, 上式左端为零. 故此切平面过点(,,)a b c .。

北京科技大学高代(下)习题解答1.doc

北京科技大学高代(下)习题解答1.doc

北京科技大学高代(下)习题解答1北京科技大学唐思铭462、设%, %是线性空间V的子空问,给出%U/是V的子空间的充分必要条件。

解:充分必要条件是%匸匕或匕匸必证明:必要性设V,UV2是V的子空间若%匸岭或%匸%不成立,则存在但少纟匕以及&2丘%但勺纟%。

因为v.uv2是u的子空间, 所以,^! + cr2 G U V2 ,因此有,(7] + (72 G V(或0+色丘匕,但是,如果a}+a2eV},由a} eV}可得,a2 e V},矛盾;而如果a}+a2^V2,由a. e V2又i可得,a} eV2,矛盾。

所以,V,cV2或匕uK充分性是显然的,证毕4.6.4、设a〕=(1, 一1,0),设色=(一1,2,1),求向星色,使得,span{a} ,a2,a3] = /?3解:设V;=span[a l 9a2 },易知,dim% = 2, (3X = a, + cr2 =(0,1,1)eV,,设=(0,0,1),贝ij% = span {e ,勺} = s P an {e,0i },e,0i,a3线性无关,所以,span [a l ,a2y ct.} = span {a} ,^,a3} = R' 4.6.5 >如果况维线性空间的子空间序列匕,i = l,2,…,满足条件,叫^岭匸…^匕匸…则存在自然数,使得,匕*严匕七=••• = %=•••证明(提示):q =dim匕,j = 1, 2 ,…,则n x <n2 <-<n,467、若线性空间V的子空间%,岭的维数分别是人和乙,问:%+%和XU岭的所有可能维数是多少?解:%+岭所有可能维数是mr,+r2Z间的整数。

例如,对于斤+尸5 + 3 = 8,取线性无关的向量组a〕,…,逐,X = span{a} ,a2 ,a3,a4,a5 },贝!J,V2 = span{a3.a A,a5 }时,V} + V2的维数是5;V2= span{a4,a5y a6 }时,% +岭的维数是6 ;V2= span{a^.a^a q }时,+ 匕的维数是7 ;V2 =span{a6,a7,a s }时,V, +V2的维数是8;V,UV2要成为子空间才有维数,此时V.G K或岭匸«,所以可能维数max{r, , r2}4.7.2、在线性空间疋中,记,硏={(旺,X2,••・,£)€/?" |x,+X2 +••• + X n =0| W2 ={(召,兀2|兀]=兀2 =•••=£}证明:R n =W X㊉怡证明(提示、):设匕.=耳一勺+J = 1,2…,乃一1 , a“ = q+6 +…匕,贝!J,= span {&],•••, a n_x}, W2 = span {a n}由此易得,R n = W,㊉比证毕4.7.3、在线性空间7?”中,取向量0,也,…4$,记,U = span[a{ ,a2,…,Q$}V = a E R" a t a T = 0, z = 1 , 2,…,s}证明:是V的线性子空间,且R n=U㊉V 证明(提示):这里是行向量。

北科高等数学AII 2012-2013 期中试卷

北科高等数学AII 2012-2013 期中试卷

x2 2z 11、设 为平面曲线 绕 z 轴旋转一周形成的曲面与平面 z 8 所围区域,则 y 0
x

2
y 2 dxdydz 的值等于【
(B) 1024


一、填空题(每小题 4 分,共 24 分)
3
(A)
2

3
(C)
1024 7
(D)
3 8

四、证明题
21、设 f x, y在单位圆域上有连续偏导数,且在边界上取值为零,证明:
sin x
(A) (C)


0
1
dy sin x f x, y dx
dy
arcsin x

(B)
dy
0 1
1
f x, y dx
0
f x, y dx
(D)
1 2
.
(C)
zdxdydz 4 zdxdydz.
1 2
(D)
xyzdxdydz 4 xyzdxdydz.
1 2
1/2
机翔学习中心
15、设函数 f x, y 连续,则二次积分
1
dx

2
1
f x, y dy 等于【

arcsin y
2


x yf x y f (B) yf1 2xf 11 22 12
2 2

3、 设 f x, y具有一阶连续偏导数,且 u f xy, yz ,则 du

. .
2 2 x 3 yf 2 (C) xf 2 2 xy 3 f1 1 2 x y f1 2

2016-2017 学年第二学期高等数学AII 期末试卷(试卷+A3排版+解析)

2016-2017 学年第二学期高等数学AII 期末试卷(试卷+A3排版+解析)
f (x)g(y) d x d y = 0
¨D
¨D
(C) [f (x) + g(y)] d x d y = 0
13.
设由方程组
y + xyz
z+x =1
=
0
确定的隐函数
y
=
y(x)

z
=
z(x),求
dy dx ,
dz dx
.
14.
设连续函数
f (x)
满足方程
f (x)
=
ˆ
3x
f
() t d t + e2x,

f (x).
¨(
0
3
)
(
)
15. 计算曲面积分 I = x2 − yz d y d z + y2 − zx d z d x + 2z d x d y, 其中 Σ
xOy ydx
平面上一条简单光滑的正向闭曲线,原点在其所围闭区域之外,则
=
【】
C x2 + 4y2
(A) 4π
(B) 0
(C) 2π
(D) π
6. 微分方程 xy′′ − y′ = 0 满足条件 y′(1) = 1, y(1) = 0.5 的解为
【】
(A) y = x2 + 1 44
(B) y = x2 2
1,
√ − ¨x

y

√x},则正确的选x 项为
¨
【】
(A) f (y)g(x) d x d y = 0
(B) f (x)g(y) d x d y = 0
¨D
¨D
(C) [f (x) + g(y)] d x d y = 0

北科高等数学AII 2013-2014 期中试卷

北科高等数学AII 2013-2014 期中试卷
0或lim
y0
0
x
y
C D
( x, y )(0,0)
lim
f (x, y) f (0, 0) fx (0, 0)x f (0, 0) y 0 x2 y2
( x, y )(0,0)
lim [ f (x, y) f (0, 0) f x (0, 0)x f (0, 0) y] 0
装 订 线 内 不 得 答 题
说明:1、要求正确的写出主要的计算或推倒过程,过程有错或只写答案者不得分; 2、考场、学院、班级、学号、姓名均需全写,不写全的试卷为废卷; 3、涂改学号以及姓名的试卷为废卷; 4、请在试卷上作答,在其它纸上解答一律无效.
10. 已知 f (x, y) 在 (x0 , y0 ) 的偏导数存在,则(
C
2x 4 y z 5
5. 曲面 x2 y2 z 2 14 在点 (1, 2,3) 处的切平面的方程为
.
机翔学习中心
14. 已知函数 f (x, y) 在点 (0, 0) 处的某邻域内有定义,且 f (0, 0) 0 ,
lim
( x, y ) (0,0)
f (x, y) x y
u x
y
u y
xf1 yf2


.
自 觉 遵 守 考 试 规 则 , 诚 信 考 试 , 谢 绝 作 弊
装 订 线 内 不 得 答 题
机翔学习中心
参考答案 一、填空题
1.
3 5
2.
a3
3 1 2
3. ( f1

6. f (2) 7.
1 )dx ( f x f )dy f2 f 3 1 2 y y2
18 D

北京科技大学2003-2004学年度第二学期高等数学(A)试题及答案

北京科技大学2003-2004学年度第二学期高等数学(A)试题及答案

敛区间 t 2 ,即 1 x 3 , 当 x 3 时级数发散,当 x 1 时级数收敛,故原级数收 敛域为 [ 1, 3) 。 13.解: ï í
ì ïz = ï x= 0 ï ï î
y- 1
绕 y 轴旋转的旋转曲面方程为: y - 1 = z + x ,
2
2
I=
蝌 邋+
=
A 5
x2 y 1 = [ ] 2 ydy 1 2 y 1 2 5 [ y ( y 2) 2 y 5 ]dy = 5 1 2 8 a n 1 1 tn , lim , 收敛半径 R 2 , 收 n n a 2 n 1 2 n n

12. 解: 令 t x 1 , 则原级数化为
五.综合题 (10 分)
17 . 设 曲 线 C 的 起 点 为 A , 终 点 为 B ,
f ( ) 1 , 求 函 数 f ( x) , 使 曲 线 积 分
A,B 两点分别为 (1, 0) 和 ( , ) 时
C
[sin x f ( x)] x dx f ( x)dy 与路径无关,并求当
2 2
x
0
15.解:特征方程 r r 2 0 , r1 1, r2 2 , 齐次方程通解为 Y c1e c2e 为求原方程的特解 y 。 ,考虑两个方程,

2
x
2 x

, 对于前一方程, 因 0 不是特征根,可设 y ' ' y '2 y x 1 (1)和 y ' ' y '2 y e x (2)
(8 y 1) xdydz 2(1 y )dzdx 4 yzdxdy ,

北京科技大学2004-2005学年度第2学期高等数学A试题及答案

北京科技大学2004-2005学年度第2学期高等数学A试题及答案

北京科技大学2004 — 2005学年度第二学期高等数学(A 卷) 试题 (时间120分钟)学院 考场 班级 学号 姓名一、填空 (每小题3分,共15分)1.设函数22y x z +=,则函数在点)1,1(处的梯度为 j i 22+ 2. 将三次积分)0(),sin ,cos (002022>⎰⎰⎰-a dz z r r f rdr d ar a θθθπ化为球面坐标系下的三次积分(函数),,(z y x f 在已知区域上连续)dr r r r r f d d aφφφθφθφθππsin )cos ,sin sin ,sin cos (22020⋅⎰⎰⎰3. 曲面12-=+z ye x x 在点(0,1,-1)处的切平面与xoy 平面的夹角为a r c =ψ4. 光滑曲面),(y x f z =在坐标平面xoy 的投影区域为D ,那么该曲面的面积可以用二重积分表示为d x d y Z Z Dy x ⎰⎰++2215. 设级数∑∞=+-11)(n n n a a 收敛,且和为s ,则n n a ∞→lims a -1 二、选择 (每小题3分,共15分) 1. 已知函数22),(y x y x y x f -=-+,则=∂∂+∂∂yy x f x y x f ),(),( ( C ) (A ) y x 22-; (B) y x 22+; (C) y x +; (C) y x -2. 设常数k>0, 则级数∑∞=+-12)()1(n n n n k 是 (C ) (A) 发散; (B) 绝对收敛; (C) 条件收敛; (D) 发散与收敛与k 的取值无关3. 微分方程02'=-y xy 的通解是 ( B )(A) Cx y =; (B) 2Cx y =; (C) 3Cx y =; (D) 4Cx y = 4. 二元函数33)(3y x y x z --+=的极大值点是 ( A )(A)(1,1); (B)(1,-1); (C)(-1,1); (D)(-1,-1) 5. 若L 是上半椭圆⎩⎨⎧==tb y ta x sin cos ,取顺时针方向,则⎰-L xdy ydx 的值为 (C )(A) 0 ; (B) 2abπ; (C) ab π; (D) ab π-三、计算 (共70分)1.(6分)设)(x y 是04=+'+''y y y 的解,2)0(,41)0(='=y y计算dx x y AA ⎰∞→0)(lim解:特征方程21,2441002r r r -±++=⇒=< )(0)(2121+∞→→+=x e C e C x y x r x r (3分))(0)(212211'+∞→→+=x e r C e r C x y x r x r32414)()(4)4()(lim0'00'''0=+⨯=--=--=∞+∞++∞+∞→⎰⎰x y x y dx y y dx x y AA (6分) (先求通解,定出常数,再进行积分也可以) 2.(8分)计算二次积分dy e dx x y ⎰⎰-1102解:211100110222-----===⎰⎰⎰⎰⎰⎰e dx dy edxdy e dy e dx Dyy y x y3.(6分)在过点)0,0(O 和)0,(πA 的曲线族)0(sin >=a x a y 中,求一条曲线L ,使沿该曲线从O 到A 的积分dy y x dx y L )2()1(3+++⎰的值最小. 解:344]cos )sin 2()sin 1[()(333a a dx x a x a x x a a f +-=+++=⎰ππ(4分)1,044)(2'==+-=a a a f 唯一驻点,所以 : 所求曲线x y L sin :=使38)1(-=πf 为最小。

高等数学下考试题库(附答案)

高等数学下考试题库(附答案)

高等数学下考试题库(附答案) 高等数学》试卷1(下)一、选择题(3分×10)1.点M1(2,3,1)到点M2(2,7,4)的距离M1M2=().A.3B.4C.5D.62.向量a=-i+2j+k,b=2i+j,则有().A.a∥bB.a⊥bC.a,b=D.a,b=3.函数y=2-x^2-y^2+1/x+y-12/2+y^2的定义域是().A.{(x,y)|1<x<2,1≤x^2+y^2≤2}B.{(x,y)|x,y<0}C.{(x,y)|1<x≤2,2+y^2<2}D.{(x,y)|2+y^2<x}4.两个向量a与b垂直的充要条件是().A.a·b=0B.a×b=0C.a-b=0D.a+b=05.函数z=x+y-3xy的极小值是().A.2B.-2C.1D.-16.设z=xsiny,则∂z/∂y|(π/4,3/4)=().A.2/√2B.-2/√2C.2D.-27.若p级数∑n=1∞pn收敛,则().A.p1 D.p≥18.幂级数∑n=1∞xn/n的收敛域为().A.[-1,1]B.(-1,1)C.[-1,1)D.(-1,1]9.幂级数∑n=2∞x^n/(n-1)在收敛域内的和函数是().A.1/(1-x)B.2/(1-x)^2C.2/(1+x)D.1/(1+x)10.微分方程xy'-ylny=0的通解为().A.y=cxB.y=e^xC.y=cxe^xD.y=ex二、填空题(4分×5)1.一平面过点A(1,2,3)且垂直于直线AB,其中点B(2,-1,1),则此平面方程为______________________.2.函数z=sin(xy)的全微分是______________________________.3.设z=xy-3xy^2+1,则(∂^2z)/(∂x∂y)|3/2=-___________________________.三、计算题(5分×6)4.1.设z=esinv,而u=xy,v=x+y,求u∂z/∂x-∂z/∂y.2.已知隐函数z=z(x,y)由方程x^2+y^2+z^2=1确定,求∂z/∂x.3.设f(x,y)=x^2y-xy^2,求f在点(1,1)处的方向导数沿向量i+j的值.4.设z=f(x^2+y^2),其中f(u)在u=1处可导,求∂z/∂x|P,其中P为曲线x^2+y^2=1,z=1上的点.5.设z=ln(x+y)cos(x-y),求∂^2z/∂x^2-2∂^2z/∂x∂y+∂^2z/∂y^2.6.设f(x,y)在点(0,0)处可微,且f(0,0)=0,证明:∂f/∂x和∂f/∂y在点(0,0)处连续.1.已知函数f(x)在区间[0,1]上连续,且f(0)=0,f(1)=1,则方程f(x)=0在区间(0,1)内至少有()个实根。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高等数学试题
一、填空题
1.设sin z xyz 1,-=则
z yz x cos z xy ∂=∂-. 2.设L 为圆周22x y 4+=
,则对弧长曲线积分=12π⎰ . 3.交换积分次序(
)22
2y 410y 0x
2dy f x,y dx =dx y)dy ⎰⎰⎰⎰. 4.方程2x y"4y'4y e -++=的一个特解是2x x e -212
. 二、选择题
1.函数(
)2222x y 0f x,y 0x y 0
+≠=+=⎩在点(0,0)处A . A.连续 B.两个偏导数都存在,且为0
C.两个偏导数都存在,但不为0
D.全微分存在
2.设有空间区域2221:x y z 1,z 0Ω++≤≥;
2222:x y z 1,x 0,y 0,z 0Ω++≤≥≥≥,则C .
A.12xdv 4xdv ΩΩ=⎰⎰⎰⎰⎰⎰
B.12
ydv 4ydv ΩΩ=⎰⎰⎰⎰⎰⎰
C.12zdv 4zdv ΩΩ=⎰⎰⎰⎰⎰⎰
D.12
xyzdv xyzdv ΩΩ=⎰⎰⎰⎰⎰⎰ 3.设∑为球面222x y z 1++=的外侧,则222
x dydz x y z ∑++⎰⎰ 等于C . A.0
B.
22y z 1+≤⎰⎰
C.43π
D.22x z 1
+≤-⎰⎰ 4.下列微分方程中,通解为()2x 12y e c cos x c sin x =+的方程是B .
A.y"4y'5y 0--=
B.y"4y'5y 0-+=
C.y"2y'5y 0-+=
D.2x y"4y'5y e
-+= 三、计算二重积分2y 2D
e dxdy y ⎰⎰.其中D 为3x y =与5x y =所围区域. 1e 12- 五、设y u y
f 2x,x ⎛⎫=⎪ ⎭⎝,f 具有二阶连续偏导数,求 22
11222223u 2y 2y y 2f f f f x y x x x
∂''''''=+--∂∂. 六、设()f x 是一个连续函数,证明:
(1)()()22f x y xdx ydy ++是一个全微分;(2)()()()u 2201d f u du f x y xdx ydy 2⎛⎫=++ ⎪⎝⎭
⎰,其中22u x y =+. 证明:(1)
()()()(
)
222222222222222222f x y xdx ydy xf (x y )dx yf (x y )dy (xf (x y ))2xyf (x y )y
(yf (x y ))(xf (x y ))2xyf (x y )x y
f x y xdx ydy ++=+++∂+'=+∂∂+∂+'=+=∂∂∴++
(2) ()()22
u x y 2222002222111d f u du f u du f (x y )d(x y )2221f (x y )(2xdx 2ydy)f (x y )(xdx ydy).2
+⎛⎫==++ ⎪⎝⎭=++=++⎰⎰ 七、求:由曲面2222z 0,z y 1,x y 4==
+=+=所围空间立体Ω的体积.
解: 22010V dxdydz d d dz 14d d dz 3πρρρθθρρπΩΩ
====⎰⎰⎰⎰⎰⎰⎰⎰⎰
是一个全微分。

九、
计算曲面积分2∑,其中∑
为下半球面z =上侧.
解:补充曲面∑‘:z=0并取其下侧。

xy
222210002D 2
xdydz (z 1)dxdy xdydz (z 1)dxdy (2z 3)dxdydz 1022zdxdydz 22d d 3xdydz (z 1)dxdy dxdy πππθρρππ∑
∑'∑+∑ΩΩ'∑=++++=-+=--=--=-++=-=-∴⎰⎰⎰⎰
⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰2
7xdydz (z 1)dxdy 3π∑∑=++=-⎰⎰ 十、设()f x 二阶可微,且()1
f 03=,()f 01'=-,确定()f x 使积分
()()()2L 1312yf x 3yf x y dx f x x x dy 222⎛⎫⎛⎫''+++-- ⎪ ⎪⎝⎭⎝
⎭⎰与路径无关. 解:
()()()2L 212x 3x
012**'*''01000101*1312yf x 3yf x y dx f x x x dy 222P Q 112f (x)3f (x)f (x)3x y x 22f (x)2f (x)3f (x)3x 1
2301,3
y C e C e y a x a y a y 0
02a 3a x 3a 3x 1
12a ,a 39
1y λλλλ-⎛⎫⎛⎫''+++-- ⎪ ⎪⎝⎭⎝
⎭∂∂'''=→++=--∂∂'''--=+--=→=-==+=+→=→=---=+=-==-⎰x 3x 121212x 3x 2x 39
12f (x)C e C e x 39
21f (0)C C 93
11f (0)C 3C 33
1112f (x)e e x 123639--+=+-+=++='=-+-=-=+-+。

相关文档
最新文档