人教版八年级下册数学第2课时 二次根式的性质教案与教学反思
新人教版八年级数学下册二次根式教案(14篇)

新人教版八年级数学下册二次根式教案(14篇)篇1:新人教版八年级数学下册二次根式教案1.二次根式:式子( ≥0)叫做二次根式。
2.最简二次根式:必须同时满足下列条件:⑴被开方数中不含开方开的尽的因数或因式; ⑵被开方数中不含分母; ⑶分母中不含根式。
3.同类二次根式:二次根式化成最简二次根式后,若被开方数相同,则这几个二次根式就是同类二次根式。
4.二次根式的性质:(1)( )2= ( ≥0); (2)5.二次根式的运算:(1)因式的外移和内移:如果被开方数中有的因式能够开得尽方,那么,就可以用它的算术根代替而移到根号外面;如果被开方数是代数和的形式,那么先解因式,•变形为积的形式,再移因式到根号外面,反之也可以将根号外面的正因式平方后移到根号里面.(2)二次根式的加减法:先把二次根式化成最简二次根式再合并同类二次根式.(3)二次根式的乘除法:二次根式相乘(除),将被开方数相乘(除),所得的积(商)仍作积(商)的被开方数并将运算结果化为最简二次根式.= ? (a≥0,b≥0); (b≥0,a>0).(4)有理数的加法交换律、结合律,乘法交换律及结合律,•乘法对加法的分配律以及多项式的乘法公式,都适用于二次根式的运算.【典型例题】1、概念与性质例1下列各式1) ,其中是二次根式的是_________(填序号).例2、求下列二次根式中字母的取值范围(1) ;(2)例3、在根式1) ,最简二次根式是( )A.1) 2)B.3) 4)C.1) 3)D.1) 4)例4、已知:例5、 (龙岩)已知数a,b,若 =b-a,则 ( )A. a>bB. a2、二次根式的化简与计算例1. 将根号外的a移到根号内,得 ( )A. ;B. - ;C. - ;D.例2. 把(a-b)-1a-b 化成最简二次根式例3、计算:例4、先化简,再求值:,其中a= ,b= .例5、如图,实数、在数轴上的位置,化简:4、比较数值(1)、根式变形法当时,①如果,则;②如果,则。
人教版八年级下册二次根式教案

人教版八年级下册二次根式教案一、教材分析本教材是人教版八年级下册,第一单元,二次根式。
本单元主要内容包括:1.二次根式的定义及性质2.二次根式的化简3.二次根式的运算4.二次根式的应用其中,二次根式的定义、化简、运算内容是本单元的重点,是学习本单元的基础。
而二次根式的应用则是拓展内容,可以让学生了解到根式在现实生活中的应用。
二、教学目标知识目标1.了解二次根式的定义及性质2.掌握二次根式的化简方法3.掌握二次根式的加减乘除运算方法4.了解二次根式在实际问题中的应用技能目标1.能够独立完成二次根式的化简、计算和应用题目2.能够在实际问题中使用二次根式进行运算和求解情感目标1.培养学生对于数学的兴趣和好奇心2.培养学生解决实际问题的能力和自信心三、教学重难点重点1.二次根式的化简方法2.二次根式的加减乘除运算方法难点1.二次根式的应用题目2.数学语言的运用四、教学过程1. 二次根式的定义及性质1.引导学生通过例题了解二次根式的定义2.讲解二次根式的性质,如非负性、次幂、加、减、积、商等2. 二次根式的化简1.讲解化简的基本原则2.通过例题一步一步地讲解化简的方法3. 二次根式的运算1.讲解加减乘除的基本原则2.通过例题一步一步地讲解加减乘除的方法4. 二次根式的应用1.讲解二次根式在实际问题中的应用2.通过例题引导学生理解应用题5. 课堂练习1.布置练习题,让学生通过练习加深对本单元内容的理解2.布置作业题,巩固本单元知识五、教学评价1.通过课堂回答问题、闪光灯、课堂练习等方式对学生进行监测和评价2.对学生参与课堂活动和完成作业的情况进行评价3.通过测试等方式对学生掌握情况进行评价六、教学反思本教案重点关注二次根式的化简及运算方法,同时通过应用题目的讲解让学生了解到二次根式的实际应用。
在教学过程中,我采用了多种教学方法,如例题、练习题、闪光灯等,以激发学生兴趣,提高课堂效率。
同时,在教学中也对学生的学习情况进行了监测和评价,以确保学生在本单元学习中取得良好的成果。
初中数学_【课堂实录】二次根式的性质(2)教学设计学情分析教材分析课后反思

二次根式的性质(第二课时)教学设计教学目标:1、知识目标:掌握商的算术平方根的性质,能利用性质进行二次根式的化简与运算;2、能力目标: 培养学生利用二次根式的除法公式进行化简与计算的能力;3、情感目标: 通过二次根式公式的引入过程,渗透从特殊到一般的归纳方法,提高学生的归纳总结能力。
教学重点:1、商的算术平方根。
会进行简单的二次根式的除法运算;2、最简二次根式概念及应用。
教学难点:二次根式的除法与商的算术平方根的关系及应用。
教学方法:探究合作教学工具:多媒体课时安排:一课时教学过程(一) 引入新课知识回顾1、什么叫二次根式?一般地,形如a (a ≥0)的式子叫二次根式。
2、二次根式有意义的条件是什么?被开方数a ≥03、二次根式的性质有哪些?(1)二次根式的双重非负性: (2)(3) (4)学生回忆及得算数平方根的性质:(a ≥0,b ≥0)是用什么样的方法引出的?(上述积的算术平方根的性质是由具体例子引出的。
)(二)探究新知1.计算下列各式,观察计算结果,你会发现什么规律?设计意图:得出,引导学生通过计算,大胆猜想。
2.猜想:0(被开方数的非负性)(0算术平方根的非负性)a a ⎧≥≥2(a a =(0)a ≥2a a =441616(1),;(2),;925925====2222(1)(2)35353.观察上面得到的规律,请你用字母表示出这一规律。
()0,0.a b=≥>要求学生回答,自主总结规律。
即:商的算术平方根等于被除式的算术平方根除以除式的算术平方根(三)练习巩固化简:分别找两位学生到黑板上进行板演。
其他同学在练习本上自主完成。
教师通过板演,进行讲解,强调公式的运用,被开方数是小数的情况等等。
(四)你来当医生解:原式=((1225.0)3(,4,(a b c均为正数)944322944=⋅设计意图:出示错误做法,让学生合作交流,找到错误根源,增强学生的互助精神。
正确解答是:解:原式=经过交流,学生回答正确做法。
二次根式 初中八年级下册数学教案教学设计课后反思 人教版

一、复习引入(学生活动)口答1.什么叫二次根式?2.当a≥0叫什么?当a<0有意义吗?老师点评(略)。
二、探究新知议一议:(学生分组讨论,提问解答)(a≥0)是一个什么数呢?老师点评:根据学生讨论和上面的练习,我们可以得出做一做:根据算术平方根的意义填空:)2=_______;)2=_______;2=______;)2=_______;2=______;2=_______;)2=_______.是4是一个平方等于4的非)2=4.同理可得:)2=2,2=9,)2=3,)2=,)2=,)2=0,所以例1 计算1.22.(2 3.2 4.)2 分析)2=a (a≥0)的结论解题.解:2 =,(2 =32·2=32·5=45, 1372322=,)2=. 三、巩固练习计算下列各式的值:)22()2)2()2四、应用拓展例2 计算1.2(x≥0)2.23.)24.)2分析:(1)因为x≥0,所以x+1>0;(2)a 2≥0;(3)a 2+2a+1=(a+1)≥0;(4)4x 2-12x+9=(2x )2-2·2x·3+32=(2x-3)2≥0.所以上面的4)2=a (a≥0)的重要结论解题.解:(1)因为x≥0,所以x+1>02=x+1(2)∵a 2≥02=a 2(3)∵a 2+2a+1=(a+1)2又∵(a+1)2≥0,∴a 2+2a+1≥0 =a 2+2a+1(4)∵4x 2-12x+9=(2x )2-2·2x·3+32=(2x-3)2又∵(2x-3)2≥0∴4x 2-12x+9≥0)2=4x 2-12x+9例3在实数范围内分解下列因式:(1)x 2-3 (2)x 4-4 (3) 2x 2-35622724=422-分析:(略)五、归纳小结本节课应掌握:1(a≥0)是一个非负数;2.)2=a (a≥0);反之:a=)2(a≥0)。
初中数学_二次根式和它的性质教学设计学情分析教材分析课后反思

【教学设计】(一)创设情景,激发求知欲望对于二次根式的定义、它成立的有意义的条件、算术平方根与平方之间的关系在第一节课已让学生理解、掌握,这一节课会让学生通过再回顾一遍,达到“温故知新”,形成知识链。
(二)引导活动,揭示知识产生过程(重要部分)基于八年级学生的思维能力,遵循 “教为主导,学为主体,练为主线”的教育思想,从实例出发,让学生亲历观察、发现、探究、归纳等一系列过程,再现了知识的发生、发现及发展的过程。
在新知识学习和例题的教学中,教师始终以引导者的形象出现并在适当的时候对学生适当的启发。
所以在本节课中我采取的教学方法是启发式引导发现法.让学生合作、探究,主动发现.为此,本节课我设计了如下的系列活动,旨在让学生通过观察、合作探、类比归纳来揭示二次根式的性质这一知识的产生过程.从中我主要起到引导作用。
任务一:让学生回顾一个非负数的算术平方根的定义 计算:24= =220 ,并完成一提问:由特殊数的计算能否得到一般规律? 学生交流。
教师:观察其结果与根号内幂底数的关系,归纳得到:当0a>时,=2a教师:通过计算:=-2)4(===-2)20(观察其结果与根号内幂底数的关系,归纳得到:当a<0时,=2a 通过计算:=20 归纳得到:当a=0时,=2a归纳总结:将上面做题过程中得到的结论综合起来,得到二次根式的又一条非常重要的性质:⎪⎩⎪⎨⎧<-=>==0a a 0a 00a a 2 a a任务二: 思考、讨论:二次根式的性质)0()(2≥=a a a 与a a =2有什么区别与联系。
任务三:1、计算下面的算式,并比较它们的运算结果,你有什么发现?(1=,=;(2=,=;(3学生完成后,小组内交流、总结 教师归纳总结:=· (a ≥0,b ≥0) 用自然语言描述为:。
(二)应用举例例3:化简教师(演示课件)(1)=0.01 (2)=2)2-( (3)=29a三名学生口答,通过练习理解二次根式的性质,并利用其解决二次根式的化简问题 例4、化简:教师(演示课件)(1 (2)27 (3)24a (a ≥0)三名学生在黑板上展示。
八年级数学下册《二次根式》教学反思

(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与二次根式相关的实际问题,如计算不同形状的面积。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作,通过实际测量和计算,演示二次根式的基本原理。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《二次根式》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要计算非负数的平方根的情况?”(如面积计算中的根号下的数字)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索二次根式的奥秘。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“二次根式在实际生活中的应用”这一主题展开讨论。他与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
(2)二次根式的应用:将二次根式应用于实际问题,学生可能难以找到解决问题的关键点。
(3)化简含有分母的二次根式:学生在处理分母时,容易出错,如漏乘分子分母的公因数等。
(4)混合运算中的符号处理:在进行二次根式的加减运算时,学生可能对合并同类项和符号处理感到困惑。
举例:
-难点解析:针对根号下含有未知数的二次根式运算,通过对比、归纳,帮助学生明确运算规则。
八年级数学下册《二次根式》教学反思
一、教学内容
本节课为八年级数学下册《二次根式》章节的教学反思。教学内容主要包括二次根式的定义、性质、化简与运算。具体涉及:理解二次根式的概念,掌握二次根式的性质,如乘除法则、平方根的性质等;学会化简二次根式,并能进行加减乘除运算;了解二次根式在实际问题中的应用。通过本节课的学习,旨在培养学生的逻辑思维能力和解决实际问题的能力,同时加深对数学知识的理解和运用。
人教版数学八年级下册16.1第2课时《 二次根式的性质》教学设计

人教版数学八年级下册16.1第2课时《二次根式的性质》教学设计一. 教材分析人教版数学八年级下册16.1第2课时《二次根式的性质》是初中数学的重要内容,主要让学生了解和掌握二次根式的性质。
教材通过引入实际问题,引导学生探究二次根式的性质,从而培养学生的抽象思维能力和解决问题的能力。
本节课的内容为后续学习二次根式的运算和应用打下基础。
二. 学情分析学生在学习本节课之前,已经掌握了实数、有理数和无理数的基本概念,具备了一定的代数基础。
同时,学生已经学习了二次根式的概念和简单的运算。
但学生在理解和运用二次根式的性质方面还存在一定的困难,因此,教师在教学过程中要注重引导学生理解和运用二次根式的性质。
三. 教学目标1.理解二次根式的性质,并能熟练运用。
2.培养学生的抽象思维能力和解决问题的能力。
3.提高学生运用数学知识解决实际问题的能力。
四. 教学重难点1.二次根式的性质及其运用。
2.引导学生理解和运用二次根式的性质。
五. 教学方法1.情境导入:通过实际问题引入二次根式的性质,激发学生的学习兴趣。
2.自主探究:引导学生独立思考,探究二次根式的性质。
3.合作交流:分组讨论,让学生在讨论中理解和掌握二次根式的性质。
4.巩固练习:设计有针对性的练习,让学生在实践中运用二次根式的性质。
5.总结提升:引导学生总结二次根式的性质,并展望后续学习。
六. 教学准备1.准备相关的实际问题,用于导入新课。
2.准备PPT,展示二次根式的性质及相关例题。
3.准备练习题,用于巩固所学知识。
七. 教学过程1.导入(5分钟)教师通过呈现一个实际问题,引导学生思考二次根式的性质。
例如:一个正方形的对角线长度为8,求正方形的边长。
2.呈现(10分钟)教师通过PPT展示二次根式的性质,引导学生理解和掌握。
例如:二次根式√a的性质有:(1)√a2=a(a≥0);(2)√a⋅√b=√ab(a≥0,b≥0);(3)√a√b =√ab(a≥0,b>0)。
人教版数学八年级下册第2课时 二次根式的混合运算(教案与反思)

16.3二次根式的加减人非圣贤,孰能无过?过而能改,善莫大焉。
《左传》原创不容易,【关注】,不迷路!第2课时二次根式的混合运算【知识与技能】1.会进行二次根式的乘、除、加、减混合运算;2.能用多项式的乘法公式进行二次根式的化简计算.【过程与方法】通过具体问题进一步体会有理数运算、二次根式的运算以及整式的运算之间的联系,掌握二次根式混合运算方法.【情感态度】通过多项式乘除法则及乘法公式在二次根式运算中的应用,体验迁移、化归思想,使学生进一步形成符号感,提高数学应用意识.【教学重点】二次根式的混合运算.【教学难点】多项式的乘除法则及乘法公式在二次根式运算中的应用方法.一、情境导入,初步认识问题我们知道:(x+y)·xy=x·xy+y·xy=x2y+xy2,(2x2y+3xy2)÷xy=2x2y÷xy+3xy2÷xy=2x+3y,(x+y)(x-y)=x2-y2及(x+y)2=x2+2xy+y2,……试问:如果上述各式中的x,y分别代表着一个二次根式,我们会有哪些新的收获呢?【教学说明】引入上述关于多项式的乘除算式及乘法公式,进而提出新的问题的目的在于暗示二次根式的运算与多项式的运算之间的联系,激发学生的求知欲望和探究意识.二、思考探究,获取新知探究1由(x+y)·z=x·z+y·z=xz+yz,你能求出的值吗?你是怎样做的?探究2由,你能求出的值吗?由此你有何发现?类似地,请解决以下几个小题.【教学说明】让全班同学共同参与探究,相互交流,在类比的过程中尝试给出问题的答案.教师巡视,予以点拨,肯定学生的成绩,并引导学生完善对二次根式混合运算的初步认识,最后师生共同给出问题的结果.【归纳结论】1.二次根式的混合运算与整式的运算方法完全相同,即先算乘方,再算乘除,最后算加减,有括号先算括号.2.在二次根式的运算中,多项式的乘法法则和乘法公式仍然适用.三、典例精析,掌握新知例1计算下列各题:分析:对算式的结构进行观察分析,运用二次根式加、减、乘、除的法则进行运算,需注意乘法公式(a+b)(a-b)=a2-b2,(a±b)2=a2±2ab+b2的灵活运用.解:(1)原式=(4-22+62)÷22=(46+42)÷22=46÷22+42÷22=23+2;例2已知3,3,求下列代数式的值.(1)x2+2xy+y2;(2)x2-y2.分析:由条件易知3x-y=2,而需求代数式中的(1)可化为(x+y)2,(2可化为(x+y)(x-y),因而整体代入更简洁些,当然直接代入求值也是可行的,只不过要复杂多了.解:3+1,3-1,3,x-y=2.(1)原式=(x+y)2=(3)2=12;(2)原式=(x+y)·(x-y)33.【教学说明】第1题可让学生自主完成,并选派三名代表上黑板进行演算.教师视,了解学生对二次根式混合运算的掌握情况,及时予以帮助,帮助学生更好地掌握新知识.最后全班同学分析三位代表的解答过程及结果,深化理解.第2题仍可让学生先自主探究,如果大部分学生选用直接代入求值时,教师仍应肯定他们的成绩,但需展示本例的最佳解题思路,达到融会贯通的目的.四、运用新知,深化理解3.(1)若2,2,求a2b-ab2的值;(2)若2-1,求x2+2x+2011的值.【教学说明】第1、2两题可让学生自主完成,然后相互交流,教师根据反馈情况,及时查漏补缺,优化课堂教学.第3题即可让学生尝试解决,也可由师生共同分析,形成解题思路后再由学生自主完善解题过程.3.(1)由a-b=42,a·b=1得a2b-ab2=ab(a-b)=1×42=42;(2)∵x=2-1,∴x+1=2,两边平方,得x2+2x+1=2.∴x2+2x=1.故x2+2x+2011=1+2011=2012.五、师生互动,课堂小结通过这节课的学习,你有哪些收获?你还有哪些疑惑?谈谈你的看法,并与同伴交流.【教学说明】教师以设问的形式和学生一道回顾本节主要知识及所涉及到的解题方法、技巧和数学思想方法,既是对知识的一次梳理,也是一次必要的提炼升华,完善认知.1.布置作业:从教材“习题16.3”中选取.2.完成练习册中本课时练习.1.情境引入,复习整式运算的知识,旨在迁移到利用乘法公式进行含二次根式式子的运算,培养学生继续探究的兴趣.2.例题的设计,旨在帮助学生理解乘法公式在二次根式运算中的应用.【素材积累】从诞生的那一刻起,我们就像一支离弦的箭,嗖嗖地直向着生命的终点射去。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第十六章二次根式
原创不容易,为有更多动力,请【关注、关注、关注】,谢谢!
随风潜入夜,润物细无声。
出自杜甫的《春夜喜雨》
上大附中何小龙
16.1二次根式
第2课时二次根式的性质
【知识与技能】
理解并掌握二次根式的性质,正确区分
=a(a≥0)与2a=a(a ≥0),并利用它们进行化简和计算.
【过程与方法】在探索二次根式性质的学习活动中,进一步增强学生的参与意识,培养学生的计算能力和解决问题的能力.
【情感态度】通过创设问题情境,激发学生学习兴趣,培养学生主动探究意识和创新精神,形成良好的心理品质,促进身心健康发展.
【教学重点】()2a=a(a≥0),2a=a(a≥0)及其应用.
【教学难点】用探究的方法探索()2a=a(a≥0)及2a=a(a≥0)的结论.
一、情境导入,初步认识
试一试:请根据算术平方根填空,
.猜一猜:通过对上述问题的思考,你能猜想出(2a(a≥0)的结论是什么?说说你的理由.
【教学说明】让学生通过具体实例所展示的特征,猜想出结果,然后再利用算术平方根的意义对所猜测结论进行分析,由感性认识到理性思考,培养学生利用代数语言进行推理的能力.
二、思考探究,获取新知
在学生相互交流的基础上可归纳出:
()2a=a(a≥0).
进一步地,引导学生探究新的问题.
探究
(1)填空:
(2)通过(12a a≥0)的化简结果吗?说说你的理由.
【教学说明】教师应尽力引导学生积极主动进行探究思考,让学生经历知识的发现与完善的过程,深化对所学知识的理解和记忆,最后师生共同完成对知识的归纳总结.
2
a(a≥0).
最后,教师给出代数式的概念.代数式:
用运算符号(加、减、乘除、乘方和开方)把数和表示数的字母连接起来的式子称为代数式.(代数式的定义只要求学生了解就行,不必深究.)三、典例精析,掌握新知
例1 计算:
(1) 1.5)2;(2)(5)2
【教学说明】以上例1、例2可由学生自主完成,教师巡视,对有困难的学生及时予以指导,让每个学生都能得到发展.例3教师引导学生看懂数轴,结合数轴确定a、b的符号.
四、运用新知,深化理解
【教学明】以上1~3题可试着让学生自主完成,
第4题稍有难度,教师适时点拨.
(22a进行化简.然后再根据x>2
的这个范围,来判断x-2与1-2x的正负,最后化简掉绝对值符号.∵x>2,∴x-2>0,1-2x<0.
3.(1)原式=5-5+1=1
(2)原式=7+49×2/7=7+14=21
2)首先利用a2=|a|化简掉二次根号,再根据x的取值范围来判断绝对值中的代数式的正负,化掉绝对值的符.
五、生互动,课堂小结
1.本节知识可这样归纳:
2.通过这节课的学习,你有哪些收获和体会?与同伴交流
1.布置作业:从教材“习题16.1”中选取.
2.完成练习册中本课时练习.
1.注意前后知识的联系,在复习旧知的过程中导入本节课的数学内容,按照由特殊到般的规律,降低学生理的难度.
2.在总结二次根式的性质过程中,由学生经过观察、分析的过程,让学生交
流中体会成功.
3几个例题,旨在帮助学生对二次根式的性质的理解,在练习和作业中都增加了难度,主要给能力较好的学生提供更大的发展空间.
【素材积累】
1、2019年,文野31岁那年,买房后第二年,完成了人生中最重要的一次转变。
这一年,他摘心里对自己的定位,从穷人变成了有钱人。
些人哪怕有钱了,心里也永远甩不脱穷的影子。
2、10月19 日下战书,草埠湖镇核心学校组织镇小学老师收看了江苏省泰安市洋思中学校长秦培元摘宜昌所作的教训呈文录象。
秦校长的讲演时光长达两个多小时,题为《打造高效课堂实现减负增效全面提高学生素质》。
1、黄鹂方才唱罢,摘村庄的上空,摘树林子里,摘人家的土场上,一群花喜鹊便穿戴着黑白相间的朴素裙裾而闪亮登场,然后,便一天喜气的叽叽喳喳,叽叽喳喳叫起来。
2、摘湖的周围有些像薄荷的小草,浓郁时,竟发出泥土的气息!仔细看几朵小花衬着绿绿的小草显得格外美丽。
夏天,大大的荷叶保护着那一朵朵娇粉的荷花。
摘整个湖泊中格外显眼。
如果你用手希望对您有帮助,谢谢来捧一捧这里的水,那可真是凉爽它会让你瞬间感到非常凉爽、清新。