《自动人脸识别技术》PPT课件

合集下载

人脸识别答辩ppt课件

人脸识别答辩ppt课件


人脸识别算法设计




四.

搭建平台

本文的硬件平台采用基于ARM9架构
的S3C2440嵌入式开发板。


在此基础上建立起一个可靠的、稳 定的嵌入式软件开发平台。

具体工作:定制内核、制作根文件

系统、移植。


四.


图像采集模块设计

本系统主要采用的是OpenCV 计算机 视觉库和 QT 图形库,并通过普通
一、关于人脸识别 二、人脸识别过程 三、人脸识别技术 四、人脸识别系统设计
1
一.
人脸识别是一个活跃的研究领域,是关ຫໍສະໝຸດ 人类视觉最杰出的能力之一。

最容易被接受的生物特征识别方式。

人脸识别细分为两类:

一类是回答我是谁的问题,即辨认

(Identification);

另一类是回答这个人是我吗?即确认
几何特征提取 统计特征提取 频率域特征提取 运动特征提取 代数特征提取
三. 人 脸 识 别 技 术
面部特征的模式识别算法
线性判别分析(Fisher线性判别) 支持向量机SVM 贝叶斯网络 隐马尔可夫模型及其基本问题 人工神经网络 模糊模式识别
四.
人 脸
搭建平台

图像采集模块设计

的面部识别算法。

提出使用矩形特征法进行特征值运
算,采用感知器学习算法训练最佳

特征。

该算法运算速度较快、错误分类率

低、识别率较高、误识率低,适合

嵌入式系统。

人脸识别ppt

人脸识别ppt
➢ 人体生物的生物特征包括生理特征和行为特征两大类 ⑴人体的生理特征主要包括人脸、指纹、掌纹、掌形 虹膜、视网膜、静脉、DNA、颅骨等,这些特征是与生 俱来的,是先天形成的; ⑵而行为特征包括声纹、签名、步态、耳形、按键节 奏、身体气味等,这些特征是由后天的生活环境和生 活习惯决定的。
➢这些生物特征本身固有的特点决定了其在生物认证中 所起的作用是不同的.
基于先验形状的水平集图像分割
XDZX
➢优势:既包括使全局形状一致的隐含曲面约 束 ,又保持了水平集捕捉局部形变的能力 。
➢经典处理过程:首先在水平集空间利用一样 本集构造一个形状模型 , 此形状模型使用变 分框架由隐含函数来描述先验形状的变化 。 然后模型引入能量函数作为先验形状项 ,该 项的目的是使演化曲线与形状模型的距离最 小。
2 基于相关匹配的方法
XDZX
➢基于相关匹配的方法包括模板匹配法和等强 度线方法。
➢①模板匹配法:Poggio和Brunelli专门比较了 基于几何特征的人脸识别方法和基于模板匹 配的人脸识别方法。
➢②等强度线法:等强度线利用灰度图像的多级 灰度值的等强度线作为特征进行两幅人脸图 像的匹配识别。
3 基于神经网络的方法
三.基于水平集的图像分割方法
XDZX
定义:水平集方法是将n维曲面的演化问题转化为n+1维空 间的水平集函数曲面演化的隐含方式来求解。
优势:非参数化、自动处理拓扑结构的变化、捕捉局部形 变、提供一个自然的方法来估计演化曲线的几何特 性
劣势:不能有效的处理有噪声、不完整数据的图像
水平集方法研究现状
XDZX
虹膜 High High High Medium High Low High
视网膜 High High Medium Low High Low High

人脸识别课件

人脸识别课件

人脸识别课件xx年xx月xx日CATALOGUE目录•人脸识别概述•人脸识别基础知识•人脸识别常用库和框架•人脸识别实际应用•人脸识别难点和挑战•人脸识别未来发展01人脸识别概述定义人脸识别是一种利用图像或视频数据进行人类身份识别的技术。

特点非接触性、非侵扰性、自然性、友好性和防伪能力。

人脸识别定义1人脸识别发展历程2320世纪60年代到80年代末,人脸识别技术开始起步。

起步阶段20世纪90年代到21世纪初,人脸识别技术开始快速发展和应用。

发展阶段21世纪初至今,人脸识别技术在算法、应用和标准化方面取得重大突破。

突破阶段人脸识别应用场景人脸识别技术应用于门禁系统,可以实现安全、方便、快捷的进出控制和管理。

门禁系统金融行业社会安全娱乐产业人脸识别技术可以用于金融行业中的身份认证、客户分群和风险评估等。

人脸识别技术可以用于社会安全领域的监控、追踪、查找和侦破案件等。

人脸识别技术可以用于娱乐产业中的特效制作、人脸替换、人脸合成和动画制作等。

02人脸识别基础知识基于深度学习的图像识别算法利用卷积神经网络(CNN)对图像进行特征提取,通过全连接层进行特征组合,实现图像分类和识别。

基于特征提取的图像识别算法利用传统图像处理技术,提取图像中的颜色、纹理、形状等特征,通过支持向量机(SVM)等分类器进行分类和识别。

图像识别算法利用神经网络对人脸进行特征提取,通过滑动窗口技术在图像中寻找人脸区域,并通过回归任务确定人脸的精确位置。

基于深度学习的人脸检测算法利用图像处理技术,对图像中的像素进行统计分析,得到人脸区域的特征表示,通过分类器进行人脸和非人脸的分类。

基于特征分析的人脸检测算法人脸检测算法基于深度学习的人脸特征提取算法利用卷积神经网络(CNN)对人脸进行特征提取,通过全连接层将特征进行组合和编码,得到人脸的特征向量。

基于传统机器学习的人脸特征提取算法利用图像处理技术,提取人脸的特征表示,如Gabor滤波器、LBP等,通过分类器进行人脸和非人脸的分类。

人脸识别课件

人脸识别课件

04
人脸识别技术的发展趋势与挑战
人脸识别技术的性能优化
1 2 3
特征提取优化
采用更有效的特征提取方法,如深度学习技术 ,提高人脸识别的准确性和速度。
模型训练优化
利用更大量的数据和强大的计算资源,训练出 更精准、更高效的模型,提高人脸识别的准确 性和速度。
算法改进
不断研究和改进算法,提高人脸识别的准确性 和速度。
特征提取与匹配
总结词
特征提取与匹配是人脸识别技术的核心环节,其目的是从人脸图像中提取出 具有区分度的特征,并将这些特征与已知的人脸特征进行比较,从而实现对 人脸的识别。
详细描述
特征提取与匹配通常采用基于深度学习的算法,通过训练大量带标签的人脸 图像数据集来学习人脸的特征,并利用这些特征对新的未知人脸图像进行分 类和识别。
详细描述
人脸识别技术为人机交互提供了新的交互方式。通过人脸识别技术,计算机可以快速地识别人的面部 表情和情感,从而进行更加智能化的交互。在智能客服、智能助手等应用中,人脸识别技术使得人机 交互更加自然、便捷和高效。
THANKS
谢谢您的观看
02
人脸识别技术的基本原理
人脸的几何特征提取
01
基于几何特征的人脸识别方法是最早的人脸识别方法之一,也是目前仍在广泛 应用的方法之一。其主要思想是通过人脸的几何特征来识别人的身份。
02
人脸的几何特征包括眼睛、鼻子、嘴巴、下巴等部位的形状、大小、位置等信 息。这些特征可以通过人脸图像的像素信息进行提取。
总结词
安全、可靠、实时
详细描述
人脸识别技术在安防领域发挥了重要作用。在公共场所,如机场、车站、银行等,人脸识别技术被用于监控和 报警系统,有效地防范了恐怖袭击和犯罪行为。同时,人脸识别技术也在智能楼宇、智能家居等场景中得到了 应用,提高了安全防范的可靠性。

人脸识别技术(PPT46页)

人脸识别技术(PPT46页)
▪ (4) 图像文件的干扰技术。尽量去除色偏、明暗、旋转、放缩
、扭曲、截取等图像干扰。 ❖ 色偏调整 ❖ 抗明暗特征提取算法 ❖ 抗放缩特征提取算法 ❖ 图像尺寸的自动调整 ❖ 抗旋转的特征提取算法 ❖ 抗扭曲的特征提取算法 ❖…
我们的目标--基于人物的人脸识别
▪ (5) 海量图像文件快速算法。分为两部分,一部分是海量图像
❖…
▪ (3) 当前的人物特征与数据库中的人物特征比较。即将当前的
图像的人物特征与数据库中的人物特征进行检索比对。上述的 人物特征可以一定程度上抵抗光线、皮肤色调、色偏、倾斜、 扭曲等变化,具有强大的可靠性,从而使它可以从百万人中识 别出相似的人。 ❖ 特征比对算法
❖…
我们的目标--基于人物的人脸识别
人脸识别技术简介与研发进展
2014年3月
目录
▪ 项目概述 ▪ 系统概述 ▪ 关键技术 ▪ 系统设计 ▪ 项目进展
项目概述
▪ 近年来,社会犯罪率呈逐年升高的趋势,给广大公安人员
侦破案件增加了难度。
▪ 由于罪犯群体不断扩大,要人工在数以百万计的人员照片
数据库中找出犯罪嫌疑人,不仅费时费力,还有可能造成 遗漏等情况,破案的效率大打折扣。
返回相似的图片
抽取和比对人物的 人脸、人身特征
输入图像 特征比对
特征提取
人脸、人身信息数据库
建立人物特征数据库的流程图
图像分割
准备导入图像库的图片
特征提取
数据存储
人脸、人身信息数据库
软件模型
面向技术人员: - 图像数据库的管理 - 人物特征数据管理 - 软件参数设置 - 软件运维
数据模型设计模式 1) 图像数据结构 2) 人物特征数据结构 3) 日志数据结构 4) …

人脸识别与身份认证技术培训ppt

人脸识别与身份认证技术培训ppt
总结词
人脸识别技术广泛应用于安全、金融、交通、医疗等领域,为人用于门禁系统、边境检查等;在金融领域中可用于ATM 机、移动支付等;在交通领域中可用于地铁、机场安检等;在医疗领域中可用于患者身 份识别等。此外,人脸识别技术还应用于社交媒体、智能家居等领域,为人们的生活和
工作带来了便利。
CHAPTER 02
人脸识别技术原理
人脸检测与定位
检测图像中的人脸位置
通过算法和计算机视觉技术,自动检 测图像中的人脸位置,为后续处理提 供基础。
定位面部特征点
在检测到人脸后,系统自动定位眉毛 、眼睛、鼻子、嘴巴等面部特征点, 用于提取更准确的特征信息。
人脸特征提取
提取面部特征
多模态识别融合
将人脸识别与其他生物特征识别技术(如指纹、虹膜等)相结合, 提高身份认证的安全性和可靠性。
动态人脸识别
研究如何在动态场景下进行人脸识别,如视频监控、智能家居等, 提高人脸识别的实时性和应用范围。
身份认证技术的多元化发展
01
02
03
多因素认证
将单一的密码认证扩展为 多因素认证,包括生物特 征、动态口令、手机验证 等,提高账户安全保护。
VS
详细描述
人脸识别技术在安全领域的应用包括视频 监控、门禁系统等。通过实时监测和识别 ,可以快速发现可疑人员,提高监控效率 ,预防犯罪行为的发生。
人脸识别在智能家居领域的应用
总结词
提供个性化服务,提升居住体验
详细描述
人脸识别技术可以为智能家居系统提供个性 化服务,如智能音箱、智能门锁等。通过人 脸识别技术,可以快速识别家庭成员,提供 个性化的家居服务,提升居住体验。
技术创新
随着人工智能和计算机视觉技术的不断发展,人脸识别和身份认证技 术将更加精准、快速和智能化。

人脸识别系统介绍.ppt

人脸识别系统介绍.ppt

人脸识别系统—系统特点
人脸具有唯一性和不易被复制的良好特性,为门禁的身份鉴别提供了必要的前提,有如下特点 :
非强制性
无需用户专门配合,几乎可以在无 感知的状态下就可获取人脸图像
并发性
实际应用时,可以进行多个人脸的 分拣、判断及识别
非接触性
用户不需要和设备直接接触就能获 取人脸图像
视觉特性
符合人们的认知习惯,有“以貌识 人” 的视觉特性
第二章
? 市场分析 ? 系统架构 ? 系统适用场景 ? 系统主要技术指标 ? 系统功能
第三章
? 产品技术指标 ? 系统配置 ? 工程施工方案 ? 常见问题 ? 异常状况处理
人脸识别系统--工作原理
工作原理
人脸识别门禁工作原理 先进行人员 图像采集 ,从视频流中或图像中检测人脸和 定位人脸 ,并对图像进行噪 声过滤等 预处理 ,然后完成人脸 特征提取 ,输出识别的人脸特征点结果跟门禁系统 中的人脸资料库比对,符合则认证成功,允许通行
人脸识别系统—主流算法
主流算法
特征点算法, 是当前人脸识别门禁主流算法之一,表征特征利用人脸图像的灰度信息,通 过一些算法提取全局或局部特征(通常提取约 100个特征点) 即根据输入的人脸图像,自动定位出面部关键特征点,如眼睛、鼻尖、嘴角点、眉毛以及 人脸各部件轮廓点等,如下图所示
人脸识别系统—系统主要技术指标
1
98
2
10000
3
1
4
0.1
人脸识别率
人脸注册数量
识别响应时间
环境照度适应
核心技术指标之一,通常 核心技术指标之一,通常 核心技术指标之一,通常 核心技术指标之一,要求
要求高于98%以上
要求10000以上

人脸识别技术介绍课件 PPT

人脸识别技术介绍课件 PPT

人像验证 输入两张照片,确定它们是否来自于 持证人身份核实、电子政务、电子商务、移动设
Verification 同一个人。
备访问控制等。
-15-
1 : 1 的验证过程
-16-
1 : N 的辨识过程(N : N)
-17-
人脸识别应用场景
根据对公安现有的业务现状及系统分析,我们可以归纳为两类应用: 静态和动态两种应用模式。其中某些管理工作可以两种模式共同应用。
选择一张经人像识别系统比对后的相片打印在成绩单上。
-23-
监管
数据采集及核查:公安监管部门在采集人员身份信息时,只有身份证号等字符信息确定唯 一身份,缺乏相片比对等辅助手段,常遇到被监管人员不报或谎报信息、送押单位核实难等问 题,造成了人员信息不完整不真实、数据复用效果不佳,且容易引起公民身份被冒用的上访事 件。现有人工核查手段单一繁琐,被监管人员存疑数据量大,导致了监所核查工作难度大、效 率低。建议开发接口,使人像比对系统增加人口库信息,并与监所业务系统对接,以便较准确 完整地采集和核查信息。
深挖犯罪:隐瞒个人真实信息的被监管人员往往存在劣迹或在逃信息,是监所开展深挖犯 罪工作的重要打击对象。建议通过与在逃人员库进行相片信息比对碰撞,可有效加强深挖犯罪 工作。
安全管理:在监所日常管理中,可增加门禁管理、外来人员管理等系统的人像比对功能, 把好出入口关。
-24-
出入口(监狱/劳教/看守所)
人脸识别技术介绍
目录
第一部分 第二部分 第三部分
人脸识别原理 人脸识别的应用场景 人脸识别算法
-1-
生物识别技术
生物特征
生理特征 what you have?
-人像 -DNA -虹膜 -指纹 “与生俱来”
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2021/3/7
9
人脸检测与人脸识别的评价标准
定义1:检测(Detection)指对人脸图像进行检测和定位 的过程。
定义2:拒检(Detection Rejection)指不能正常检测到人 脸或人脸不能定位以及人脸检测失败。
定义3:拒检率DRR(Detection Rejection Rate)指被拒检的 人脸图像占统计总数的比例,用百分比表示。
电子商务 信用卡 准考证 身份证
2021/3/7
15
2021/3/7
12
预处理 归一化 直方图均衡 Gamma变换
特征选择 PCA(特征脸)
小波变换
Boosting 训练器
16*16人脸图像
Boosting训练器内部结构
训练集特征向量输入(1) --> 直方图计算(2) --> 选择准确率最高的一 维作为弱学习机(3) --> 根据公式计算相应的权重,调整样本分布(4)
人脸识别是人体生物认证技术的一种,首先我们 谈谈人体生物认证技术
⑴人体的生理特征主要包括人脸、指纹、掌纹、掌 形、虹膜、视网膜、静脉、DNA、颅骨等,这些 特征是与生俱来的,是先天形成的;
2021/3/7
4
⑵而行为特征包括声纹、签名、步态、耳形、按 键节奏、身体气味等,这些特征是由后天的生活 环境和生活习惯决定的。
国内的研究工作主要是集中在三大类方法的研究:
①基于几何特征的人脸正面自动识别方法。
②基于代数特征的人脸正面自动识别方法。
③基于连接机制的人脸正面自动识别方法。
2021/3/7
7
么么么么方面
Sds绝对是假的
人脸识别的关键问题
1.人脸面部形态(面型、眼睛、鼻子) 2.人脸识别中的视觉特征
(早期MARR理论框架3个层次计算理论、算法、 实现机制;现多层次) 3.人脸识别中的光照问题 4.人脸识别中的姿态问题
10
自动人脸识别系统
自动人脸识别系统
数据采集 子系统
人脸检测 子系统
人脸识别 子系统
识别结果: He is …!
所谓自动人脸识别系统,是指不需要人为干预,能够自动 获取人脸图像并且辨别出其身份的系统
一个自动人脸识别系统至少要包含三个部分,即数据采集
子系统、人脸检测子系统和人脸识别子系统
“人脸识别”有时是指整个自动人脸识别系统所做的工作,有时是指
定义4:比对(Matching)指以人脸特征与另一人脸特征比 较的过程。
定义5:匹配相似度(Similarity)人脸特征比对的输出结果, 代表参与比对的两个人脸特征的相似程度。用0到1之间的 小数表示,该数字愈大表示比对的人脸特征相似程度愈大, 该数字愈小表示参与比对的人脸特征相似程度愈小。
2021/3/7
--> 转向(3)直到到达规定的循环次数 --> 输出加权组合后的分类器
2021/3/7
13
图像预处理
基于 网络 级联 的面 部表 情识 别子 系统
SOM MLP
基于 PCA 和最 近距 离分 类器 级联 的表 情识 别子 系统
PCA
最近 距离 分类

基于 FLD 与最 大相 关分 类器 级联 的表 情识 别子 系统
这些生物特征本身固有的特点决定了其在生物认 证中所起的作用是不同的。
2021/3/7
5
生物特征识别:
人脸
脸部热量图
指纹
手形
手部血管分布
虹膜
2021/3/7
视网膜
签名
语音
6
人脸识别技术在国内的研究现状
国内关于人脸自动识别的研究始于二十世纪80年代,主要 的研究单位有中科院自动化所计算所, 清华大学,南京理 工大学,哈尔滨工业大学,复旦大学,北京科技大学等, 并都取得了一定的成果。
人脸识别子系统所做的工作
2021/3/7
11
人脸检测与人脸识别的研究内容
(1)人脸检测(Face Detection)
人脸检测(Face Detection)是指在输入图像中确定 所有人脸(如果存在)的位置、大小、位姿的过 程。人脸检测是自动人脸识别系统中的一个关键 环节。
பைடு நூலகம்(2)人脸识别
人脸识别细分为两类,一类是回答我是谁的问题, 即辨认(Identification),另一类是回答这个人是 我吗?即确认(Verification)。显然,用于Identification 模式的识别系统对算法的运算速度的要求要高于 Verification模式的识别系统。
自动人脸识别技术
Automatic face Recognition Technology
2021/3/7
控制工程 XX XXXXXX
1
演示内容
一、人脸识别的意义与感性认识 二、人脸识别技术在国内的研究现状 三、人脸识别的关键技术 四、人脸检测与人脸识别的评价标准 五、自动人脸识别系统 六、人脸识别应用
FLD
最大 相关 分类

基于 几何 关系 与最 近邻 距离 分类 器级 联的 识别 子系

几何 关系
最近 邻距 离分 类器
2021/3/7
SVM信息融合中心
识别结果 14
人脸识别的应用
人脸识别系统在金融、证券、社保、公安、军队及其他需要安全认证 的行业和部门有着广泛的应用
典型应用
罪犯调查 访问控制 人员考勤 门票 驾驶执照
2021/3/7
2
人脸识别的意义
Bill Gates: 以人类生物特征进行身份验证的生物识别技术,在今后数年 内将成为IT产业最为重要的技术革命
2021/3/7
3
人脸识别的感性认识
人脸识别是一个活跃的研究领域,是人类视觉最 杰出的能力之一。虽然人脸识别的准确性要低于 虹膜、指纹的识别,但由于它的无侵害性和对用 户最自然、最直观的方式,使人脸识别成为最容 易被接受的生物特征识别方式。
相关文档
最新文档