南京市联合体2013-2014学年九年级(上)期末数学试卷(含答案)
南京市高淳区2013-2014学年度九年级数学(上)期末试卷(含答案)

(第4题)y y y y 90 90 90 45 90 45 45 45 O O O O t t t t A . B . C . D . 高淳区2013~2014学年度第一学期期末质量调研检测九年级数学试卷一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置.......上) 1.方程 (x -2)2 + (x -2) =0的解是( ▲ ).A .2B .-2,1C .-1D . 2,12.如图,△ABC 中,∠ACB =90°,AC =3,BC =4.以A 为圆心 作圆与BC 相切,则该圆的半径为( ▲ ). A .2.5 B .3 C .4 D .53. 顺次连接对角线互相垂直的四边形各边的中点,所得到的四边形是( ▲ ). A .矩形 B .菱形 C .正方形 D .等腰梯形 4.如图,二次函数y =ax 2+bx +c 的图象过(1,-1)和 (3,0),则下列关于这个二次函数的描述,正确的是( ▲ ). A .y 的最小值大于-1 B .当x =0时,y 的值大于0 C .当x =2时,y 的值等于-1 D .当x >3时,y 的值大于05.如图,AC 、BD 为圆O 的两条互相垂直的直径,动点P 从圆心O 出发,沿O →C →D →O 的路线作匀速运动,设运动时间为t 秒,∠APB 的度数为y 度,那么表示y 与t 之间函 数关系的图象大致为( ▲ ).6.已知二次函数y =a (x -1) 2-a (x -1 ) (a 为常数,且a ≠0),图像的顶点为C .以下 三个判断: ①无论a 为何值,该函数的图像与x 轴一定有两个交点;②无论a 为何值, 该函数的图像在x 轴上截得的线段长为1;③若该函数的图像与x 轴有两个交点 A 、B ,且S △ABC =1时,则a =8.其中,正确的是( ▲ )(第5题) D C B P A Ox-1y13 O(第13题)A .①②B .②③C .①③D .①②③二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题卡相应位置.......上) 7.要使式子x +1-x 在实数范围有意义,则x 的取值范围为 ▲ . 8.甲、乙两人5次射击命中的环数如下:甲 7 9 8 6 10 乙 7 8 9 8 8经计算这两人5次射击命中的环数的平均数都是8,则这两人 射击成绩波动较大的是 ▲ .(填“甲”或“乙”) 9.已知菱形的一个内角是60°,较短的一条对角线的长为2cm , 则较长的一条对角线的长为 ▲ cm . 10.如图,AB 为⊙O 的直径,点C ,D 在⊙O 上.若∠AOD =30°,则∠BCD = ▲ °.11.一个圆锥的底面圆半径为6cm ,圆锥侧面展开图扇形的圆心角为240则圆锥的母线长为 ▲ cm .12.某种药品原价为60元/盒,经过连续两次降价后售价为48.6元/盒.设平均每次降价的百分率为x ,则根据题意,可列方程为 ▲ . 13.如图,⊙O 直径AB 垂直于弦CD ,垂足E 是OB 的中点,CD =6cm ,则直径AB = ▲ cm .14.某公园草坪的防护栏形状是抛物线形.为了牢固起见,每段护栏按0.4m 的间距加装不锈钢的支柱, 防护栏的最高点距底部0.5m (如图),则其中防护 栏支柱A 2B 2的长度为 ▲ m . 15.二次函数y =a x 2+bx +c (a ≠0)中的自变量x 与函数值y 的部分对应值如下表:则a x 2+bx +c =0的解为 ▲ .16.如图,点A 、B 在直线MN 上,AB =8cm ,⊙A 、⊙B 的半径均为1cm .⊙A 以每秒1cm 的速度自左向右运动;与此同时,⊙B 的半径也随之增大,其半径r (cm)与时间t (秒)(第14题)﹙第10题﹚ABDCOA 1A 2A 3A 4之间满足关系式r =1+t (t ≥0) .则当点A 出发后 ▲ 秒,两圆相切.三、解答题(本大题共11小题,共88分.请在答题卡指定区域.......内作答,解答时应写出文 字说明、证明过程或演算步骤)17.(5分)计算: ab a 632⨯(a ≥0,b ≥0).18.(5分)计算:2421332--.19.(6分)解方程:9m 2-(2m +1) 2=0.20.(10分)已知二次函数y =x 2+bx +c 的图象经过点(4,3),(3,0). (1)求b 、c 的值;(2)求出该二次函数图象的顶点坐标和对称轴,并在所给坐标系中画出该函数的图象; (3)该函数的图像经过怎样的平移得到 y =x 2的图像?(第16题)BANM(第20题) xyO11(第21题)21.(7分)如图,在Rt △ABC 中,∠C =90°,AC =4,BC =3. (1)该三角形的外接圆的半径长等于 ▲ ; (2)用直尺和圆规作出该三角形的内切圆(不写作法,保留作图痕迹),并求出该三角形内切圆的半径长.22.(7分)射击集训队在一个月的集训中,对甲、乙两名运动员进行了10次测试,成绩如图所示(折线图中,虚线表示甲,实线表示乙): (1)根据上图所提供的信息填写下表:(2)如果你是教练,会选择哪位运动员参加比赛?试说明理由. (参考公式:s 2=n1[22221)(((x x x x x x n -++-+- ])(第22题)23.(8分)如图,在平行四边形ABCD 中,AE ⊥BC 于E ,AF ⊥CD 于F ,BD 分别与 AE 、AF 相交于G 、H .(1)在图中找出与△ABE 相似的三角形,并说明理由; (2)若AG =AH ,求证:四边形ABCD 是菱形.24.(9分)已知关于x 的方程(a -1)x 2+2x +a -1=0. (1)若该方程有一根为2,求a 的值及方程的另一根;(2)当a 为何值时,方程仅有一个根?求出此时a 的值及方程的根.ADCBGE HF (第23题)25.(9分)如图,AB 是⊙O 的直径,弦CD ⊥AB 于H .点G 在⊙O 上,过点G 作直线EF ,交CD 延长线于点E ,交AB 的延长线于点F .连接AG 交CD 于K ,且KE =GE . (1)判断直线EF 与⊙O 的位置关系,并说明理由;(2)若AC ∥EF ,AH AC =35,FB =1,求⊙O 的半径.26.(9分) 商场销售某种冰箱,该种冰箱每台进价为2500元,已知原销售价为每台2900元时,平均每天能售出8台.若在原销售价的基础上每台降价50元,则平均 每天可多售出4台.设每台冰箱的实际售价比原销售价降低了x 元.(1)填表(不需化简):(2)商场为使这种冰箱平均每天的销售利润达到5000元,则每台冰箱的实际售价应定为多少元?(第25题)27.(13分)如图,在△ABC中,AB=AC=4cm,∠BAC=90°.动点P、Q同时从A、B 两点出发,分别沿AB、BC方向匀速移动,它们的速度都是1cm/s,当点P到达点B 时,P、Q两点停止运动.设点P的运动时间为t s,四边形APQC的面积为y cm2.(1)当t为何值时,△PBQ是直角三角形?(2)①求y与t的函数关系式,并写出t②当t为何值时,y(3)设PQ的长为x cm,试求y与x九年级数学参考答案及评分标准一、选择题(每小题2分,共12分,将正确答案的题号填在下面的表格中)二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题卡相应位置.......上) 7. x ≤1 8.甲 9.23cm 10.105° 11. 9cm 12.60(1-x )2=48.6 13.43 14.0.48 15.x =-2或1 16.3和4三、解答题(本大题共11小题,共88分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤) 17.解:原式=ab a 632⨯=b a 2182………………………………………………………………2分 =b a 26 ………………………………………………………………5分18.解:原式= 2222324--……………………………………………………3分 =22……………………………………………………………………5分 19.解:原方程化为〔3m -(2m +1)〕〔3m +(2m +1)〕=0 …………………2分 (m -1)(5m +1)=0m -1=0或5m +1=0 …………………………………………4分m 1 =1,m 2=-15……………………………………………6分20.解:(1)将(4,3),(3,0)代入y =x 2+bx +c ,得 ………2分解得: …………………………………………………………3分(2)二次函数y =x 2-4x +3=(x -2)2-1,………………………………………4分顶点坐标为(2,-1),对称轴是直线x =2 ………………………………6分 画图正确.………………………………………………………………………8分 (3)将该函数的图像向左平移3个单位,再向上平移1个单位得到y =x 2的图像.…………………………………………10分21.解:(1)2.5……………………………………………………………………………2分(2)作图正确……………………………………………………………………4分设内切圆的半径长为r ,由S △OBC +S △OAC +S △OAB =S △ABC得:12(3r +4r +5r )=12×3×4………6分解得:r =1……………………………7分22.解:(1)甲运动员射击的众数为6 ……………………………………………1分16+4b +c =3, 9+3b +c =0,b =-4,c =3,乙运动员射击成绩的众数为8 ………………………………………2分2甲S =1.2 ………………………………………………………………4分 (2)答案不唯一.选择甲运动员参赛,理由是:从平均数看两人成绩一样;但从方差看,甲的方差小于乙的方差,甲的成绩比乙稳定.……………7分 (选择乙运动员参赛,理由是:从众数看,乙比甲的成绩好,且从比赛状态和发展 趋势看,乙的成绩除开始失误外,以后越打越好,乙比甲的潜能大.………7分)23.(1)△ABE ∽△ADF . ………………1分理由如下:∵AE ⊥BC 于E ,AF ⊥CD 于F , ∴∠AEB =∠AFD =90°. ……………2分 ∵四边形ABCD 是平行四边形, ∴∠ABE =∠ADF .∴△ABE ∽△ADF .……………………………………………………………4分 (2)证明;∵AG =AH , ∴∠AGH =∠AHG .∴∠AGB =∠AHD .……………5分 ∵△ABE ∽△ADF , ∴∠BAG =∠DAH .∴∠BAG ≌∠DAH .……………6分 ∴AB =AD ……………7分∵四边形ABCD 是平行四边形,AB =AD∴平行四边形ABCD 是菱形.………………………………………………8分24.解:(1)将x =2代入方程(a -1)x 2+2x +a -1=0,解得:a =15.…………………1分将a =15代入原方程得-45x 2+2x -45=0,解得:x 1=12,x 2=2.……………3分∴a =15,方程的另一根为12(2)①当a =1时,方程为2x =0,解得:x =0 ………………4分②当a ≠1时,由b 2-4ac =0得4-4(a -1)2=0 解得:a =2或0. …………………………5分当a =2时, 原方程为:x 2+2x +1=0,解得:x 1=x 2=-1; ………7分 当a =0时, 原方程为:-x 2+2x -1=0,解得:'1x ='2x =1.……9分25.解:(1)如图,连接OG .∵OA =OG ,∴∠OGA =∠OAG ,……1分 ∵CD ⊥AB ,∴∠AKH +∠OAG =90°. ∵KE =GE ,∴∠KGE =∠GKE =∠AKH ,……2分ADCBGEHF(第23题)………2分∴∠KGE +∠OGA =∠AKH +∠OAG =90°, ∴∠OGE =90°即OG ⊥EF ,又∵G 在圆O 上∴EF 与圆O 相切. ………………………………………4分 (2)∵AC ∥EF , ∴∠F =∠CAH ,∴Rt △AHC ∽ Rt △FGO . ∴CH AC =OGOF .…………………6分∵在Rt △OAH 中,AH AC =35,设AH =3t ,则AC =5t ,CH =4t . ∴CH AC =45, ∴OG OF =45………………………………………7分 ∵FB =1 ∴45=OG OG+1,解得:OG =4.即圆O 的半径为4 ………………………………9分26.(1)(2)根据题意,可得:(400-x )(8+4×x50) =5000.………………………………5分化简,整理得:x 2-300x +22500=0. 即(x -150)2=0,解得:x =150.…………………………………………………………7分 ∴实际售价定为:2900-150=2750(元) .答:每台冰箱的实际售价应定为2750元.………………………………9分27.解:(1)BQ =AP =t , BP =4-t ,①当∠PQB =90°时,由BQ BP 2=得:2t =4-t ,解得:t =4 2+1 …………………………………………2分②当∠PQB =90°时,由BP BQ 2=得:t t =-)4(2解得:t =1224+ …………………………………………4分(2)①过P 作PH ⊥BC ,在Rt △PHB 中,BP =4-t ,PH =122·(4-t ),∴S △BPQ =142·(4-t )t , ∴y =S △ABC -S △BPQ =8-142(4 t -t 2).…………………………6分 由题意可知:0≤t ≤4 …………………………………………………7分②y =8-142(4 t -t 2)=142(t -2)2+8-2,……8分 ∴当t =2时,y 取得最小值,最小值是8-2. ……………………9分(3)在Rt △PQH 中,PH =12(4-t ),HQ =12(4-t )-t , 由PQ 2= PH 2+HQ 2,则x 2=〔12(4-t )〕2+〔12(4-t )-t 〕2 化简得:x 2=(2+2)t 2-4(2+2)t +16,∴ t 2-4 t =x 2-162+2, ……………………………………………11分 将t 2-4 t =x 2-162+2代入y =8-142(4 t -t 2),得y =8+24·x 2-162+2. 即y =12428)12(412++++x .…………………………………13分。
2023-2024学年江苏省南京市联合体九年级(上)月考数学试卷(含解析)

2023-2024学年江苏省南京市联合体九年级(上)月考数学试卷一、选择题(本大题共6小题,共18.0分。
在每小题列出的选项中,选出符合题目的一项)1.一元二次方程x2−6x−5=0配方可变形为( )A. (x−3)2=14B. (x−3)2=4C. (x+3)2=14D. (x+3)2=42.一元二次方程(x−5)2+1=0的根的情况是( )A. 有一个实数根B. 有两个相等的实数根C. 有两个不相等的实数根D. 没有实数根3.若一个圆锥的侧面展开图是半径为18cm,圆心角为240°的扇形,则这个圆锥的底面半径长是( )A. 6cmB. 9cmC. 12cmD. 18cm4.在如图所示的正方形网格中,点A,B,C,D,O均在格点上,则点O是( )A. ▵ACD的外心B. ▵ACD的内心C. ▵ABC的外心D. ▵ABC的内心5.已知⊙O的半径是1,弦AB=3,点C为⊙O上的一点(不与点A、B重合),则∠ACB的度数为( )A. 60∘B. 30∘C. 60∘或120∘D. 30∘或150∘6.如图,P为⊙O的直径BA延长线上的一点,PC与⊙O相切,切点为C,点D是⊙O上一点,连结PD.已知PC=PD=BC.下列结论:(1)PD与⊙O相切;(2)四边形PCBD是菱形;(3)PO=AB;(4)∠PDB=120°.其中正确的个数为( )A. 1个B. 2个C. 3个D. 4个二、填空题(本大题共10小题,共30.0分)7.方程x2=4的解是_____.8.已知⊙O的直径为10cm,圆心O到直线l的距离为10cm,直线l与⊙O的位置关系为______.9.若x=2是一元二次方程x2−mx+8=0的一个根,则m的值是______.10.某店8月份利润为16万元,要使10月份利润达到25万元,设月平均增长率为x,根据题意可列方程______.11.如图,在正八边形ABCDEFGH中,AC、AE是两条对角线,则∠CAE的度数为_________°.12.一元二次方程x2+3x−1=0的两个根分别是a和b,则(a−2)(b−2)=______.13.如图,点A、B、C、D在⊙O上,点B是AC的中点,过点C作⊙O的切线交AB的延长线于点E.若∠ADC= 64∘,则∠AEC=______°.14.如图,在▵ABC中,AB=8,DE⊥AB于D,若▵ABC的外心O在线段DE上.∠BOC=120∘,则DE=______.15.如图,在直角坐标系中,点B(−7,0),C(7,0),AB−AC=2,则▵ABC的内切圆圆心M的横坐标为______.16.在Rt▵ABC中,∠ACB=90∘,∠A=n∘,点D在AB上,CD=1AB,若点D是AB的中点,则n的取值范围2是______.三、解答题(本大题共11小题,共88.0分。
南京市联合体2013-2014学年八年级上期末数学试卷及答案【苏科版】

2013-2014学年度第一学期期末学情分析样题八年级数学一、 选择题(每小题2分,共16分)1. 点P ( 2,-3 )关于x 轴的对称点是( ▲ )A . (-2, 3 )B . (2,3)C .(-2, 3 )D .(2,-3 ) 2. 若2=a ,则a 的值为 ( ▲ )A.2B.2±C.4D.±43.把0.697按四舍五入法精确到0.01的近似值是 ( ▲ )A . 0.6B . 0.7C . 0.67D . 0.70 4. 一次函数y =2x +1的图像不经过( ▲ )A .第一象限B .第二象限C .第三象限D .第四象限 5.若440-=m ,则估计m 的值所在的范围是 ( )A .1<m <2B .2<m <3C .3<m <4D .4<m <56. 若点A (-3,y 1),B (2,y 2),C (3,y 3)是函数2+-=x y 图像上的点,则( ) A .321y y y >> B .321y y y << C .231y y y << D .132y y y >>7. 某电视台“走基层”栏目的一位记者乘汽车赴320km 外的农村采访,全程的前一部分为高速公路,后一部分为乡村公路.若汽车在高速公路和乡村公路上分别以某一速度匀速行驶,汽车行驶的路程y (单位:km )与时间x (单位:h )之间的关系如图所示,则下列结论正确的是( )A .汽车在高速公路上的行驶速度为100km/hB .乡村公路总长为90kmC .汽车在乡村公路上的行驶速度为60km/hD .该记者在出发后5h 到达采访地8. 平面直角坐标系中,已知A (8,0),△AOP 为等腰三角形且面积为16,满足条件的P 点有( ▲ )A .4个B .8个C .10个D .12个(第7题图)二.填空题(每小题2分,共20分)9. 计算:3-64 = ▲ .10. 若等腰三角形的两边长分别为4和8,则这个三角形的周长为 ▲ . 11. 若032=++-y x ,则()2013y x +的值为 _▲___.12. 在平面直角坐标系中,若点M (-1,3)与点N (x ,3)之间的距离是5,则x 的值是 ▲ . 13. 如图,已知函数y =2x +1和y =-x -2的图像交于点P ,根据图像,可得方程组⎩⎨⎧2x -y +1=0x +y +2=0的解为 ▲ .14. 将一次函数y =2x +1的图像向上平移3个单位长度后,其对应的函数关系式为 ▲ .15. 如图,在△ABC 中,AB =1.8,BC =3.9,∠B =60°,将△ABC 绕点A 按顺时针旋转一定角度得到△ADE ,当点B 的对应点D 恰好落在BC 边上时,则CD 的长为 ▲ .16. 如图,在△ABC 中,∠ACB =90°,沿CD 折叠△CBD ,使点B 恰好落在AC 边上的点E 处.若 ∠A =28°,则∠ADE = ▲ °.17. 如图所示的图形中,所有的四边形都是正方形,所有的三角形都是直角三角形,若正方形A ,B ,C ,D 的面积和是49cm 2 ,则其中最大的正方形S 的边长为 cm. 18. 在平面直角坐标系中,规定把一个正方形先沿着x 轴翻折,再向右平 移2个单位称为1次变换.如图,已知正方形ABCD 的顶点A 、B 的坐 标分别是(-1,-1)、(-3,-1),把正方形ABCD 经过连续7次这样的变换得到正方形A ′B ′C ′D ′,则B 的对应点B ′的坐标是 ▲ .(第13题图)(第16题图)(第18题图)(第15题图)三.解答题(本大题共9小题,共64分)19. (本题满分8分)(1) (4分) 求出式子中x 的值:9x 2-16=0.(2)(4分)232)3(8)2(+---20. (本题满分5分) 求一个正数的算术平方根,有些数可以直接求得,如4,有些数则不能直接求得,如5,但可以通过计算器求得. 还有一种方法可以通过一组数的内在联系,运用规律求得,请同学们观察下表:(1)表中所给的信息中,你能发现什么规律?(请将规律用文字表达出来)(2)运用你发现的规律,探究下列问题:已知06.2≈1.435,求下列各数的算术平方根: ①0.0206; ②206; ③20600.21. (本题满分6分)已知关于x 的一次函数y =mx +2的图像经过点(-2,(1)求m 的值;(2)画出此函数的图像;(3)平移此函数的图像,使得它与两坐标轴所围成的图形的面积为4, 请直接写出此时图像所对应的函数关系式.22. (本题满分8分) 如图,点E 是∠AOB 的平分线上一点,EC ⊥OA ,ED ⊥OB ,垂足分别是C 、D . 求证:(1)∠EDC =∠ECD(2)OC =OD(3)OE 是线段CD 的垂直平分线第22题图EDB CAO23. (本题满分7分)如图,一只小蚂蚁要从A 点沿长方体木块表面爬到B 点处吃蜜糖.已知长方体木块的长、宽、高分别为10cm 、8cm 、6cm , 试计算小蚂蚁爬行的最短距离.24.(本题满分6分)图l 、图2是两张形状、大小完全相同的方格纸,方格纸中的每个小正方形的边长均为1.点A 和 点B 在小正方形的顶点上.(1) 在图1中画出△ABC(点C 在小正方形的顶点上),使△ABC 为直角三角形 (画一个 即可);(2) 在图2中画出△ABD(点D 在小正方形的顶点上),使△ABD 为等腰三角形 (画一个即可);25. (本题满分6分) 一辆客车与一辆出租车分别从甲、乙两地同时出发,相向而行.设客车离甲地的距离为y 1千米,出租车离甲地的距离为y 2千米,两车行驶的时间为x 小时, y 1、y 2关于x 的函数图象如右图所示:(1)根据图像,直接写出y 1、y 2关于x 的函数图象关系式 (2)试计算:何时两车相距300千米?A(第23题图))26.(本题满分10分)小丽的爸爸驾车外出旅行,途经甲地到乙地.设他出发第t min时的速度为v m/min,图中的折线表示他从甲地到乙地的驾车速度v与时间t之间的函数关系.某学习小组经过探究发现:小丽爸爸前5min运动的路程在数值上等于长方形AOLB的面积.由物理学知识还可知:小丽爸爸前n (5<n≤10)秒运动的路程在数值上等于矩形AOLB的面积与梯形BLNM的面积之和(以后的路程在数值上有着相似的特点).(1) 小丽的爸爸驾车的最高速度是__▲ __m/min;(2) 当45≤t ≤50时,求v与t之间的函数关系式,并求出小丽爸爸出发第47min时的速度;(3)如果汽车每行驶100km耗油10L,那么小丽的爸爸驾车从甲地到乙地共耗油多少升?27.(本题满分8分)在等边三角形ABC中,点E在AB上,点D在CB的延长线上,且ED=EC.试探索以下问题:(1)当点E为AB的中点时,如图1,请判断线段AE与DB的大小关系,请你直接写出结论:AE ▲DB(填“>”“<”或“=”).(2)当点E为AB上任意一点时,如图2,AE与DB的大小关系会改变吗?请说明理由.第27题图图2图1ED CBAED CBA2013-2014学年度第一学期期末学情分析样题(2)八年级数学答卷纸(考试时间100分钟,试卷总分100分)一、选择题(每小题2分,共16分)二、填空题(每题2分,共20分)9._____________________ 13._____________________ 17._____________________ 10._____________________ 14.______________________ 18._____________________ 11.______________________ 15.______________________ 12.______________________ 16.______________________ 三、解答题(本大题共9小题,共64分) 19.(本题满分8分)(1)(4分)求出式子中x 的值:9x 2-16=0.(2)(4分)计算:232)3(8)2(+---(1)(2)21.(本题满分6分)(1)(3)(1)(2)(3)23.(本题满分7分)A(第23题图)25.(本题满分6分) (1)(2))(1)_______________________ m/min;(2)(3)(1) AE__________DB;(2)第27题图图2图1ED CBAED CBA2013-2014学年度第一学期期末学情分析样题八年级数学参考答案一、选择题(每小题2分,共16分)二.填空题(每小题2分,共20分)9. -4 10. 20 11. -1 12. -6 或4 13. ⎩⎨⎧x =-1y =-114. y =2x +416. 2.1 16. 34 17. 7 18. (11,1) 三.解答题(本大题共9小题,共64分)19.(1) (4分) x 2=169 …………………………………………………………2分x =±43…………………………………………………………………4分(1) 原式=2-(-2)+3………………………………………………………………3分 =7…………………………………………………………………………4分20.(本题满分5分)(1)被开方数扩大或缩小n210倍,非负数的算术平方根就相应的扩大或缩小n10倍;或者说成被开方数的小数点向左或向右移动2n 位,算术平方根的小数点就向左或向右移动n 位.……………………………………………3分(2)0.1435………………………3分14.35………………………4分; 143.5………………………5分 21.(6分)(1)将x =-2,y =6代入y =mx +2得 6=-2m +2, ………………………1分 解得m =-2……………………………………………………2分(2)画圈正确…………………………………………………4分(3) y =-2x +4,y =-2x -4…………………………………………6分22.(8分) (1)证DE =CE ,则∠EDC =∠E CD .(只要证法对就得分)……………3分(2)全等或等角对等边…………………………………………………6分 (3)用“三线合一”或“垂直平分线”的判断………………………8分23.(7分) A 1B 1=102+(8+6)2 =296 …………………………………………2分 A 2B 2=62+(8+10)2 =360 …………………………………………4分 A 3B 3=82+(6+10)2 =320 …………………………………………6分∵296 <320 <360∴小蚂蚁爬行的最短路线为296 cm ………………………………………7分 24.(7分)25.(7分) (1) y 1=100x ,y 2=800-160x …………………………………………2分 (2) ①两车未相遇: (800-160x )-100x =300解得x =2513………………………………………4分②两车相遇后:100x -(800-160x )=300解得x = 5513 ………………………………………6分答:2513 h 或5513 h 两车相距300km ……………………………………………7分26.(10分) (1) 1200………………………………………2分(2) 设v =kt +b (k ≠0),∵函数图象经过点(45,800),(50,0),∴⎩⎨⎧45k +b =80050k +b =0 ……………………………4分 解得⎩⎨⎧k =-160b =8000……………………………5分所以,v 与t 的关系式为v =-160t +8000……………………………6分 当t =47时,v =-160×47+8000=480(m/min ) ……………………………7分 (2) 行驶的总路程为:400×5+(400+1200)×5×12 +1200×10+(1200+800)×10×12 +800×15+800×5×12=42000(m )=42(km ) ……………………………9分 ∵汽车每行驶100km 耗油10L ,…………10分 27.(1)“=” …………………………………………2分(2)AE 与DB 的大小关系不变…………………………………………3分 理由:过E 作EF//BC 交AC 于F,因为△ABC 是等边三角形所以∠ABC =∠ACB =∠BAC =60°所以∠AEF =∠ABC =60°, ∠AFE =∠ACB =60°所以△AEF 是等边三角形……………………………4分 所以AE=EF=AF,又因为AB=AC, 所以BE=CF ……………………5分所以∠DBE =∠EFC =180°-60°=120°………………6分 在△DBE 和△EFC 中因为⎪⎭⎪⎬⎫==∠=FC BE EFC DBE AEDB 所以△DBE ≌△EFC ………………………………………7分所以DB=EF=AE ……………………………………………………………………8分F图2EDCBA。
南京市2013年中考数学试卷及答案

南京市2013年中考数学试卷一、选择题(本大题共6小题,每小题2分,共12分.) 1.计算)2(8)4(712-÷+-⨯-的结果是A .-24B .-20C .6D .36 2.计算23)1(aa ⋅的结果是A .aB .5a C .6a D .9a3.设边长为3的正方形的对角线长为a .下列关于a 的四种说法:①a 是无理数;②a 可以用数轴上的一个点来表示;③43<<a ;④a 是l8的算术平方根.其中,所有正确说法的序号是A .①④B .②③C .①②④D .①③④4.如图,⊙O 1、⊙O 2的圆心O 1、O 2在直线 l 上,⊙O l 的半径为2cm ,⊙O 2的半径为3cm ,O 1O 2=8cm .⊙O 1以l cm /s 的速度沿直线l 向右运动,7s 后停止运动.在此过程中,⊙O 1与⊙O 2没有出现的位置关系是A .外切B .相交C .内切D .内含(第4题)5.在同一直角坐标系中,若正比例函数x k y 1=的图象与反比例函数x ky 2=的图象没有公共点,则A .021<+k kB .021>+k kC .021<k kD .021>k k 6.如图,一个几何体上半部为正四棱锥,下半部为立方体,且有一个面涂有颜色.下列图 形中,是该几何体的表面展开图的是(第6题)A .B .C .D . 二、填空题(本大题共10小题,每小题2分,共20分.)7.一3的相反数是 ▲ ;--3的倒数是 ▲ .8.计算2123-的结果是 ▲ . 9.使式子111-+x 有意义的戈的取值范围是▲ . 10.第二届亚洲青年运动会将于2013年8月l6日至24日在南京举办,在此期间约有13000名青少年志愿者提供服务.将13000用科学记数法表示为 ▲ .11.如图,将矩形ABCD 绕点A 顺时针旋转到矩形AB ’C ’D ’的位置,旋转角为α (0°<α< 90°). 若∠l=110°,则∠α = ▲ 。
【精品】2013-2014年江苏省南京市玄武区九年级上学期数学期末试卷和解析

**==(本文系转载自网络,如有侵犯,请联系我们立即删除)==****==(本文系转载自网络,如有侵犯,请联系我们立即删除)==****==(本文系转载自网络,如有侵犯,请联系我们立即删除)==****==(本文系转载自网络,如有侵犯,请联系我们立即删除)==** 2013-2014学年江苏省南京市玄武区九年级上学期期末数学试卷一、选择题(本大题共6小题,每小题2分,共12分)1.(2分)函数y=中自变量x的取值范围是()A.x≥﹣1B.x≤﹣1C.x>﹣1D.x<﹣12.(2分)下列二次根式中,与是同类二次根式的是()A.B.C.D.3.(2分)对甲、乙两同学100米短跑进行5次测试,通过计算,他们成绩的平均数相等,方差S2甲=0.025,S2乙=0.246,下列说法正确的是()A.甲短跑成绩比乙好B.乙短跑成绩比甲好C.甲比乙短跑成绩稳定D.乙比甲短跑成绩稳定4.(2分)在平面直角坐标系中,将函数y=2x2的图象先向右平移1个单位,再向上平移5个单位得到图象的函数关系式是()A.y=2(x﹣1)2﹣5B.y=2(x﹣1)2+5C.y=2(x+1)2﹣5D.y=2(x+1)2+55.(2分)根据下列表格的对应值,判断方程ax2+bx+c=0(a≠0,a、b、c为常数)一个解的范围是()x 3.23 3.24 3.25 3.26 ax2+bx+c﹣0.06﹣0.020.030.09A.3<x<3.23B.3.23<x<3.24C.3.24<x<3.25D.3.25<x<3.266.(2分)如图,等边△ABC的边长为3cm,动点P从点A出发,以每秒1cm的速度,沿A→B→C的方向运动,到达点C时停止,设运动时间为x(s),y=PC2,则y关于x的函数的图象大致为()A.B.C.D.二、填空题(本大题共10小题,每小题2分,共20分)7.(2分)样本数据3,6,﹣1,4,2,则这个样本的极差是.8.(2分)在同一坐标系中,二次函数y=x2和y=﹣x2的图象都具有的特征是(只写一条).9.(2分)圆锥底面的半径为5cm,高为12cm,则圆锥的侧面积为cm2.10.(2分)如图,⊙O中,∠AOB=110°,点C、D是上任两点,则∠C+∠D 的度数是°.11.(2分)如图,在⊙O中,直径AB⊥弦CD于点M,AB=26,OM=5,则CD 的长为.12.(2分)若两圆相切,圆心距是7,其中一圆的半径为10,则另一个圆的半径为.13.(2分)如果关于x的一元二次方程k2x2﹣(2k+1)x+1=0有两个不相等的实数根,那么k的取值范围是.14.(2分)如图,四边形OABC为菱形,点A、B在以O为圆心的上,若OA=1,∠1=∠2,则扇形ODE的面积为.15.(2分)如果抛物线y=﹣4x2+3与抛物线y=ax2+k关于x轴对称,则a=,k=.16.(2分)如图,直径分别为CD、CE的两个半圆相切于点C,大半圆M的弦与小半圆N相切于点F,且AB∥CD,AB=10,设弧CD、弧CE的长分别为x、y,线段ED的长为z,则z(x+y)的值为.三、解答题(本大题共11小题,共88分.解答时应写出必要的文字说明、证明过程或演算步骤)17.(6分)计算:+3﹣+.18.(6分)化简:3a?(﹣)(a≥0,b≥0)19.(10分)解下列一元二次方程:(1)x2﹣4x﹣1=0(2)(x﹣5)2=5﹣x.20.(8分)已知二次函数y=﹣x2+(m﹣3)x+m.(1)证明:不论m取何值,该函数图象与x轴总有两个公共点;(2)若该函数的图象与y轴交于点(0,5),求出顶点坐标,并画出该函数图象.21.(8分)如图,在梯形ABCD中,AD∥BC,AB=DC.点E、F、G分别在边AB、BC、CD上,AE=GF=GC.(1)求证:四边形AEFG是平行四边形;(2)当∠FGC=2∠EFB时,求证:四边形AEFG是矩形.22.(8分)随着青奥会的临近,青奥特许商品销售逐渐火爆.甲、乙两家青奥商品专卖店一月份销售额分别为10万元和15万元,三月份销售额甲店比乙店多10万元.已知甲店二、三月份销售额的月平均增长率是乙店二、三月份月平均增长率的2倍.(1)若设乙店二、三月份销售额的月平均增长率为x,则甲店三月份的销售额为万元,乙店三月份的销售额为万元.(用含x的代数式表示)(2)甲店、乙店这两个月销售额的月平均增长率各是多少?23.(9分)如图,已知△ABC内接于⊙O,点D在OC的延长线上,∠B=∠CAD=30°.(1)AD是⊙O的切线吗?为什么?(2)若OD⊥AB,BC=5,求⊙O的半径.24.(9分)某批发商以每件50元的价格购进400件T恤.若以单价70元销售,预计可售出200件.批发商的销售策略是:第一个月为增加销售量,降价销售,经过市场调查,单价每降低0.5元,可多售出5件,但最低单价不低于购进的价格;第一个月结束后,将剩余的T恤一次性清仓销售,清仓时单价为40元.设第一个月单价降低x元.(1)根据题意,完成下表:每件T恤的利润(元)销售量(件)第一个月清仓时(2)T恤的销售单价定为多少元时,该批发商可获得最大利润?最大利润为多少?25.(8分)如图,在矩形ABCD中,点O是边AD上的中点,点E是边BC上的一个动点,延长EO到F,使得OE=OF.(1)当点E运动到什么位置时,四边形AEDF是菱形?(直接写出答案)(2)若矩形ABCD的周长为20,四边形AEDF的面积是否存在最大值?如果存在,请求出最大值;如果不存在,请说明理由.(3)若AB=m,BC=n,当m、n满足什么条件时,四边形AEDF能成为一个矩形?(不必说明理由)26.(8分)阅读下列材料:小华遇到这样一个问题,如图1,△ABC中,∠ACB=30°,BC=6,AC=5,在△ABC 内部有一点P,连接PA、PB、PC,求PA+PB+PC的最小值.小华是这样思考的:要解决这个问题,首先应想办法将这三条端点重合于一点的线段分离,然后再将它们连接成一条折线,并让折线的两个端点为定点,这样依据“两点之间,线段最短”,就可以求出这三条线段和的最小值了.他先后尝试了翻折、旋转、平移的方法,发现通过旋转可以解决这个问题.他的做法是,如图2,将△APC绕点C顺时针旋转60°,得到△EDC,连接PD、BE,则BE的长即为所求.(1)请你写出图2中,PA+PB+PC的最小值为;(2)参考小华的思考问题的方法,解决下列问题:①如图3,菱形ABCD中,∠ABC=60°,在菱形ABCD内部有一点P,请在图3中画出并指明长度等于PA+PB+PC最小值的线段(保留画图痕迹,画出一条即可);②若①中菱形ABCD的边长为4,请直接写出当PA+PB+PC值最小时PB 的长.27.(8分)(1)如图1,OC平分∠AOB,点P在OC上,若⊙P与OA相切,那么⊙P与OB位置关系是.(2)如图2,⊙O的半径为2,∠AOB=120°,①若点P是⊙O上的一个动点,当PA=PB时,是否存在⊙Q,同时与射线PA、PB相切且与⊙O相切?如果存在,求出⊙Q的半径;如果不存在,请说明理由.②若点P在BO的延长线上,且满足PA⊥PB,是否存在⊙Q,同时与射线PA、PB相切且与⊙O相切?如果存在,请直接写出⊙Q的半径;如果不存在,请说明理由.2013-2014学年江苏省南京市玄武区九年级上学期期末数学试卷参考答案与试题解析一、选择题(本大题共6小题,每小题2分,共12分)1.(2分)函数y=中自变量x的取值范围是()A.x≥﹣1B.x≤﹣1C.x>﹣1D.x<﹣1【解答】解:根据题意得:x+1≥0,解得x≥﹣1.故自变量x的取值范围是x≥﹣1.故选:A.2.(2分)下列二次根式中,与是同类二次根式的是()A.B.C.D.【解答】解:A、=3,是有理数,而是无理数,不是同类二次根式,故本选项错误;B、=3与的被开方数不同,故不是同类二次根式,故本选项错误;C、=2与的被开方数相同,故是同类二次根式,故本选项正确;D、=2与的被开方数不同,故不是同类二次根式,故本选项错误.故选:C.3.(2分)对甲、乙两同学100米短跑进行5次测试,通过计算,他们成绩的平均数相等,方差S2甲=0.025,S2乙=0.246,下列说法正确的是()A.甲短跑成绩比乙好B.乙短跑成绩比甲好C.甲比乙短跑成绩稳定D.乙比甲短跑成绩稳定【解答】解:∵S甲2<S乙2,∴甲比乙短跑成绩稳定.故选:C.4.(2分)在平面直角坐标系中,将函数y=2x2的图象先向右平移1个单位,再向上平移5个单位得到图象的函数关系式是()A.y=2(x﹣1)2﹣5B.y=2(x﹣1)2+5C.y=2(x+1)2﹣5D.y=2(x+1)2+5【解答】解:∵函数y=2x2的图象先向右平移1个单位,再向上平移5个单位,∴平移后的抛物线的顶点坐标为(1,5),∴平移后得到的函数关系式为y=2(x﹣1)2+5.故选:B.5.(2分)根据下列表格的对应值,判断方程ax2+bx+c=0(a≠0,a、b、c为常数)一个解的范围是()x 3.23 3.24 3.25 3.26 ax2+bx+c﹣0.06﹣0.020.030.09A.3<x<3.23B.3.23<x<3.24C.3.24<x<3.25D.3.25<x<3.26【解答】解:函数y=ax2+bx+c的图象与x轴的交点就是方程ax2+bx+c=0的根,函数y=ax2+bx+c的图象与x轴的交点的纵坐标为0;由表中数据可知:y=0在y=﹣0.02与y=0.03之间,∴对应的x的值在3.24与3.25之间,即 3.24<x<3.25.故选:C.6.(2分)如图,等边△ABC的边长为3cm,动点P从点A出发,以每秒1cm的速度,沿A→B→C的方向运动,到达点C时停止,设运动时间为x(s),y=PC2,则y关于x的函数的图象大致为()A.B.C.D.【解答】解:∵正△ABC的边长为3cm,∴∠A=∠B=∠C=60°,AC=3cm.①当0≤x≤3时,即点P在线段AB上时,AP=xcm(0≤x≤3);根据余弦定理知cosA=,即=,解得,y=x2﹣3x+9(0≤x≤3);该函数图象是开口向上的抛物线;解法二:过C作CD⊥AB,则AD=1.5cm,CD=cm,点P在AB上时,AP=x cm,PD=|1.5﹣x|cm,∴y=PC2=()2+(1.5﹣x)2=x2﹣3x+9(0≤x≤3)该函数图象是开口向上的抛物线;②当3<x≤6时,即点P在线段BC上时,PC=(6﹣x)cm(3<x≤6);则y=(6﹣x)2=(x﹣6)2(3<x≤6),∴该函数的图象是在3<x≤6上的抛物线;故选:C.二、填空题(本大题共10小题,每小题2分,共20分)7.(2分)样本数据3,6,﹣1,4,2,则这个样本的极差是7.【解答】解:6﹣(﹣1)=7.故答案为7.8.(2分)在同一坐标系中,二次函数y=x2和y=﹣x2的图象都具有的特征是对称轴是y轴所在直线、顶点(0,0)等(只写一条).【解答】解:二次函数y=x2和y=﹣x2的图象都具有的特征是:对称轴是y轴所在直线、顶点(0,0)等(答案不唯一).故答案为:对称轴是y轴所在直线、顶点(0,0)等.9.(2分)圆锥底面的半径为5cm,高为12cm,则圆锥的侧面积为65πcm2.【解答】解:由圆锥底面半径r=5cm,高h=12cm,根据勾股定理得到母线长l==13cm,×5×13=65π,根据圆锥的侧面积公式:πrl=π故答案为:65π.10.(2分)如图,⊙O中,∠AOB=110°,点C、D是上任两点,则∠C+∠D 的度数是110°.【解答】解:∵∠AOB=110°,∴∠C=∠D=∠AOB=55°,∴∠C+∠D=110°.故答案为110.11.(2分)如图,在⊙O中,直径AB⊥弦CD于点M,AB=26,OM=5,则CD 的长为24.【解答】解:如图,连接OC.∵在⊙O中,直径AB⊥弦CD于点M,∴∠OMC=90°,CD=2CM.∵AB=26,∴OC=AB=13,在直角△COM中,由勾股定理得到:CM===12,则CD=24.故填:24.12.(2分)若两圆相切,圆心距是7,其中一圆的半径为10,则另一个圆的半径为3或17.【解答】解:因为两圆相切,圆心距为7,设另一个圆的半径为R,当内切时,|R﹣10|=7,解得R=3或17,当外切时,|R+10|=7,无解.13.(2分)如果关于x的一元二次方程k2x2﹣(2k+1)x+1=0有两个不相等的实数根,那么k的取值范围是k且k≠0.【解答】解:根据题意得k2≠0且△=(2k+1)2﹣4k2>0,解得k>﹣且k≠0.故答案为k>﹣且k≠0.14.(2分)如图,四边形OABC为菱形,点A、B在以O为圆心的上,若OA=1,∠1=∠2,则扇形ODE的面积为.【解答】解:如图,连接OB,∵四边形OABC为菱形,点A、B在以O为圆心的上,∴OA=OB=OC=AB=BC,∴∠AOB+∠BOC=120°.又∵∠1=∠2,∴∠DOE=120°,∴S扇形ODE==.故答案为:.15.(2分)如果抛物线y=﹣4x2+3与抛物线y=ax2+k关于x轴对称,则a=4,k=﹣3.【解答】解:抛物线y=﹣4x2+3的顶点坐标为(0,3),抛物线y=ax2+k的顶点坐标为(0,k),∵两抛物线关于x轴对称,∴a=4,k=﹣3.故答案为:4,﹣3.16.(2分)如图,直径分别为CD、CE的两个半圆相切于点C,大半圆M的弦与小半圆N相切于点F,且AB∥CD,AB=10,设弧CD、弧CE的长分别为x、y,线段ED的长为z,则z(x+y)的值为50π.【解答】解:过M作MG⊥AB于G,连MB,NF,如图,而AB=10,∴BG=AG=5,∴MB2﹣MG2=52=25,又∵大半圆M的弦与小半圆N相切于点F,∴NF⊥AB,∵AB∥CD,∴MG=NF,设⊙M,⊙N的半径分别为R,r,∴z(x+y)=(CD﹣CE)(π?R+π?r),=(2R﹣2r)(R+r)?π,=(R2﹣r2)?2π,=25?2π,=50π.故答案为:50π三、解答题(本大题共11小题,共88分.解答时应写出必要的文字说明、证明过程或演算步骤)17.(6分)计算:+3﹣+.【解答】解:原式=2+3×﹣+=+.18.(6分)化简:3a?(﹣)(a≥0,b≥0)【解答】解:原式=﹣2a,=﹣12ab.19.(10分)解下列一元二次方程:(1)x2﹣4x﹣1=0(2)(x﹣5)2=5﹣x.【解答】(1)解:由原方程,得x2﹣4x+4=5,配方,得(x﹣2)2=5∴x﹣2=±,解得x1=2+,x2=2﹣;(2)解:由原方程,得(x﹣5)2+(x﹣5)=0,∴(x﹣5)(x﹣5+1)=0,∴x﹣5=0或x﹣4=0,解得x1=5,x2=4.20.(8分)已知二次函数y=﹣x2+(m﹣3)x+m.(1)证明:不论m取何值,该函数图象与x轴总有两个公共点;(2)若该函数的图象与y轴交于点(0,5),求出顶点坐标,并画出该函数图象.【解答】证明:(1)令y=0,﹣x2+(m﹣3)x+m=0a=﹣1,b=m﹣3,c=mb2﹣4ac=(m﹣3)2﹣4×(﹣1)m=m2﹣2m+9=(m﹣1)2+8∵(m﹣1)2≥0∴(m﹣1)2+8>0∴b2﹣4ac>0∴不论m取何值,该函数图象与x轴总有两个公共点.(2)把x=0,y=5代入∴m=5,∴y=﹣x2+2x+5=﹣(x﹣1)2+6顶点坐标:(1,6).21.(8分)如图,在梯形ABCD中,AD∥BC,AB=DC.点E、F、G分别在边AB、BC、CD上,AE=GF=GC.(1)求证:四边形AEFG是平行四边形;(2)当∠FGC=2∠EFB时,求证:四边形AEFG是矩形.【解答】证明:(1)∵在梯形ABCD中,AB=DC,∴∠B=∠C.∵GF=GC,∴∠C=∠GFC,∴∠B=∠GFC∴AB∥GF,即AE∥GF.∵AE=GF,∴四边形AEFG是平行四边形.(2)∵∠FGC+∠GFC+∠C=180°,∠GFC=∠C,∠FGC=2∠EFB,∴2∠GFC+2∠EFB=180°,∴∠BFE+∠GFC=90°.∴∠EFG=90°.∵四边形AEFG是平行四边形,∴四边形AEFG是矩形.22.(8分)随着青奥会的临近,青奥特许商品销售逐渐火爆.甲、乙两家青奥商品专卖店一月份销售额分别为10万元和15万元,三月份销售额甲店比乙店多10万元.已知甲店二、三月份销售额的月平均增长率是乙店二、三月份月平均增长率的2倍.(1)若设乙店二、三月份销售额的月平均增长率为x,则甲店三月份的销售额为10(1+2x)2万元,乙店三月份的销售额为15(1+x)2万元.(用含x的代数式表示)(2)甲店、乙店这两个月销售额的月平均增长率各是多少?【解答】解:(1)设乙店二、三月份销售额的月平均增长率为x,则甲店三月份的销售额为10(1+2x)2万元,乙店三月份的销售额为15(1+x)2万元;故答案为:10(1+2x)2,15(1+x)2;(2)10(1+2x)2﹣15(1+x)2=10,解得x1=60%,x2=﹣1(舍去),2x=120%,答:甲、乙两店这两个月的月平均增长率分别是120%、60%.23.(9分)如图,已知△ABC内接于⊙O,点D在OC的延长线上,∠B=∠CAD=30°.(1)AD是⊙O的切线吗?为什么?(2)若OD⊥AB,BC=5,求⊙O的半径.【解答】解:(1)AD是⊙O的切线,理由如下:连接OA,∵∠B=30°,∴∠O=60°,∵OA=OC,∴∠OAC=60°,∵∠CAD=30°,∴∠OAD=90°,又∴点A在⊙O 上,∴AD是⊙O的切线.(2)∵∠OAC=∠O=60°,∴∠OCA=60°,∴△AOC是等边三角形,∵OD⊥AB,∴OD垂直平分AB,∴AC=BC=5,∴OA=5,即⊙O的半径为5.24.(9分)某批发商以每件50元的价格购进400件T恤.若以单价70元销售,预计可售出200件.批发商的销售策略是:第一个月为增加销售量,降价销售,经过市场调查,单价每降低0.5元,可多售出5件,但最低单价不低于购进的价格;第一个月结束后,将剩余的T恤一次性清仓销售,清仓时单价为40元.设第一个月单价降低x元.(1)根据题意,完成下表:每件T恤的利润(元)销售量(件)第一个月20﹣x200+10x清仓时﹣10200﹣10x(2)T恤的销售单价定为多少元时,该批发商可获得最大利润?最大利润为多少?【解答】解:(1)填表如下:每件T恤的利润(元)销售量(件)第一个月20﹣x200+10x清仓时﹣10200﹣10x(2)设批发商可获得利润y元,y=(20﹣x)(200+10x)+(40﹣50)[400﹣(200+10x)],=﹣102+100x+2000,当x==5时,售价70﹣5=65(元),y=﹣10×25+100×5+2000=2250,答:T恤的销售单价定为65元时该批发商可获得最大利润,最大利润为2250元.25.(8分)如图,在矩形ABCD中,点O是边AD上的中点,点E是边BC上的一个动点,延长EO到F,使得OE=OF.(1)当点E运动到什么位置时,四边形AEDF是菱形?(直接写出答案)(2)若矩形ABCD的周长为20,四边形AEDF的面积是否存在最大值?如果存在,请求出最大值;如果不存在,请说明理由.(3)若AB=m,BC=n,当m、n满足什么条件时,四边形AEDF能成为一个矩形?(不必说明理由)【解答】解:(1)当点E运动到BC的中点时,四边形AEDF是菱形,理由是:∵四边形ABCD是矩形,∴AB=CD,∠B=∠C=90°,∵E为BC中点,∴BE=CE,由勾股定理得:AE=DE,∵点O是边AD上的中点,OE=OF,∴四边形AEDF是平行四边形,∴平行四边形AEDF是菱形.(2)存在,∵点O是AD的中点,∴AO=DO,∵OE=OF,∴四边形AEDF是平行四边形,∴S四边形AEDF=2S△AED=S矩形ABCD,设AB=x,则BC=10﹣x,四边形AEDF的面积为y,y=x(10﹣x)=﹣x2+10x=﹣(x﹣5)2+25,当x=5时,四边形AEDF的面积最大为25.(3)当m≤n时,四边形AEDF能成为一个矩形,理由是:设BE=z,则CE=n﹣z,当四边形AEDF是矩形时,∠AED=90°,∵∠B=∠C=90°,∴∠BAE+∠BEA=90°,∠BEA+∠DEC=90°,∴∠BAE=∠DEC,∴△BAE∽△CED,∴=,∴=,∴z2﹣nz+m2=0,当判别式△=(﹣n)2﹣4m2≥0时,方程有根,即四边形AEDF是矩形,解得:m≤n,∴当m≤n时,四边形AEDF能成为一个矩形.26.(8分)阅读下列材料:小华遇到这样一个问题,如图1,△ABC中,∠ACB=30°,BC=6,AC=5,在△ABC 内部有一点P,连接PA、PB、PC,求PA+PB+PC的最小值.小华是这样思考的:要解决这个问题,首先应想办法将这三条端点重合于一点的线段分离,然后再将它们连接成一条折线,并让折线的两个端点为定点,这样依据“两点之间,线段最短”,就可以求出这三条线段和的最小值了.他先后尝试了翻折、旋转、平移的方法,发现通过旋转可以解决这个问题.他的做法是,如图2,将△APC绕点C顺时针旋转60°,得到△EDC,连接PD、BE,则BE的长即为所求.(1)请你写出图2中,PA+PB+PC的最小值为;(2)参考小华的思考问题的方法,解决下列问题:①如图3,菱形ABCD中,∠ABC=60°,在菱形ABCD内部有一点P,请在图3中画出并指明长度等于PA+PB+PC最小值的线段(保留画图痕迹,画出一条即可);②若①中菱形ABCD的边长为4,请直接写出当PA+PB+PC值最小时PB 的长.【解答】解:(1)如图2.∵将△APC绕点C顺时针旋转60°,得到△EDC,∴△APC≌△EDC,∴∠ACP=∠ECD,AC=EC=5,∠PCD=60°,∴∠ACP+∠PCB=∠ECD+∠PCB,∴∠ECD+∠PCB=∠ACB=30°,∴∠BCE=∠ECD+∠PCB+∠PCD=30°+60°=90°.在Rt△BCE中,∵∠BCE=90°,BC=6,CE=5,∴BE===,即PA+PB+PC的最小值为;(2)①将△APC绕点C顺时针旋转60°,得到△DEC,连接PE、DE,则线段BD等于PA+PB+PC最小值的线段;②如图,当B、P、E、D四点共线时,PA+PB+PC值最小,最小值为BD.∵将△APC绕点C顺时针旋转60°,得到△DEC,∴△APC≌△DEC,∴CP=CE,∠PCE=60°,∴△PCE是等边三角形,∴PE=CE=CP,∠EPC=∠CEP=60°.∵菱形ABCD中,∠ABP=∠CBP=∠ABC=30°,∴∠PCB=∠EPC﹣∠CBP=60°﹣∠30°=30°,∴∠PCB=∠CBP=30°,∴BP=CP,同理,DE=CE,∴BP=PE=ED.连接AC,交BD于点O,则AC⊥BD.在Rt△BOC中,∵∠BOC=90°,∠OBC=30°,BC=4,∴BO=BC?cos∠OBC=4×=2,∴BD=2BO=4,∴BP=BD=.即当PA+PB+PC值最小时PB的长为.故答案为:.27.(8分)(1)如图1,OC平分∠AOB,点P在OC上,若⊙P与OA相切,那么⊙P与OB位置关系是相切.(2)如图2,⊙O的半径为2,∠AOB=120°,①若点P是⊙O上的一个动点,当PA=PB时,是否存在⊙Q,同时与射线PA、PB相切且与⊙O相切?如果存在,求出⊙Q的半径;如果不存在,请说明理由.②若点P在BO的延长线上,且满足PA⊥PB,是否存在⊙Q,同时与射线PA、PB相切且与⊙O相切?如果存在,请直接写出⊙Q的半径;如果不存在,请说明理由.【解答】解:(1)作PD⊥OA于A,PE⊥OB于B,如图1,∵OC平分∠AOB,∴PD=PE,∵⊙P与OA相切,∴PD为⊙P的半径,∴PE为⊙的半径,而PE⊥OB,∴OB为⊙P的切线;故答案为相切;(2)①存在.∵PA=PB,∴点P为∠AOB的平分线或反向延长线与⊙O的交点,如图2,当P点在优弧AB上时,作QC⊥PA于C,∴∠CPQ=30°,设⊙Q的半径为r,即QC=r,则PQ=2r,∴OQ=2r﹣2,若⊙Q与⊙O内切时,2r﹣2=2﹣r,解得r=;若⊙Q与⊙O外切时,2r﹣2=2+r,解得r=4;当P点在劣弧AB上时,即在P′处,作Q′C⊥PA于C,,∴∠DQ′P′=30°设⊙Q′的半径为r,即Q′D=r,则P′D=r,Q′P′=r,∴OQ′=r﹣2,若⊙Q′与⊙O内切时,r﹣2=2﹣r,解得r=8﹣12;若⊙Q与⊙O外切时,r﹣2=2+r,解得r=8+12;综上所述,存在⊙Q,半径可以为,4,8﹣12,8+12;②存在.作QH⊥PB于H,如图3,∵PA⊥PB,∴∠APB=90°,∵⊙Q与射线PA、PB相切,∴PQ平分∠APB,∴∠QPH=45°,∴△QHP为等腰直角三角形,∴QH=PH,在Rt△POA中,∠AOP=60°,OA=2,∴OP=1,设⊙Q的半径为r,即PH=QH=r,则OH=PH﹣OP=r﹣1,在Rt△OQH中,OQ2=OH2+QH2=(r﹣1)2+r2,若⊙Q与⊙O内切时,OQ=2﹣r,则(2﹣r)2=(r﹣1)2+r2,解得r1=1,r2=﹣3(舍去);若⊙Q与⊙O外切时,OQ=2+r,则(2+r)2=(r﹣1)2+r2,解得r1=3+2,r2=3﹣2(舍去);综上所述,存在⊙Q,其半径可以为1,3+2.**==(本文系转载自网络,如有侵犯,请联系我们立即删除)==****==(本文系转载自网络,如有侵犯,请联系我们立即删除)==** **==(本文系转载自网络,如有侵犯,请联系我们立即删除)==****==(本文系转载自网络,如有侵犯,请联系我们立即删除)==****==(本文系转载自网络,如有侵犯,请联系我们立即删除)==****==(本文系转载自网络,如有侵犯,请联系我们立即删除)==** **==(本文系转载自网络,如有侵犯,请联系我们立即删除)==****==(本文系转载自网络,如有侵犯,请联系我们立即删除)==****==(本文系转载自网络,如有侵犯,请联系我们立即删除)==****==(本文系转载自网络,如有侵犯,请联系我们立即删除)==****==(本文系转载自网络,如有侵犯,请联系我们立即删除)==****==(本文系转载自网络,如有侵犯,请联系我们立即删除)==****==(本文系转载自网络,如有侵犯,请联系我们立即删除)==**免责声明:本文系转载自网络,如有侵犯,请联系我们立即删除.免责声明:本文系转载自网络,如有侵犯,请联系我们立即删除.免责声明:本文仅代表作者个人观点,作参考,并请自行核实相关内容.声明:本文部分内容来自网络,本司不为其真实性负责,如有异议请及时联系,本司将予以删除**==(本文系转载自网络,如有侵犯,请联系我们立即删除)==****==(本文系转载自网络,如有侵犯,请联系我们立即删除)==****==(本文系转载自网络,如有侵犯,请联系我们立即删除)==****==(本文系转载自网络,如有侵犯,请联系我们立即删除)==****==(本文系转载自网络,如有侵犯,请联系我们立即删除)==**免责声明:本文系转载自网络,如有侵犯,请联系我们立即删除.免责声明:本文系转载自网络,如有侵犯,请联系我们立即删除.免责声明:本文仅代表作者个人观点,作参考,并请自行核实相关内容.声明:本文部分内容来自网络,本司不为其真实性负责,如有异议请及时联系,本司将予以删**==(本文系转载自网络,如有侵犯,请联系我们立即删除)==****==(本文系转载自网络,如有侵犯,请联系我们立即删除)==****==(本文系转载自网络,如有侵犯,请联系我们立即删除)==****==(本文系转载自网络,如有侵犯,请联系我们立即删除)==****==(本文系转载自网络,如有侵犯,请联系我们立即删除)==**免责声明:本文系转载自网络,如有侵犯,请联系我们立即删除.免责声明:本文系转载自网络,如有侵犯,请联系我们立即删除.免责声明:本文仅代表作者个人观点,作参考,并请自行核实相关内容.声明:本文部分内容来自网络,本司不为其真实性负责,如有异议请及时联系,本司将予以删**==(本文系转载自网络,如有侵犯,请联系我们立即删除)==****==(本文系转载自网络,如有侵犯,请联系我们立即删除)==****==(本文系转载自网络,如有侵犯,请联系我们立即删除)==****==(本文系转载自网络,如有侵犯,请联系我们立即删除)==****==(本文系转载自网络,如有侵犯,请联系我们立即删除)==**免责声明:本文系转载自网络,如有侵犯,请联系我们立即删除.免责声明:本文系转载自网络,如有侵犯,请联系我们立即删除.免责声明:本文仅代表作者个人观点,作参考,并请自行核实相关内容.声明:本文部分内容来自网络,本司不为其真实性负责,如有异议请及时联系,本司将予以删**==(本文系转载自网络,如有侵犯,请联系我们立即删除)==****==(本文系转载自网络,如有侵犯,请联系我们立即删除)==**司将予以删。
2013-2014学年南京市建邺区九年级数学一模试卷及答案

2013-2014学年南京市建邺区九年级数学一模试卷及答案2013-2014学年南京市建邺区九年级数学一模试卷注意事项:1.本试卷共6页.全卷满分120分.考试时间为120分钟.考生答题全部答在答卷纸上,答在本试卷上无效.2.请认真核对监考教师在答卷纸上所粘贴条形码的姓名、考试证号是否与本人相符合,再将自己的姓名、准考证号用0.5毫米黑色墨水签字笔填写在答卷纸及本试卷上.3.答选择题必须用2B铅笔将答卷纸上对应的答案标号涂黑.如需改动,请用橡皮擦干净后,再选涂其他答案.答非选择题必须用0.5毫米黑色墨水签字笔写在答卷纸上的指定位置,在其他位置答题一律无效.4.作图必须用2B铅笔作答,并请加黑加粗,描写清楚.一、选择题(本大题共6小题,每小题2分,共计12分.在每小题所给出的四个选项中,恰有一项....是符合题目要求的,请将正确选项的序号填涂在答卷纸上)1.在1,-1,-2这三个数中,任意两数之和的最大值是(▲).A.1 B.0 C.-1 D.-32.16的值等于(▲).A .4B .-4C .±4D .43.计算(ab 2)3的结果是(▲).A .ab 5B .ab 6C .a 3b 5D .a 3b 64.若反比例函数y=2x的图像经过点A (1,m ),则m 的值是(▲).A . 2B .2C .-12D .125.从正面观察下图所示的两个物体,看到的是(▲).6.四个小朋友站成一排,老师按图中所示的规则数数,数到2014时对应的小朋友可得一朵红花.那么,得红花的小朋友是(▲).A .小沈B .小叶C .小李D .小王(第6题)小沈 小叶 小李 小王为(3,1)、(1,0),若将线段BA绕点B顺时针旋转90°得到线段BA',则点A'的坐标为▲ .16.如图,⊙C过原点并与坐标轴分别交于A、D两点.已知∠OBA =30°,点D的坐标为(0,23),则点C的坐标为(▲ ,▲ ).三、解答题(本大题共有11小题,共计88分.请在答卷纸指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤)17.(本题6分)计算:(a2a-b+b2b-a)÷a+bab.18.(本题6分)解不等式组⎩⎨⎧2x +5≤3(x +2) ,x -12<x 3,并写出不等式组的整数解.19.(本题7分)已知:如图,AD 、BF 相交于点O ,点E 、C 在BF 上,BE =FC ,AC =DE ,AB =DF . 求证:OA =OD ,OB =OF .(第19题)AB FECDO20.(本题7分)某校为了组织一项球类对抗赛,在本校随机调查了若干名学生,对他们每人最喜欢的一根据统计图中的信息,解答下列问题:(1)求本次被调查的学生人数,并补全条形统计图;(2)若全校有1 500名学生,请你估计该校最喜欢篮球运动的学生人数;图②(第20题)图①某校学生最喜欢的球类运动项目扇形统计图其他乒乓球 32%足球 20%篮球26%羽毛球 16%0某校学生最喜欢的球类运动项目条形统计图学生人数5101520(3)根据调查结果,请你为学校即将组织的一项球类对抗赛提出一条合理化建议.21.(本题8分)如图,为了测量停留在空中的气球的角为27°,此时观测气球,测得仰角为 1.6 m . ≈0.89,tan27°≈0.51)22. (本题8分)(1)甲、乙、丙三只不透明的口袋中都装有1个白球、1个红球,它们除颜色外都相同,搅匀后分别从三只口袋中任意摸出1个球,求从三只口袋摸出的都是红球的概率.(2)甲、乙、丙、丁四位同学分别站在正方形场地的四个顶点A 、B 、C 、D 处,每个人都以相同的速度沿着正方形的边同时出发随机走向相邻的顶点处,那么甲、乙、丙、丁四位同学互不相遇的概A (第21题)率是 ▲ .① 1 2 ② 1 4 ③ 1 8 ④ 11623.(本题8分)某物流公司有20条输入传送带,20条输出传送带.某日,控制室的电脑显示,每条输入传送带每小时进库的货物流量如图a ,每条输出传送带每小时出库的货物流量如图b ,而该日仓库中原有货物8吨,在0时至4时,仓库中货物存量变化情况如图c .(1)根据图像,在0时至2时工作的输入传送带和输出传送带的条数分别为(▲);A .8条和8条B .14条和12条C .12条和14条 D .10条和8条 (2)如图c ,求当2≤x ≤4时,y 与x 的函数关系式; (3)若4时后恰好只有4条输入传送带和4条输出传送带在工作,请在图c(第23题)图b 图c 图a 时)24.(本题9分) 已知,在△ABC 中,AD 为∠BAC 的平分线,点E 在BCB ,以DE M . (1)判断AF 与DF(2........上的高AH ;(3)若EF =4,DF =3,求DH 的长.(第24题)E C D B25.(本题9分)已知二次函数y=x2+bx+c的图像与x 轴交于A、B两点,AB=4,其中点A的坐标为(1,0).(1)求二次函数的关系式及顶点坐标;(2)请设计一种平移方法,使(1)中的二次函数图像的顶点在一次函数y=x的图像上,并直接写出平移后相应的二次函数的关系式.26.(本题10分)如图,在△ABC中,AB=AC=42,BC=8.⊙A的半径为2,动点P从点B出发沿BC 方向以每秒1个单位的速度向点C运动,以点P为圆心,以PB为半径作⊙P,设点P运动的时间为t 秒.(1)当⊙P与直线AC相切时,求t的值;(2)当⊙P与⊙A相切时,求t的值;(3)延长BA交⊙A于点D,连接AP交⊙A于点E,连接DE当△ABP与△FBD(第26题)27.(本题10分)已知△ABC 中,∠C 是其最小的内角,如果过顶点B 的一条直线把这个三角形分割成了两个三角形,其中一个为等腰三角形,另一个为直角三角形,则称这条直线为△ABC 的关于点B 的伴侣分割线.例如:如图1,在Rt △ABC 中,∠C =20°,过顶点B 的一条直线BD 交AC 于点D ,且∠DBC =20°,显然直线BD 是△ABC 的关于点B 的伴侣分割线.(1)如图2,在△ABC 中,∠C =20°,∠ABC =110°.请在图中画出△ABC 的关于点B 的伴侣分割线,并标注角度;(2)在△ABC 中,设∠B 的度数为y ,最小内角∠C的度数为x .试探索y 与x 之间满足怎样的关系时,△ABC 存在关于点B 的伴侣分割线.(第27题)图1图2 AB CDCA B建邺区2014年九年级学情分析卷数学参考答案及评分标准说明:本评分标准每题给出了一种或几种解法供参考,如果考生的解法与本解答不同,参照本评分标准的精神给分.一、选择题(每小题2分,共计12分)二、填空题(每小题2分,共计20分)7.32 8.10108⨯ 9.)3)(3(-+a a 10.1≠x11.112.150)5(=-x x 13.140 14.π4 15.(2,-2) 16.)3,1(-三、解答题(本大题共11小题,共计88分) 17.(本题6分) 解:原式=abba b a b b a a +÷---)(22=ba abb a b a +⨯--)(22 ······························· 3分 ba ab b a b a b a +⨯--+=)())((ab= ········································ 6分18.(本题6分)解:解不等式①,得x ≥-1. ················ 2分解不等式②,得x <3. ··················· 4分 所以,不等式组的解集是-1≤x <3. 5分 整数解为—1,0,1,2. ················· 6分19.(本题7分) 证明:连接AF ,BD ,∵BE =CF ,∴BC =FE .又∵AC =DE ,AB =DF ,∴△ABC ≌△DFE 3分∴∠ABF =∠DFB .∴AB ∥DF . 又∵AB =DF ,∴四边形ABDF 为平行四边形. ········ 6分 ∴ OA =OD , OB =OF . ··················· 7分 20.(本题7分)(1)50,图略; ·································· 3分 (2)390; ········································· 5分 (3)答案不唯一,例如:建议学校组织乒乓球和篮球比赛 ·················································· 7分 21.(本题8分)解:依题意得,BD=CD ,设CD =x ,则AD =x +50, 1分在Rt △ADC 中,︒=27tan AD CD ,∴51.050≈+x x.4分 解得0.52≈x . ··································· 6分∴高度约为6.536.10.52=+(m ).··············· 7分 答:气球离地面的高度约为53.6m . ········· 8分 22.(本题8分)(1)树状图或枚举法正确; ··················· 3分 共有8种等可能结果 ·························· 4分 ∴从三只口袋摸出的都是红球的概率是81. 6分 (2)③ ·············································· 8分 23. (本题8分)(1)B . ·········································· 2分 (2)由图象可知:当2≤x ≤4时,y 是x 的一次函数,设bkx y +=,将(2,12)、(4,32)代入得:⎩⎨⎧=+=+324122b k b k ,解得:⎩⎨⎧-==810b k ∴当2≤x ≤4时,810-=x y ······················ 6分 (3)画图正确 ··································· 8分 24. (本题9分) 解:(1)DF AF =. 理由如下:∵AD 平分BAC ∠,∴∠BAD =∠又∵∠B =∠CAE ,∴∠BAD +∠B =∠CAD +∠CAE . 即∠ADE =∠DAE ,∴DE AE =.…………………………………… 2分 ∵DE 是直径,∴EF ⊥AD ,B∴DF AF =.………………………………………………… 3分(2)画图正确…………………………………… 5分 (3)由勾股定理得5==DE AE∵∠ADH =∠EDF ,∠AHD =∠DFE=90°, ∴△ADH ∽△EDF . ∴DEADDF DH =.∴6.3=DH .……………………………………………………9分25.(本题9分)解:(1)∵A (1,0),AB =4,∴B (5,0)或(-3,0). 将A (1,0),B (5,0)或A (1,0),(-3,0)代入cbx xy ++=2得⎩⎨⎧=-=56c b 或⎩⎨⎧-==32c b , ∴二次函数的关系式为562+-=x x y 或322-+=x x y .………………… 3分顶点坐标分别为(3,-4)、(-1,-4) …………………………………… 5分(2)每一个结果正确各1分,平移方式正确各1分. ················································· 9分 26.(本题10分)解:(1)过点P 作PK ⊥AC∵⊙P 与直线AC 相切,∴BP =BB由AB =AC =,BC =8得△ABC 是等腰直角三角形, 可得∠C=45°, ∴△PKC 是等腰直角三角形. ∴PC =2PK =2t ,∴t +2t=8. 解得t=828- ···································· 3分(2)过点A 作AM ⊥BC,垂足为点M ,则222PM AM AP +=,AM=421=BC , PM= t -若⊙P 与⊙A 外切,则=+2)2(t 解得37=t .………………………5分 若⊙P 与⊙A 内切,则=-2)2(t 22)4(4-+t ,解得7=t . 综上所述,当37=t 或7=t 时,⊙P 与⊙A 相切.……………………… ······················· 7分 (3)当△ABP ∽△FBD 时,∠D 又∠D =∠AED =∠FEP , ∴∠D =∠AED =∠FEP =∠∴∠BFD =2∠D .∵︒=∠+∠+∠180BFD B D ,∴∠D =45°,∴∠BAP =90°. ∴AP与AC重合,∴8=t ..……………………………… ············ 10分27.(本题10分)解:(1)画图正确,角度标注正确 ··········· 2分 (2)设BD 为△ABC 的伴侣分割线,分以下两种情况.第一种情况:△BDC 是等腰三角形,△ABD 是直角三角形,易知∠C 和∠DBC 必为底角,∴ ∠DBC =∠C =x . 当∠A =90°时,△ABC 存在伴侣分割线,此时xy -90=, 当∠ABD =90°时,△ABC 存在伴侣分割线,此时xy +=90, 当∠ADB =90°时,△ABC 存在伴侣分割线,此时xy x >=且,45;第二种情况:△BDC 是直角三角形,△ABD 是等腰三角形,当∠DBC =90°时,若BD =AD ,则△ABC 存在伴侣分割线,此时90180-=--y y x ,∴x y 21135-=, 当∠BDC =90°时,若BD =AD ,则△ABC 存在伴侣分割线,此时∠A =45°,∴x y -135=.数学 第21页 共6页 综上所述,当x y -90=或x y +=90或x y x >=且,45或x y 21135-=或x y -135=时△ABC 存在伴侣分割线.。
2013—2014学年九年级上学期期末考试数学试题(苏科版含答案)

2013—2014学年九年级上学期期末考试数学试题(满分:150分 测试时间:120分钟)一.选择题(每题有且只有一个答案正确,请把你认为正确的答案前的字母填入下表相应的空格内,每题3分,计24分)1.下列图形中,既是轴对称图形,又是中心对称图形的是( )A .平行四边形B .等边三角形 C2.如右图,数轴上点N 表示的数可能是( ) A .2 B .3 C .5 D . 10 3.给出下列四个结论,其中正确的结论为( )A .等腰三角形底边上的中点到两腰的距离相等B .正多边形都是中心对称图形C .三角形的外心到三条边的距离相等D .对角线互相垂直且相等的四边形是正方形 4.已知⊙O 1、⊙O 2的半径分别为3cm 、5cm ,且它们的圆心距为8cm ,则⊙O 1与⊙O 2的位置关系是( ) A .外切 B .相交 C .内切 D .内含 5.对任意实数x ,多项式1062-+-x x 的值是一个( )A.正数B.负数C.非负数D.无法确定6.将抛物线12+=x y 先向左平移2个单位,再向下平移2个单位,那么所得抛物线的函数关系式是( )A .y =(x +2)2+2B .y =(x +2)2-2C .y =(x -2)2+2D .y =(x -2)2-2 7.已知一元二次方程01582=+-x x 的两个解恰好分别是等腰△ABC 的底边长和腰长,则△ABC 的周长为( ) A .13 B .11 C .11或13 D .128.如图,二次函数y=ax 2+bx+c (a ≠0)的图象与x 轴交于 A 、B 两点,与y 轴交于点C ,点B 坐标(﹣1,0),下面 的四个结论:①OA=3;②a+b+c <0;③ac >0; ④b 2﹣4ac >0.其中正确的结论是( )A .①④B .①③C .②④D .①② 二、填空题(本大题共10个小题,每小题3分,共30分.) 9.在函数关系式11-=x y 中,x 的取值范围是 .10.已知梯形的中位线长是4cm ,下底长是5cm ,则它的上底长是 cm .11.抛物线2y x 12=-+()的顶点坐标是 .12.平面直角坐标系内的三个点A (1,0)、B (0,-3)、C (2,-3) 确定一个圆(填“能”或“不能”)。
2013年南京市中考数学试卷及答案(word解析版)

南京市2013年初中毕业生学业考试数 学注意事项:1. 本试卷共6页。
全卷满分120分。
考试时间为120分钟。
考生答题全部答在答题卡上,答在本试卷上无效。
2. 请认真核对监考教师在答题卡上所黏贴条形码的姓名、考试证号是否与本人相符,再将自己的姓名、准考证号用0.5毫米黑色墨水签字笔填写在答题卡及本试卷上。
3. 答选择题必须用2B 铅笔将答题卡上对应的答案标号涂黑。
如需改动,请用橡皮擦干净后, 再选涂其他答案。
答非选择题必须用0.5毫米黑色墨水签字笔写在答题卡上的指定位置, 在其他位置答题一律无效。
4. 作图必须用2B 铅笔作答,并请加黑加粗,描写清楚。
一、 选择题 (本大题共6小题,每小题2分,共12分。
在每小题所给出的四个选项中,恰 有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上) 1. 计算12-7⨯(-4)+8÷(-2)的结果是 (A) -24 (B) -20 (C) 6 (D) 36 答案:D解析:原式=12+28-4=36,选D 。
2. 计算a 3.( 1a )2的结果是(A) a (B) a 5 (C) a 6 (D) a 9 答案:A 解析:原式=321a a a=g,选A 。
3. 设边长为3的正方形的对角线长为a ,下列关于a 的四种说法:① a 是无理数;② a可以用数轴上的一个点来表示;③ 3<a <4; ④ a 是18的算术平方根。
其中,所有正确说法的序号是(A) ①④ (B) ②③ (C) ①②④ (D) ①③④答案:C解析:由勾股定理,得:a = 4.2≈,所以,③错误,其它都正确。
4. 如图,圆O 1、圆O 2的圆心O 1、O 2在直线l 上,圆O 1的半径为2 cm ,圆O 2的半径为3 cm ,O 1O 2=8 cm 。
圆O 1以1 cm/s 的速度沿直线l 向右运动,7s 后停止运动,在此过程中,圆O 1与圆O 2没有出现的位置关系是(A) 外切 (B) 相交 (C) 内切 (D) 内含答案:D解析:7s 后两圆刚好内切,所以,外切、相交、内切都有,没有内含,选D 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
联合体2013–2014学年度第一学期期末学情分析样题九年级数学(考试时间120分钟,试卷满分120分)一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,只有一项是符合题目要求的)1.16 的值等于( ▲ )A .4B .–4C .±4D .2 2.二次函数y = x 2-2x +3的图象的顶点坐标是( ▲ )A .(-1,-2)B .(1,-2)C .(-1,2)D .(1,2)3.平行四边形、矩形、菱形、正方形都具有的性质是( ▲ )A .对角线相等B .对角线互相平分C .对角线平分一组对角D .对角线互相垂直4.顺次连接等腰梯形ABCD 各边中点E 、F 、G 、H ,则四边形EFGH 的形状为( ▲ )A .矩形B .菱形C .正方形D .平行四边形5.如图,在△ABC 中,点O 为△ABC 的内心,则∠OAC +∠OCB +∠OBAA .45°B .60°C .90°D .120° 6.如图,四边形OABC 为菱形,点B 、C 在以点O 为圆心的 ⌒EF 上, 若OA =2cm ,∠1=∠2,则 ⌒EF的长为( ▲ ) A .π3 cm B .2π3 cmC .4π3 cmD .8π3 cm二、填空题(本大题共10小题,每小题2分,共20分. 不需写出解答过程,请把答案填写在题中横线上.....) 7.要使2–x 在实数范围内有意义,那么x 的取值范围是 ▲ .8.如图,AB 是⊙O 的一条弦,AB =6,圆心O 到AB 的距离为4,则⊙O 的半径为 ▲ .9.如图,从圆O 外一点P 引圆O 的两条切线PAPB ,,切点分别为A B ,. 如果60APB ∠=,8PA =,那么弦AB 的长是 ▲ .10.已知圆锥的底面半径为1cm ,母线长为3cm ,则其侧面积为 ▲ cm 2.第8题第6题A P11.如图,海边有两座灯塔A 、B ,暗礁分布在经过A 、B 两点的弓形(弓形的弧是⊙O 的一部分)区域内,∠AOB =80°,为了避免触礁,轮船P 与A 、B 的张角∠APB 的最大值应为___▲__°. 12.已知关于x 的一元二次方程(k +1)x 2+2x -1=0有两个不相等的实数根,则k 的取值范围是 ▲ . 13.等腰梯形的两条对角线互相垂直,中位线长为8cm ,则它的高为 ▲ cm .14.如图,两个半径为2cm 的等圆互相重叠,且各自的圆心都在另一个圆上,则两圆重叠部分的面积是 ▲cm 2.(结果保留π)15.二次函数y =-x 2+bx +c 的部分图象如图所示,图象的对称轴为过点(-1,0)且平行于y 轴的直线,图象与x 轴交于点(1,0),则一元二次方程-x 2+bx +c =0的根为 ▲ .16.如图,平行于x 轴的直线AC 分别交函数y 1=x 2(x ≥0)与y 2=x 23(x ≥0)的图象于B 、C 两点,过点C作y 轴的平行线交y 1的图象于点D ,直线DE ∥AC ,交y 2的图象于点E ,则DEAB = ▲ .三、解答题(本大题共11小题,共计88分.解答应写出文字说明、证明过程或演算步骤) 17.(6分)计算:(212 -313)×6 .18.(6分)解方程: 2x 2+4x -1=0 .19.(6分)解方程: x (x –1)=2–2x .第14题第11题20.(6分)为了迎接2013年江苏省“时代杯”数学竞赛,某校要从小孙和小周两名同学中挑选一人参加比赛,在最近的五次选拔测试中,两人的成绩等有关信息如下表所示:(1)根据题中已知信息,完成上述统计表(填入上表即可,不写过程); (2)根据以上信息,若你是数学老师,你会选择谁参加比赛,理由是什么? (参考公式:s 2= 1n[(x 1-_x )2+(x 2-_x )2+ … +(x n -_x )2] .)21.(7分)已知二次函数y = x 2-2x .(1)在给定的平面直角坐标系中,画出这个函数的图象; (2)根据图象,写出当y <0时,x 的取值范围; (3)若将此图象沿x 轴向右平移3个单位,再沿y 轴向上平移1个单位,请直接写出平移后图象所对应的函数关系式.第一次 第二次 第三次 第四次 第五次 平均分 方差 小孙 75 90 75 90 70 70 小周70808090808022.(8分)如图,已知四边形ABCD 是平行四边形,DE ⊥AB ,DF ⊥BC ,垂足分别是E 、F ,且DE =DF . (1)求证:△ADE ≌△CDF ;(2)判断四边形ABCD 的形状,并说明理由.23.(9分)如图,AP 是∠MAN 的平分线,B 是射线AN 上的一点,以AB 为直径作⊙O 交AP 于点C ,过点C 作CD ⊥AM 于点D .(1)判断直线DC 与⊙O 的位置关系,并说明理由; (2)若OA = 6,AD = 10,求CD 的长.AAC24.(9分)如图,函数y=x-3的图象分别交x轴、y轴于点A、B,点C坐标为(–1,0).一条抛物线经过A、B、C三点.(1)求抛物线所对应的函数关系式;(2)设点D是线段AB上的动点,过点D作y轴的平行线交抛物线于点E,求线段DE长度的最大值.25.(9分)七年级我们学过三角形的相关知识,在动手实践的过程中,发现了一个基本事实:三角形的三条高(或三条高所在直线)相交于一点.其实,有很多八年级、九年级的问题均可用此结论解决.【运用】如图,已知:△ABC 的高AD 与高BE 相交于点F ,且∠ABC =45°,过点F 作FG ∥BC 交AB 于点G ,求证:FG +CD =BD .小方同学在解答此题时,利用了上述结论,她的方法如下: 连接CF 并延长,交AB 于点M , ∵△ABC 的高AD 与高BE 相交于点F , ∴CM 为△ABC 的高.(请你在下面的空白处完成小方的证明过程.)【操作】如图AB 是圆的直径,点C 在圆内,请仅用无刻度的直尺........画出△ABC 中AB 边上的高.BAAE CDG BFBCA D E F G M HN 26.(11分)如图,梯形ABCD 是某世纪广场的示意图,上底AD=90m ,下底BC =150m ,高100m ,虚线MN 是梯形ABCD 的中位线.要设计修建宽度均x m 的一条横向和两条纵向大理石通道,横向通道EGHF 以MN 为中心线,两条纵向通道均与BC 垂直.(1)试用含x 的代数式表示横向通道EGHF 的面积1s ;(2)若三条通道的面积之和恰好是梯形ABCD 面积的14时,求通道宽度x ; (3)经测算大理石通道的修建费用1y (万元)与通道宽度为x m 的关系式为:114y x ,广场其余部分的绿化修建费用为0.05万元/2m ,若设计要求通道宽度x ≤8m ,则宽度x 为多少时,世纪广场修建总费用最少?最少费用为多少?27.(11分)如图,在矩形ABCD 中,AB =6,BC =8,动点P 以2个单位/秒的速度从A 点出发,沿对角线AC 向C 移动,同时动点Q 以1个单位/秒的速度从C 点出发,沿CB 向点B 移动,当其中有一点到达终点时,它们都停止移动.设移动的时间为t 秒.(1)求△CPQ 的面积S 与时间t 之间的函数关系式;(2)以P 为圆心,P A 为半径的圆与以Q 为圆心,QC 为半径的圆相切时,求出t 的值. (3)在P 、Q 移动的过程中,当△CPQ 为等腰三角形时,直接写出....t 的值;备用图2013-2014学年第一学期期末学情分析样题(2)九年级数学答卷纸(考试时间120分钟,试卷满分120分)注意事项:1.答题前务必将密封线内的项目填写清楚.2.请用钢笔或圆珠笔(蓝色或黑色)在答卷纸上按照题号顺序,在各题目的答题区域内作答书写,字体工整、笔迹清楚.在草稿纸、试卷上答题无效.一、选择题(每小题2分,共16分)二、填空题(每小题2分,共16分)7..12..8..13..9..14..10..15..11..16..三、计算与求解17.(6分)计算:(212 -313)×6 .18.(6分)解方程:2x2+4x-1=0 .19.(6分)解方程:x(x–1)=2–2x.20.21.22.平均分方差小孙70小周80AC23.24.A25.运用:连接CF 并延长,交AB 于点M , ∵△ABC 的高AD 与高BE 相交于点F , ∴CM 为△ABC 的高.BAAE CDGBFBCA D E F G M HN 26. 27.备用图2013–2014学年度第一学期期末学情试卷参考答案及评分标准九年级数学说明:本评分标准每题给出了一种或几种解法供参考,如果考生的解法与本解答不同,参照本评分标准的精神给分.一、选择题(每题2分,共12分)1.A 2.D 3.B 4.B 5.C 6.C 二、填空题 (每小题2分,共20分)7.x ≤2 8.5 9.8 10.3π 11.40 12.k >-2且k ≠-1 13.8 14.83 π-2 3 15.x 1=1,x 2=-3 16.3- 3三、解答题 (共88分)17.解:原式=(43-3)×6………………………………………………………………2分 =33×6 …………………………………………………………………………4分 = 9 2 …………………………………………………………………………6分 18.解:(x +1)2 = 32 ………………………………………………………………………………3分x 1=-1+62,x 2=-1-62………………………………………………………………6分 19.解:(x +2)( x -1)=0 …………………………………………………………………………3分 x 1 =-2, x 2 = 1……………………………………………………………………………6分 20.解:(1)80; 40. ………………………………………………………………………4分 (2)选择小周参加比赛. ……………………………………………………………5分理由:小孙、小周两人成绩的平均数相同,但小周成绩的方差小于小孙,因此小周的成绩更稳定,所以选择小周参加数学比赛.……………………………………………6分21.解:(1)画图正确;…………………………………………………………………………2分(2)0<x <2; …………………………………………………………………………4分 (3)y =(x -4)2.(或y =x 2-8x+16)……………………………………………………7分22.解:(1)∵DE ⊥AB ,DF ⊥BC ∴∠AED =∠CFD =90°, ……………………………1分∵四边形ABCD 是平行四边形,∴∠A =∠C ,………………………………………………………………………3分 在△AED 和△CFD 中, ∠AED =∠CFD ,∠A =∠C ,DE =DF ,∴△AED ≌△CFD (AAS ); ……………………………………………………5分(2)四边形ABCD 是菱形. …………………………………………………………6分理由如下:∵△AED ≌△CFD ∴AD =CD , ……………………………………7分 又∵四边形ABCD 是平行四边形,∴四边形ABCD 是菱形. ………………8分23.解:(1)直线DC 与⊙O 相切. …………………………1分理由如下:连接OC , …………………………2分 在⊙O 中,OA=OC ,∴∠OAC = ∠OCA , ∵AP 平分∠MAN ,∴∠DAC = ∠CAO ,∴∠DAC = ∠OCA ,∴AD ∥OC , ……………3分 又∵AD ⊥CD ,∴OC ⊥CD ,且OC 为⊙O 半径, ∴直线DC 与⊙O 相切. ………………………4分(2)解法一:连接CB ,………………………………………………………………5分∵AB 为⊙O 的直径,∴∠ACB =90°, …………………………………………6分 ∵AD ⊥CD ,∴∠ADC =90°,又∵∠DAC = ∠CAB ,∴△DAC ∽△ CAB , …………………………………7分 ∴DA CA = CA BA ,即10CA = CA12,CA 2=120, ………………………………………8分 ∴在Rt △ADC 中,CD =AC 2-AD 2 =20=25.………………………………9分 解法二:作OE ⊥AD 于E ,………………………………………………………5分 证OEDC 为矩形,…………………………………………………………………7分 在Rt △OAE 中,OE =AO 2-AE 2=25=CD .……………………………………9分24.解:(1)令x = 0,则y =-3,∴B (0, -3);…………………………1分令y = 0,则x =3,∴A (3,0)…………………………………2分 设抛物线所对应的函数关系式为y =ax 2+bx +c ,……………3分由题意得⎩⎪⎨⎪⎧ c =-3 0 =9a +3 b +c 0 = a - b + c .解之,得a = 1,b =-2 ,c = -3,故函数的关系式为y = x 2 -2x -3.………………………………………5分 (2)设D (x ,x -3),E (x ,x 2 -2x -3),(0≤x ≤3) ………………………6分 则DE = x -3-(x 2 -2x -3)……………………………………………7分=-x 2 +3x =-(x -32)2+94, ………………………………………8分故x = 32 时,DE 的最大值为 94. ……………………………………9分A25.解:(1)在Rt △ADB 中,AD =BD ,………………………1分∵在Rt △BCM 中,∠MBC =45°,∴∠BCM =45°,即∠DCF =45°,…………………2分 ∴在Rt △CFD 中,CD =DF , ……………………3分 ∵FG ∥BC ,∴∠AGF =∠ABC =45°,∴在Rt △AFG 中,AF =FG ,………………………4分∴FG +CD =AF +DF =AD =BD . ……………………5分 (2)如右图,CG 即为所画的高,画图正确. ………9分26.解:(1)1120s x = ……………………………………………………2分(2)根据题意得:21112021002(90150)10042x x x +⨯-=⨯⨯+⨯ …………4分解得:110x =,2150x =(不合题意,舍去) ……………6分 (3)y=0.05(12000-320x+2x 2)+14x ……………7分20.1(10)590x=-+ ……………9分∵x ≤8∴当x =8时,y 有最小值590.4(万元). ……………11分27.解:在矩形ABCD 中,∠B =90°,AB =6,BC =8,则AC =10,由题意得:AP =2t ,CP =10-2t ,CQ =t ,(1)过点P 作PF ⊥BC 于F ,可得△CPF∽△ CAB , ∴PF AB = CP CA ,即PF 6 = 10-2t 10, ∴PF =6-65t , ………2分 ∴S =12×QC ×PF =-35t 2+3t (0≤t ≤5). ……………………3分(2)∵△PCF ∽△ACB ,∴PF PC FC AB AC BC ==,即1026108PF t FC -==,∴PF =665t -,FC =885t -, 则在Rt △PFQ 中,2222226841(6)(8)56100555PQ PF FQ t t t t t =+=-+--=-+. …………4分①当⊙P 与⊙Q 外切时,有PQ =P A +QC =3t , 此时222415610095PQ t t t =-+=,整理得:2701250t t +-=, 解得t 1=156-35, t 2=-156-35(舍去).………………………………6分A②当⊙P 与⊙Q 内切时,有PQ =P A -QC =t , 此时22241561005PQ t t t =-+=,整理得:29701250t t -+=, 解得t 1=259,t 2=5.……………………………………………………………8分 综上所述:⊙P 与⊙Q 相切时t = 259或t =5或t =156-35. (3)当t =103秒(此时PC =QC ),t = 259秒(此时PQ =QC ),或t = 8021秒(此时PQ =PC )△CPQ 为等腰三角形. ……………………………………………………………………11分。