江苏2015高三上学期数学周测试题(1)
江苏省12市2015届高三上学期期末考试数学试题分类汇编立体几何

江苏省12市2015届高三上学期期末考试数学试题分类汇编立体几何一、填空题1、(泰州市2015届高三上期末)若αβ、是两个相交平面,则在下列命题中,真命题的序号为 ▲ .(写出所有真命题的序号) ①若直线m α⊥,则在平面β内,一定不存在与直线m 平行的直线. ②若直线m α⊥,则在平面β内,一定存在无数条直线与直线m 垂直. ③若直线m α⊂,则在平面β内,不一定存在与直线m 垂直的直线. ④若直线m α⊂,则在平面β内,一定存在与直线m 垂直的直线.2、(无锡市2015届高三上期末)三棱锥P ABC -中,,D E 分别为,PB PC 的中点,记三棱锥D ABE -的体积为1V ,P ABC -的体积为2V ,则12V V =二、解答题1、(常州市2015届高三)如图,四棱锥P ABCD -的底面ABCD 是平行四边形,平面PBD⊥平面 ABCD , PB =PD ,PA ⊥PC ,CD ⊥PC ,O ,M 分别是BD ,PC的中点,连结OM .求证: (1)OM ∥平面PAD ; (2)OM ⊥平面PCD .D(第16题)2、(连云港、徐州、淮安、宿迁四市2015届高三)如图,在三棱锥P ABC -中,已知平面PBC ⊥平面ABC .(1) 若AB ⊥BC ,且CP ⊥PB ,求证:CP ⊥PA ;(2) 若过点A 作直线l ⊥平面ABC ,求证:l //平面PBC .3、(南京市、盐城市2015届高三)如图,在正方体1111ABCD A BC D -中,,O E 分别为1,B D AB 的中点. (1)求证://OE 平面11BCC B ; (2)求证:平面1B DC ⊥平面1B DE .4、(南通市2015届高三)如图,在直三棱柱111ABC A B C -中,1,4,AC BC CC M ⊥=是棱1CC 上的一点.()1求证:BC AM ⊥;()2若N 是AB 的中点,且CN ∥平面1AB M .A PB (第16题)BACDB 1A 1 C 1 D 1 E第16题图O5、(南通市2015届高三)如图,在四棱锥A-BCDE 中,底面BCDE 为平行四边形,平面ABE ⊥平面BCDE ,AB =AE ,DB =DE ,∠BAE =∠BDE =90º。
2015年高考理科数学(新课标全国卷1)(含解析)

数学试卷 第1页(共21页)数学试卷 第2页(共21页)数学试卷 第3页(共21页)绝密★启用前2015年普通高等学校招生全国统一考试(全国新课标卷1)数学(理科)使用地区:河南、山西、河北、江西本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分150分,考试时间120分钟.第Ⅰ卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.设复数z 满足1+z1z-=i ,则|z|= ( )A .1BCD .2 2.sin 20cos10cos160sin10︒︒︒︒-=( )A.BC .12-D .123.设命题:p n ∃∈Ν,22n n >,则⌝p 为( )A .2nn n ∀∈N 2,> B .2nn n ∃∈N 2,≤ C .2n n n ∀∈N 2,≤D .=2n n n ∃∈N 2,4.投篮测试中,每人投3次,至少投中2次才能通过测试.已知某同学每次投篮投中的概率为0.6,且各次投篮是否投中相互独立,则该同学通过测试的概率为( )A .0.648B .0.432C .0.36D .0.3125.已知00()M x y ,是双曲线2212 xC y -=:上的一点,F 1,F 2是C 的两个焦点.若120MF MF <,则0y 的取值范围是( )A.( B.( C.( D.( 6. 《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺.问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有( )A .14斛B .22斛C .36斛D .66斛 7.设D 为ABC △所在平面内一点,=3BC CD ,则( )A .1433AD AB AC =-+B .1433AD AB AC =-C .4133AD AB AC =+D .4133AD AB AC =-8.函数=cos(+)x f x ωϕ()的部分图象如图所示,则f x ()的单调递减区间为( )A .13π,π+44k k k -∈Z (),B .132π,2π+44k k k -∈Z (),C .13,+44k k k -∈Z (),D .132,2+44k k k -∈Z (),9.执行如图所示的程序框图,如果输入的0.01t =,则输出 的n =( )A .5B .6C .7D .810.25()x x y ++的展开式中,52x y 的系数为( )A .10B .20C .30D .6011.圆柱被一个平面截去一部分后与半球(半径为r )组成一个几何体,该几何体三视图中的正视图和俯视图如图所示.若该几何体的表面积为16+20π,则r =( )A .1B .2C .4D .812.设函数()()21x f x e x ax a =--+,其中a<1,若存在唯一的整数0x 使得0()0f x <,则a 的取值范围是( )A .3[)21,e -B .43[,)23e -C .3[,)234e D .3[,)21e--------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------姓名________________ 准考证号_____________数学试卷 第4页(共21页)数学试卷 第5页(共21页) 数学试卷 第6页(共21页)第Ⅱ卷(非选择题 共90分)本卷包括必考题和选考题两部分.第13~21题为必考题,每个试题考生都必须作答.第22~24题为选考题,考生根据要求作答.二、填空题:本大题共4小题,每小题5分,共20分.把答案填在题中的横线上. 13.若函数()=(ln f x x x 为偶函数,则a =________.14.一个圆经过椭圆22=1164x y +的三个顶点,且圆心在x 轴的正半轴上,则该圆的标准方程为________.15.若x ,y 满足约束条件10,0,40,x x y x y -⎧⎪-⎨⎪+-⎩≥≤≤则y x 的最大值为________.16.在平面四边形ABCD 中,==75=A B C ∠∠∠︒,=2BC ,则AB 的取值范围是________.三、解答题:本大题共6小题,共70分.解答应写出必要的文字说明、证明过程或演算步骤. 17.(本小题满分12分)n S 为数列{}n a 的前n 项和.已知0n a >,2n n n +2=4+3a a S .(Ⅰ)求{}n a 的通项公式; (Ⅱ)设n n n+11=b a a ,求数列{}n b 的前n 项和.18.(本小题满分12分)如图,四边形ABCD 为菱形,∠ABC =120°,E ,F 是平面ABCD 同一侧的两点,BE ⊥平面ABCD ,DF ⊥平面ABCD ,BE =2DF ,AE ⊥EC . (Ⅰ)证明:平面AEC ⊥平面AFC ; (Ⅱ)求直线AE 与直线CF 所成角的余弦值.19.(本小题满分12分)某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x (单位:千元)对年销售量y (单位:t )和年利润z(单位:千元)的影响,对近8年的年宣传费i x 和年销售量i y (i =1,2,…,8)数据作了初步处理,得到下面的散点图及一些统计量的值.表中i ωω=8i i=1ω∑(Ⅰ)根据散点图判断,y a bx =+与y c =+y 关于年宣传费x 的回归方程类型?(给出判断即可,不必说明理由)(Ⅱ)根据(Ⅰ)的判断结果及表中数据,建立y 关于x 的回归方程;(Ⅲ)已知这种产品的年利率z 与x ,y 的关系为z=0.2y -x .根据(Ⅱ)的结果回答下列问题:(i )年宣传费x =49时,年销售量及年利润的预报值是多少? (ii )年宣传费x 为何值时,年利润的预报值最大?附:对于一组数据11()u v ,,22(,)u v ,…,(,)n n u v ,其回归直线v u αβ=+的斜率和截距的最小二乘估计分别为121()(),()nii i nii uu v v v u uu βαβ==--==--∑∑.20.(本小题满分12分)在直角坐标系xOy 中,曲线24C y x :=与直线)0(l y kx a a >:=+交于M ,N 两点.(Ⅰ)当k =0时,分别求C 在点M 和N 处的切线方程;(Ⅱ)y 轴上是否存在点P ,使得当k 变动时,总有∠OPM =∠OPN ?说明理由.21.(本小题满分12分)已知函数31()4f x x ax =++,()ln g x x =-. (Ⅰ)当a 为何值时,x 轴为曲线()y f x =的切线;(Ⅱ)用min{,}m n 表示m ,n 中的最小值,设函数()min{(),()}h x f x g x =(0)x >,讨论()h x 零点的个数.请考生在第22~24三题中任选一题作答,如果多做,则按所做的第一题记分.22.(本小题满分10分)选修4—1:几何证明选讲如图,AB 是O 的直径,AC 是O 的切线,BC 交O 于点E . (Ⅰ)若D 为AC 的中点,证明:DE 是O 的切线; (Ⅱ)若OA ,求∠ACB 的大小.23.(本小题满分10分)选修4—4:坐标系与参数方程在直角坐标系xOy 中,直线1C :x =-2,圆2C :(x -1)2+(y -2)2=1,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系. (Ⅰ)求1C ,2C 的极坐标方程; (Ⅱ)若直线3C 的极坐标方程为()π4θρ=∈R ,设2C 与3C 的交点为M ,N ,求2C MN △的面积.24.(本小题满分10分)选修4—5:不等式选讲已知函数12f x =|||x |x a -+-(),0a >. (Ⅰ)当=1a 时,求不等式1f x >()的解集;(Ⅱ)若f x ()的图象与x 轴围成的三角形面积大于6,求a 的取值范围.1sin20cos10cos20sin10sin302+==,故选10<数学试卷第7页(共21页)数学试卷第8页(共21页)数学试卷第9页(共21页)数学试卷 第10页(共21页)数学试卷 第11页(共21页)数学试卷 第12页(共21页)2exy,AB 的取值范围是(62,62)-+.11111111=235572123n b n n ⎡⎤⎛⎫⎛⎫⎛⎫++-+-++- ⎪ ⎪ ⎪⎢⎥++⎝⎭⎝⎭⎝⎭⎣⎦=AC FG G=,⊥平面AFC⊂平面AEC3数学试卷第13页(共21页)数学试卷第14页(共21页)数学试卷第15页(共21页)数学试卷 第16页(共21页)数学试卷 第17页(共21页)数学试卷 第18页(共21页)60(Ⅰ)连接AE 90, 90,90,∴DE 是圆1AE =,CE BE ,212x -,解得∴60ACB ∠=.90,可得1sin45=2.数学试卷 第19页(共21页) 数学试卷 第20页(共21页) 数学试卷 第21页(共21页)(Ⅱ)化简函数()f x 的解析式,求得它的图像与x 轴围成的三角形的三个顶点的坐标,从而求得()f x 的图像与x 轴围成的三角形面积;再根据()f x 的图像与x 轴围成的三角形面积大于6,从而求得a 的取值范围.【考点】含绝对值不等式解法,分段函数,一元二次不等式解法.。
江苏省泗洪中学2015届高三上学期期中测试数学(理)试题 Word版含答案

江苏省泗洪中学高三数学2015届上学期期中测试题(理科)试卷2014-10-23命题:曹树全 校对:刁俊东一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置.......上.1.已知集合A = {-1,0,1},B = {0,1,2,3},则A ∩B = ▲ .2.写出命题:“若x =3,则x 2-2x -3=0”的否命题: ▲ . 3.已知集合{}11,cos ,,1,2A B θ⎧⎫==⎨⎬⎩⎭若,A B =则锐角θ= ▲4.已知命题p :x ∃∈R ,使sin x =;命题q :x ∀∈R ,都有210x x ++>.给出下列命题:(1)命题“p q ∧”是真命题;(2)命题“p q ∧⌝”是假命题;(3)命题“p q ⌝∨”是真命题;(4)命题“p q ⌝∨⌝”是假命题.其中正确的是 ▲ .(填序号).5.已知定义域为R 的函数121()2x x f x a+-+=+是奇函数,则a = ▲ .6.在曲线331y x x =-+的所有切线中,斜率最小的切线的方程为 ▲ .7.将x y 2sin =的图像向右平移ϕ单位(0>ϕ),使得平移后的图像过点),23,3(π则ϕ的最小值为 ▲ .8.已知定义在R 上的奇函数()f x 在区间(0,)+∞上单调递增,若1()02f =,ABC ∆的内角A 满足(cos )0f A <,则A 的取值范围是 ▲ . 9.已知函数()sin 0,0,2y A x A πωϕωϕ⎛⎫=+>><⎪⎝⎭的图象上有一个最高点的坐标为(,由这个最高点到其右侧相邻最低点间的图像与x 轴交于点()6,0,则此解析式为▲ .10.定义在R 上的奇函数()f x 对任意x ∈R 都有()(4)f x f x =+,当(20)x ∈-,时,()2x f x =,则(2015)(2014)f f -= ▲ .11.已知函数()f x = 22,0,3,0x ax x bx x x ⎧+≥⎪⎨-<⎪⎩为奇函数,则不等式()f x 4<的解集为 ▲ .12.圆心在曲线2(0)y x x=>上,且与直线210x y ++=相切的面积最小的圆的方程为▲ .13.函数()321122132f x ax ax ax a =+-++的图象经过四个象限的充要条件是 ▲ . 14.设a 、b 均为大于1的自然数,函数x a ab x f sin )(+=,b x x g +=cos )(,若存在实数k ,使得)()(k g k f =,则=+b a ▲ . 二、解答题:本大题共6小题, 共计90 分. 请在答题卡指定区域内........作答, 解答时应写出文字说明、证明过程或演算步骤.15.(本小题满分14分)已知()sin cos f x x a x =+,(1)若a =()f x 的最大值及对应的x 的值. (2)若04f π⎛⎫= ⎪⎝⎭, ()1(0)5f x x π=<<,求tan x 的值.16. (本小题满分14 分)已知函数bx ax x x f --=23)( (1)若1=a ,1=b ,求)(x f 的单调减区间 (2)若)(x f 在1=x 处有极值,求ab 的最大值.17. (本小题满分14 分)定义:在R 上的函数f (x )满足:若任意12,x x ∈R ,都有f (221x x +)≤)]()([2121x f x f +,则称函数f(x )是R 上的凹函数. 已知二次函数2()f x ax x =+(a ∈R, a ≠0) .(1)求证:当a >0时,函数f (X )是凹函数;(2)如果x ∈[0,1]时,()1f x ≤,试求实数a 的范围.18. (本小题满分16 分)我国西部某省4A 级风景区内住着一个少数民族村,该村投资了800万元修复和加强民俗文化基础设施,据调查,修复好村民俗文化基础设施后,任何一个月内(每月按30天计算)每天的旅游人数()x f 与第x 天近似地满足8()f x x x=+(千人),且参观民俗文化村的游客人均消费()g x 近似地满足()22143--=x x g (元).(1)求该村的第x 天的旅游收入()p x (单位千元,1≤x ≤30,*x N ∈)的函数关系; (2)若以最低日收入的20%作为每一天纯收入的计量依据,并以纯收入的5%的税率收回投资成本,试问该村在两年内能否收回全部投资成本?19. (本小题满分16 分)设二次函数2()(,,)f x ax bx c a b c R =++∈满足下列条件: ①当x R ∈时, ()f x 的最小值为0,且(1)(1)f x f x -=--恒成立; ②当(0,5)x ∈时,2()4|1|2x f x x ≤≤-+恒成立. (1)求(1)f 的值; (2)求()f x 的解析式;(3)求最大的实数(1)m m >,使得存在实数t ,只要当[1,]x m ∈时,就有()2f x t x +≤成立20.(本小题满分16分)已知函数(),()ln xf x eg x x ==,(1)求证:()1f x x ≥+ ;(2)设01x >,求证:存在唯一的0x 使得()g x 图象在点A (00,()x g x )处的切线l 与()y f x =图象也相切;(3)求证:对任意给定的正数a ,总存在正数x ,使得()1|1|f x a x--<成立.第Ⅱ卷(附加题 共40分)21.【选做题】本题包括A 、B 、C 、D 四小题,请选定其中两题作答.若多做,则按作答的前两题评分.B .(本小题满分10分)选修4—2:矩阵与变换若二阶矩阵M 满足127103446⎡⎤⎡⎤=⎢⎥⎢⎥⎣⎦⎣⎦M . (1)求二阶矩阵M ;(2)把矩阵M 所对应的变换作用在曲线223861x xy y ++=上,求所得曲线的方程.C .(本小题满分10分)选修4—4:坐标系与参数方程在极坐标系中,曲线E :2sin 2cos ρθθ=,过点(5)A α,(α为锐角且3tan 4α=)作平行于4πθ=()ρ∈R 的直线l ,且l 与曲线E 分别交于B ,C 两点.(1)以极点为原点,极轴为x 轴的正半轴,取与极坐标相同单位长度,建立平面直角坐标系,写出曲线E 与直线l 的普通方程;(2)求BC 的长.【必做题】第22题,第23题,每题10分,共计20分. 22.(本小题满分10分)某城市最近出台一项机动车驾照考试的规定:每位考试者一年之内最多有4次参加考试的机会,一旦某次考试通过,便可领取驾照,不再参加以后的考试,否则就一直考到第4次为止.李明决定参加驾照考试,设他每次参加考试通过的概率依次为0.6,0.7,0.8,0.9.(1)求在一年内李明参加驾照考试次数X 的分布列和数学期望; (2)求李明在一年内领到驾照的概率.23.(本小题满分10分)已知点(1,0)A -,(1,0)F ,动点P 满足2||AP AF FP ⋅=. (1)求动点P 的轨迹C 的方程;(2)在直线l :22y x =+上取一点Q ,过点Q 作轨迹C 的两条切线,切点分别为,M N .问:是否存在点Q ,使得直线MN //l ?若存在,求出点Q 的坐标;若不存在,请说明理由. 一、填空题:(每题5分,共计70分)1.已知集合A = {-1,0,1},B = {0,1,2,3},则A ∩B = {0,1} .2.写出命题:“若x =3,则x 2-2x -3=0”的否命题: ▲ .“若3x ≠则2230x x --≠” 3.已知集合{}11,cos ,,1,2A B θ⎧⎫==⎨⎬⎩⎭若,A B =则锐角θ= ▲ 4.已知命题p :x ∃∈R,使sin x =;命题q :x ∀∈R ,都有210x x ++>.给出下列命题:(1)命题“p q ∧”是真命题;(2)命题“p q ∧⌝”是假命题;(3)命题“p q ⌝∨”是真命题;(4)命题“p q ⌝∨⌝”是假命题.其中正确的是 (2)(3). (填序号).5.已知定义域为R 的函数121()2x x f x a+-+=+是奇函数,则a = 2 .6.在曲线331y x x =-+的所有切线中,斜率最小的切线的方程为________.y=-3x+17.将x y 2sin =的图像向右平移ϕ单位(0>ϕ),使得平移后的图像过点),23,3(π则ϕ的最小值为 ▲ .6π 8.已知定义在R 上的奇函数()f x 在区间(0,)+∞上单调递增,若1()02f =,ABC ∆的内角A 满足(cos )0f A <,则A 的取值范围是 2(,)(,)323ππππ⋃ 9.已知函数()sin 0,0,2y A x A πωϕωϕ⎛⎫=+>><⎪⎝⎭的图象上有一个最高点的坐标为3π(,由这个最高点到其右侧相邻最低点间的图像与x 轴交于点()6,0,则此解析式为▲10.定义在R 上的奇函数()f x 对任意x ∈R 都有()(4)f x f x =+,当(20)x ∈-,时,()2x f x =,则(2015)(2014)f f -= .11、已知函数()f x = 22,0,3,0x ax x bx x x ⎧+≥⎪⎨-<⎪⎩为奇函数,则不等式()f x 4<的解集为 ▲ -4∞(,)12.圆心在曲线2(0)y x x =>上,且与直线210x y ++=相切的面积最小的圆的方程为 .22(1)(2)5x y -+-= 13.函数()321122132f x ax ax ax a =+-++的图象经过四个象限的充要条件是 ▲ 14.设a 、b 均为大于1的自然数,函数x a ab x f sin )(+=,b x x g +=cos )(,若存在实数k ,使得)()(k g k f =,则=+b a 4 . 二、填空题:本大题共6小题,共计70分.15、(本小题满分14分)已知()sin cos f x x a x =+, (1)若a =()f x 的最大值及对应的x 的值. (2)若04f π⎛⎫=⎪⎝⎭, ()1(0)5f x x π=<<,求tanx 的值. 15、解:(1)()sin 2sin()3f x x x x π==+………………………………(2分)当sin()12()332x x k k z ππππ+=⇒+=+∈2()6x k k z ππ⇒=+∈时f(x)有最大值2; ……………………………………………(6分)(2) 014f a π⎛⎫=⇒=- ⎪⎝⎭………………………………………………………………(8分)1sin cos 5x x -=21(in cos )25s x x ∴-=12sin cos 25x x ∴= 2112(cos )cos 25cos 5cos 120525x x x x ∴+=⇒+-=3cos 54sin 5x x ⎧=⎪⎪∴⎨⎪=⎪⎩或4cos 53sin 5x x ⎧=-⎪⎪⎨⎪=-⎪⎩63516a -<<-(0,)x π∈3cos 54sin 5x x ⎧=⎪⎪∴⎨⎪=⎪⎩∴tanx=43…………………………………………………(14分)16.已知函数bx ax x x f --=23)((1)若1=a ,1=b ,求)(x f 的单调减区间 (2)若)(x f 在1=x 处有极值,求ab 的最大值.17.定义:在R 上的函数f (x )满足:若任意12,x x ∈R ,都有f (221x x +)≤)]()([2121x f x f +,则称函数f(x )是R 上的凹函数. 已知二次函数f (X )=a X 2+X (a ∈R, a ≠0) . (1)求证:当a >0时,函数f (X )是凹函数;(2)如果x ∈[0,1]时,|f (x)|≤1,试求实数a 的范围. 解:(1)对任意X a R x ,,21∈>0,∴[f (X 1)+ f (X 2)]-2 f (2)222212121-+++=+x ax x ax x x [a (2)221221x x x x +++)]=a X 2212122212221)(21)2(21x x a x x x x a ax -=++-+≥0.∴f ()221x x +≤21[f )()(21x f x +]. ∴函数f (X )是凹函数. …………………………………6分(2)由| f (X )|≤1⇔-1≤f (X ) ≤1⇔-1≤2ax +X ≤1.(*)当X =0时,a ∈R;当X ∈(0,1]时,(*)即⎪⎩⎪⎨⎧+-≤--≥,1,122恒成立x ax x ax即⎪⎪⎩⎪⎪⎨⎧--=-≤++-=--≥.41)211(1141)211(112222恒成立x x x a x x x a …………………………………10分∵X ∈(0,1],∴x1≥1.∴当x 1=1时,-(x 1+21)2-41取得最大值是-2;当x 1=1时,(x 1-21)2-41取得最小值是0. ∴-2 ≤a ≤0 ,结合a ≠0,得-2≤a <0.综上,a 的范围是[-2,0). ………………………………14分18. (本小题满分16分)我国西部某省4A 级风景区内住着一个少数民族村,该村投资了800万元修复和加强民俗文化基础设施,据调查,修复好村民俗文化基础设施后,任何一个月内(每月按30天计算)每天的旅游人数()x f 与第x 天近似地满足()xx f 88+=(千人),且参观民俗文化村的游客人均消费()x g 近似地满足()22143--=x x g (元).(3)求该村的第x 天的旅游收入()x p (单位千元,1≤x ≤30,*∈N x )的函数关系; (4)若以最低日收入的20%作为每一天纯收入的计量依据,并以纯收入的5%的税率收回投资成本,试问该村在两年内能否收回全部投资成本? 解:⑴依据题意,有p (x )=f (x )·g (x )=|)22|143()88(--⋅+x x(1≤x ≤30,x ∈N*) =⎪⎪⎩⎪⎪⎨⎧∈≤<++-∈≤≤++*),3022.(131213208*),221(,9769688N x x x x N x x xx ………4分(2)1°当122x ≤≤,*x N ∈时,968()89769761152p x x x =++≥=(当且仅当11x =时,等号成立) , 因此,p (x )min =p (11)=1152(千元). ……………………………8分2°当22<x ≤30,x ∈N*时,p (x )=131213208++-x x . 求导可得p ′(x ) <0,所以p (x )=131213208++-xx 在(22,30]上单调递减, 于是p (x )min =p (30)=1116(千元).又1152>1116,所以日最低收入为1116千元. ……………………………12分 该村两年可收回的投资资金为1116×20%×5%×30×12×2=8035.2(千元)=803.52(万元),因803.52万元>800万元,所以,该村两年内能收回全部投资资金. …………14分19.设二次函数2()(,,)f x ax bx c a b c R =++∈满足下列条件:①当x R ∈时, ()f x 的最小值为0,且(1)(1)f x f x -=--恒成立; ②当(0,5)x ∈时,2()4|1|2x f x x ≤≤-+恒成立. (I)求(1)f 的值; (Ⅱ)求()f x 的解析式;(Ⅲ)求最大的实数m(m>1),使得存在实数t,只要当[1,]x m ∈时,就有()2f x t x +≤成立20.已知函数(),()ln xf x eg x x ==,(1)求证:()1f x x ≥+ ;(2)设01x >,求证:存在唯一的0x 使得g(x)图象在点A(00,()x g x )处的切线l 与y=f(x)图象也相切;(3)求证:对任意给定的正数a,总存在正数x,使得()1|1|f x a x--<成立. 20、(1)令()1,xF x e x =--x R ∈,()'10x F x e =-=得0x =, ∴当0x >时()()'0,;F x F x >当0x <时()()'0,;F x F x <()()min 00F x F ∴==,由最小值定义得()()min 0F x F x ≥=即1xe x ≥+…………………………………(4分) (2)()g x 在0x x =处切线方程为001ln 1y x x x =+- ①设直线l 与x y e =图像相切于点()11,x x e ,则:l ()1111x x y e x e x =+- ②……(6分) ③ 由①②得 ④0001ln 01x x x +∴-=- ⑤ 下证0x 在()1,+∞上存在且唯一.令()()1ln 11x G x x x x +=->-,()()221'01x G x x x +=>- ()G x ∴在()1,+∞上.又()()222230,0,11e G e G e e e --=<=>--()G x 图像连续,∴存在唯一0x ∈ ()1,+∞使⑤式成立,从而由③④可确立1x .故得证……………………………………………………(10分)(3) 由(1)知()110f x x-->即证当0a >时不等式1x e x ax --<即10x e ax x ---<在()0,+∞上有解.令()1x H x e ax x =---,即证()min 0H x <………………………………………(12分)由()'10x H x e a =--=得()ln 10x a =+>.当()0ln 1x a <<+时,()()'0,H x H x <,当()ln 1x a >+时,()()'0,H x H x >. ()()()min ln 1H x H a ∴=+()()1ln 1ln 11a a a a =+-+-+-.令()ln 1V x x x x =--,其中11x a =+>则()()'11ln ln 0V x x x =-+=-<,()V x ∴()()10V x V ∴<=.综上得证…………………………………………………………………………………(16分)第Ⅱ卷(附加题 共40分)21. B .(1)1211⎡⎤⎢⎥⎣⎦(2)2221x y +=; C .曲线E :22y x =,直线l :1y x =-;22.(1)分布列:()110011ln 1x x e x x e x ⎧=⎪⎨⎪=-⎩1.544EX =. (2)0.9976.23.(1)设(,)P x y ,则(1,)AP x y =+,(1,)FP x y =-,(2,0)AF =, 由2||AP AF FP ⋅=,得2(1)x +=24y x =. 故动点P 的轨迹C 的方程24y x =. …………………………………5分(2)直线l 方程为2(1)y x =+,设00(,)Q x y ,11(,)M x y ,22(,)N x y . 过点M 的切线方程设为11()x x m y y -=-,代入24y x =,得2211440y my my y -+-=,由2211161640m my y ∆=-+=,得12y m =,所以过点M 的切线方程为112()y y x x =+,……7分同理过点N 的切线方程为222()y y x x =+.所以直线MN 的方程为002()y y x x =+,………9分又MN //l ,所以022y =,得01y =,而002(1)y x =+, 故点Q 的坐标为1(,1)2-. …………………………………10分 .。
江苏省泰州市第二中学2015届度高三上学期第一次限时作业数学(文)试题 Word版无答案

泰州二中2014-2015学年度第一学期第一次限时作业高三数学(文科)一、填空题:(共14小题,每小题5分,计70分.请把答案填写在答题纸相应位置上)1.已知全集,集合{}=12A ,,{}=23B ,,则()U C A B ⋃= ▲ . 2. 设i 为虚数单位,复数ii-12等于____▲_______ 3.已知函数()4(0,0)af x x x a x=+>>在3x =时取得最小值,则a = ▲ . 4.“22a b >”是22log log a b >”的 ▲ 条件.5. 抛物线241x y =的准线方程是 ▲ .{}1,2,3,4U =6.在等比数列{}a 中,若,a a 是方程2420x x ++=的两根,则a 的值是___▲____.8. 如果实数,x y 满足不等式组1,10,220,x x y x y ≥⎧⎪-+≤⎨⎪--≤⎩则221x y +-的最小值是▲ .9.函数222sin 3cos 4y x x =+-的最小正周期为 ▲ .10.设m n 、是两条不同的直线,αβ、是两个不同的平面,则下列四个命题:①若,,m n m α⊥⊥则n α∥; ②若,,m βαβ⊥⊥则m α∥;③若βα⊥⊥m m ,,则α∥β;④若,,,m n m n αβ⊥⊥⊥则αβ⊥. 其中正确的命题序号是 ▲ .11. 已知函数f (x )=201,02(1),xx x x ⎧⎛⎫<⎪ ⎪⎨⎝⎭⎪-⎩≥,,若((2))()f f f k ->,则实数k 的取值范围为 ▲ . 12.下列说法中,正确的有 ▲ .(写出所有正确命题的序号).①若f '(x 0)=0,则x 0为f (x )的极值点;②在闭区间[a ,b ]上,极大值中最大的就是最大值; ③若f (x )的极大值为f (x 1),f (x )的极小值为f (x 2),则f (x 1)>f (x 2); ④有的函数有可能有两个最小值;⑤已知函数x e x f =)(,对于)(x f 定义域内的任意一个1x 都存在唯一个1)()(,212=x f x f x 使成立.13. 如图,PQ 是半径为1的圆A 的直径,△ABC 是边长为1的正三角形,则CQ BP ∙的最大值为 ▲ .14.设(,)P x y 为函数21(y x x =->图象上一动点,记353712x y x y z x y +-+-=+--,则当z 最小时,点P 的坐标为 ▲ .二、解答题:(本题共6小题,计90分.请在答题纸指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)15. (本题14分)如图,在直三棱柱111A B C ABC -中, AB ⊥BC ,E ,F 分别是1A B ,1AC 的中点. (1)求证:EF ∥平面ABC ;(2)求证:平面AEF ⊥平面11AA B B ;16.(本题14分)已知(3,cos())a x ω=-,(sin(b x ω=,其中0ω>,函数()f x a b =⋅的最小正周期为π.(1)求()f x 的单调递增区间;(2)在ABC ∆中,角A ,B ,C 的对边分别为a ,b ,c.且()2A f =, ①求角A 的大小.②求CB A T 222sin sin sin ++=的范围 17.(本题15分)某跳水运动员在一次跳水训练时的跳水曲线为如图所示的抛物线的一段,已知跳水板AB 长为2 m ,跳水板距水面CD 的高BC 为3 m ,CE =5 m ,CF =6 m ,为安全和空中姿态优美,训练时跳水曲线应在离起跳点h m(h ≥1)时达到距水面最大高度4 m ,规定:以CD 为横轴,CB 为纵轴建立直角坐标系.(1)当h =1时,求跳水曲线所在的抛物线方程;(2)若跳水运动员在区域EF 内入水时才能达到压水花的训练要求,求达到压水花的训练要求时h 的取值范围.18. (本题15分)在ABC △中,内角,,A B C 对边的边长分别是,,a b c .已知2,3c C π==.(1)若ABC △ABC △的形状,并说明理由; (2)若sin sin()2sin 2C B A A +-=,求ABC △的面积.19.(本题16分)已知数列{}n a 前n 项和为11,,,2n n n S a a S 首项为且,成等差数列.(1)求数列{}a 的通项公式;1b ++<(1)当0a >时,求函数()f x 的单调区间;(2)若函数()y f x =的图象在点(2(2))f ,处的切线的倾斜角为45︒,且函数21()()()2g x x nx mf x m n '=++∈R ,当且仅当在1x =处取得极值,其中()f x '为()f x 的导函数,求m 的取值范围;FB CEA 1A 1B1C。
2015届高三上学期期中考试数学试题(含答案解析)

2015届高三上学期期中考试数学试题(含答案解析) 一.选择(每题5分,共60分 ) 1.下列说法中,正确的是( ) A.任何一个集合必有两个子集; B.若,A B φ=则,A B 中至少有一个为φC.任何集合必有一个真子集;D.若S 为全集,且,AB S =则,A B S ==2.设集合U={1,2,3,4,5},A={1,3,5},B={2,3,5},则()U C A B 等于( )A .{1,2,4}B .{4}C .{3,5}D .∅3.已知命题p :lnx >0,命题q :ex >1则命题p 是命题q 的( )条件 A .充分不必要 B .必要不充分 C .充要 D .既不充分也不必要4.函数1)4(cos 22--=πx y 是A .最小正周期为π的奇函数B .最小正周期为π的偶函数C .最小正周期为2π的奇函数D .最小正周期为2π的偶函数5 )A .y 轴对称B .直线1=x 对称C .点(1,0)对称D .原点对称 6.已知定义在R 上的奇函数()f x 和偶函数()g x 满足()()2(0,x x f x g x a a a -+=-+>且1)a ≠,若(2)g a=,则(2)f =( )A.2D.2a7 )A.(,1]-∞B .C .D . [1,2) 8A .B. C. (1,2) D. (2,3)9.若02log <a )1,0(≠>a a 且,则函数()log (1)a f x x =+的图像大致是10.函数y =的图象可由函数y=sin2x 的图象经过平移而得到,这一平移过程可以是 ( )(A)(B) (C)(D)11.已知函数f(x)=2x +1(1≤x≤3),则 ( )A.f(x -1)=2x +2(0≤ x≤2)B.f(x -1)=-2x +1(2≤x≤4)C.f(x -1)=2x -2(0≤x≤2)D.f(x -1)=2x -1(2≤x≤4)12.定义新运算⊕:当a b ≥时,a b a ⊕=;当a b <时, 2a b b ⊕=,则函数()(1)(2)f x x x x =⊕-⊕, []2,2x ∈-的最大值等于( )A .-1B .1C .6D .12高三数学上学期期中测试题选择题答案:1---6________________ 7---12________________ 二.填空(每题6分,共36分)1314.设)(x f 是定义在R 上的偶函数,且)()2(x f x f -=+,当]2,0(∈x ,1)(2-=x x f 则=)7(f ____________A .48 B.24C. 8D.015.若函数52++=x mx y 在[2,)-+∞上是增函数,则m 的取值范围是____________. 16.函数1)(2-+=x x x f 的最小值是_________________。
2015年高考全国新课标1卷理科数学试题(含答案)

-共 13 页,当前页是第- 2 -页-
(7)设 D 为 ABC 所在平面内一点 =3 ,则
( A)
=
+
(B)
=
(C)
=
+
(D)
=
【解析】本题考查平面向量,画出图形,
1 1 1 4 AD AC CD AC BC AC ( AC AB) AB AC 3 3 3 3
y y 可以看做是与原点连线的斜率,因此如果 最大值,也就是求斜率的最大值,通过图形观察可知在(1,3) x x
处有最大值是 3,因此
x 的最大值是 3. y
(16)在平面四边形 ABCD 中,∠A=∠B=∠C=75°,BC=2,则 AB 的取值范围是
【解析】如下图所示,延长 BA,CD 交于点 E,则可知
1 1 1 1 1 Tn ( 2 3 5 5 7
(18)如图, ,四边形 ABCD 为菱形,∠ABC=120°,E,F 是平面 ABCD 同一侧的两点,BE⊥平 面 ABCD,DF⊥平面 ABCD,BE=2DF,AE⊥EC。 (1)证明:平面 AEC⊥平面 AFC (2)求直线 AE 与直线 CF 所成角的余弦值
(3)设命题 P: n N, n 2 > 2 n ,则 P 为 (A) n N, n 2 > 2 n (C) n N, n 2 ≤ 2 n (B) n N, n 2 ≤ 2 n (D) n N, n 2 = 2 n
【解析】本题考查命题的否定,条件和结论都需要否定,因此选择 C.
在 RtEBG 中,可得 BE = 2 故 DF =
2 2
在 RtFDG 中,可得 FG =
6 2 3 2 2
江苏省12市2015届高三上学期期末考试数学试题分类汇编:导数及其应用

江苏省12市2015届高三上学期期末考试数学试题分类汇编导数及其应用一、填空题1、(常州市2015届高三)曲线cos y x x =-在点22p p ⎛⎫⎪⎝⎭,处的切线方程为 ▲二、解答题1、(常州市2015届高三)已知a b ,为实数,函数1()f x b x a=++,函数()ln g x x =. (1)当0a b ==时,令()()()F x f x g x =+,求函数()F x 的极值;(2)当1a =-时,令()()()G x f x g x =⋅,是否存在实数b ,使得对于函数()y G x = 定义域中的任意实数1x ,均存在实数2[1,)x ∈+∞,有12()0G x x -=成立,若存在,求出实数b 的取值集合;若不存在,请说明理由.2、(连云港、徐州、淮安、宿迁四市2015届高三)已知函数x ax x x f +-=221ln )(,a R ∈. (1)若2a =,求函数()f x 的单调递减区间;(2)若关于x 的不等式()1f x ax -≤恒成立,求整数a 的最小值;(3)若2a =-,1x ,2x 是两个不相等的正数,且1212()()0f x f x x x ++=,求证:1212x x +≥.3、(南京市、盐城市2015届高三)已知函数()x f x e =,()g x mx n =+. (1)设()()()h x f x g x =-.① 若函数()h x 在0x =处的切线过点(1,0),求m n +的值;② 当0n =时,若函数()h x 在(1,)-+∞上没有零点,求m 的取值范围; (2)设函数1()()()nx r x f x g x =+,且4(0)n m m =>,求证:当0x ≥时,()1r x ≥.4、(南通市2015届高三)若函数()y f x =在0x x =处取得极大值或极小值,则称0x 为函数()y f x =的极值点.已知函数3()3ln 1().f x ax x x a R =+-∈()1当0a =时,求()f x 的极值;()2若()f x 在区间1(,)e e 上有且只有一个极值点,求实数a 的取值范围.5、(苏州市2015届高三上期末)已知函数()(1)x f x e a x =--,其中,a R e ∈为自然对数底数.(1)当1a =-时,求函数()f x 在点(1,(1))f 处的切线方程; (2)讨论函数()f x 的单调性,并写出相应的单调区间;(3)已知b R ∈,若函数()f x b ≥对任意x R ∈都成立,求ab 的最大值.6、(泰州市2015届高三上期末)已知函数1()ln f x x x=-,()g x ax b =+. (1)若函数()()()h x f x g x =-在(0,)+∞上单调递增,求实数a 的取值范围; (2) 若直线()g x ax b =+是函数1()ln f x x x=-图象的切线,求a b +的最小值; (3)当0b =时,若()f x 与()g x 的图象有两个交点1122(,),(,)A x y B x y ,求证:12x x 22e >.(取e 为2.8,取ln 2为0.7 1.4)7、(无锡市2015届高三上期末)设函数()22ln -+f x x x ax b =在点()()0,0x f x 处的切线方程为y x b =-+. (1)求实数a 及0x 的值; (2)求证:对任意实数,函数()f x 有且仅有两个零点.8、(扬州市2015届高三上期末)已知函数2(),()xf x eg x ax bx c ==++。
2015年高考理科数学全国卷1(含答案解析)

绝密★启用前 2015年普通高等学校招生全国统一考试(全国新课标卷1)数学(理科)使用地区:河南、山西、河北、江西本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分150分,考试时间120分钟.第Ⅰ卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设复数z 满足1+z1z-=i ,则|z|=( ) A .1B .2C .3D .2 2.sin20cos10cos160sin10︒︒︒︒-=( )A .32-B .32C .12-D .123.设命题:p n ∃∈Ν,22n n >,则⌝p 为( )A .2n n n ∀∈N 2,>B .2n n n ∃∈N 2,≤C .2n n n ∀∈N 2,≤D .=2n n n ∃∈N 2,4.投篮测试中,每人投3次,至少投中2次才能通过测试.已知某同学每次投篮投中的概率为0.6,且各次投篮是否投中相互独立,则该同学通过测试的概率为( )A .0.648B .0.432C .0.36D .0.3125.已知00()M x y ,是双曲线2212x C y -=:上的一点,F 1,F 2是C 的两个焦点.若120MF MF <,则0y 的取值范围是( )A .33()33-, B .33()66-, C .2222()33-, D .2323()33-, 6. 《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺.问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有( )A .14斛B .22斛C .36斛D .66斛 7.设D 为ABC △所在平面内一点,=3BC CD ,则( )A .1433AD AB AC =-+ B .1433AD AB AC =- C .4133AD AB AC =+ D .4133AD AB AC =-8.函数=cos(+)x f x ωϕ()的部分图象如图所示,则f x ()的单调递减区间为( )A .13π,π+44k k k -∈Z (),B .132π,2π+44k k k -∈Z (),C .13,+44k k k -∈Z (),D .132,2+44k k k -∈Z (),9.执行如图所示的程序框图,如果输入的0.01t =,则输出 的n =( )A .5B .6C .7D .810.25()x x y ++的展开式中,52x y 的系数为( )A .10B .20C .30D .6011.圆柱被一个平面截去一部分后与半球(半径为r )组成一个几何体,该几何体三视图中的正视图和俯视图如图所示.若该几何体的表面积为16+20π,则r =( )A .1B .2C .4D .812.设函数()()21x f x e x ax a =--+,其中a<1,若存在唯一的整数0x 使得0()0f x <,则a 的取值范围是( )--------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------姓名________________ 准考证号_____________A .3[)21,e-B .43[,)23e -C .3[,)234e D .3[,)21e第Ⅱ卷(非选择题 共90分)本卷包括必考题和选考题两部分.第13~21题为必考题,每个试题考生都必须作答.第22~24题为选考题,考生根据要求作答.二、填空题:本大题共4小题,每小题5分,共20分.把答案填在题中的横线上. 13.若函数2()=()ln f x x a x x ++为偶函数,则a =________. 14.一个圆经过椭圆22=1164x y+的三个顶点,且圆心在x 轴的正半轴上,则该圆的标准方程为________.15.若x ,y 满足约束条件10,0,40,x x y x y -⎧⎪-⎨⎪+-⎩≥≤≤则y x 的最大值为________.16.在平面四边形ABCD 中,==75=A B C ∠∠∠︒,=2BC ,则AB 的取值范围是________. 三、解答题:本大题共6小题,共70分.解答应写出必要的文字说明、证明过程或演算步骤. 17.(本小题满分12分)n S 为数列{}n a 的前n 项和.已知0n a >,2n n n +2=4+3a a S .(Ⅰ)求{}n a 的通项公式;(Ⅱ)设n n n+11=b a a ,求数列{}n b 的前n 项和.18.(本小题满分12分)如图,四边形ABCD 为菱形,∠ABC =120°,E ,F 是平面ABCD 同一侧的两点,BE ⊥平面ABCD ,DF ⊥平面ABCD ,BE =2DF ,AE ⊥EC . (Ⅰ)证明:平面AEC ⊥平面AFC ; (Ⅱ)求直线AE 与直线CF 所成角的余弦值.19.(本小题满分12分)某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x (单位:千元)对年销售量y (单位:t )和年利润z(单位:千元)的影响,对近8年的年宣传费i x 和年销售量i y (i =1,2,…,8)数据作了初步处理,得到下面的散点图及一些统计量的值.xyω28i=1()ixx -∑28i=1()iωω∑-8i=1()()iiy x x y-∑-8i=1()()ii y y ωω--∑46.65636.8289.8 1.6 1 469108.8表中i ω=i x ,ω=188i i=1ω∑(Ⅰ)根据散点图判断,y a bx =+与y c d x =+哪一个适宜作为年销售量y 关于年宣传费x 的回归方程类型?(给出判断即可,不必说明理由)(Ⅱ)根据(Ⅰ)的判断结果及表中数据,建立y 关于x 的回归方程;(Ⅲ)已知这种产品的年利率z 与x ,y 的关系为z=0.2y -x .根据(Ⅱ)的结果回答下列问题:(i )年宣传费x =49时,年销售量及年利润的预报值是多少? (ii )年宣传费x 为何值时,年利润的预报值最大?附:对于一组数据11()u v ,,22(,)u v ,…,(,)n n u v ,其回归直线v u αβ=+的斜率和截距的最小二乘估计分别为121()(),()nii i nii uu v v v u uu βαβ==--==--∑∑.20.(本小题满分12分)在直角坐标系xOy 中,曲线24C y x :=与直线)0(l y kx a a >:=+交于M ,N 两点.(Ⅰ)当k =0时,分别求C 在点M 和N 处的切线方程;(Ⅱ)y 轴上是否存在点P ,使得当k 变动时,总有∠OPM =∠OPN ?说明理由.21.(本小题满分12分)已知函数31()4f x x ax =++,()ln g x x =-. (Ⅰ)当a 为何值时,x 轴为曲线()y f x =的切线;(Ⅱ)用min{,}m n 表示m ,n 中的最小值,设函数()min{(),()}h x f x g x =(0)x >,讨论()h x 零点的个数.请考生在第22~24三题中任选一题作答,如果多做,则按所做的第一题记分. 22.(本小题满分10分)选修4—1:几何证明选讲如图,AB 是O 的直径,AC 是O 的切线,BC 交O 于点E . (Ⅰ)若D 为AC 的中点,证明:DE 是O 的切线; (Ⅱ)若OA =3CE ,求∠ACB 的大小.23.(本小题满分10分)选修4—4:坐标系与参数方程在直角坐标系xOy 中,直线1C :x =-2,圆2C :(x -1)2+(y -2)2=1,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系. (Ⅰ)求1C ,2C 的极坐标方程; (Ⅱ)若直线3C 的极坐标方程为()π4θρ=∈R ,设2C 与3C 的交点为M ,N ,求2C MN △的面积.24.(本小题满分10分)选修4—5:不等式选讲已知函数12f x =|||x |x a -+-(),0a >. (Ⅰ)当=1a 时,求不等式1f x >()的解集;(Ⅱ)若f x ()的图象与x 轴围成的三角形面积大于6,求a 的取值范围. 2015年普通高等学校招生全国统一考试(全国新课标卷1)数学(理科)答案解析第Ⅰ卷一、选择题 1.【答案】A 【解析】由1=i 1z z+-,得1i (1i)(1i)=i 1i (1i)(1i)z -+-+-===++-,故1z =,故选C . 【提示】先化简复数,再求模即可. 【考点】复数的运算. 2.【答案】D【解析】原式1sin 20cos10cos20sin10sin302=+==,故选D . 【提示】直接利用诱导公式以及两角和的正弦函数,化简求解即可. 【考点】三角函数的运算. 3.【答案】C【解析】命题的否定是:22n n n ∀∈≤N ,.【提示】根据特称命题的否定是全称命题即可得到结论. 【考点】命题. 4.【答案】A【解析】根据独立重复试验公式可得,该同学通过测试的概率为2233C 0.60.40.6=0.648.⨯+【提示】判断该同学投篮投中是独立重复试验,然后求解概率即可.【考点】概率. 5.【答案】A【解析】由题知12(F F ,,220012x y -=,所以222120000000(3,)(3,)331MF MF x y xy x y y =-----=+-=-<,解得0y <<,故选A . 【提示】利用向量的数量积公式,结合双曲线方程,即可确定0y 的取值范围. 【考点】双曲线. 6.【答案】B【解析】设圆锥底面半径为r ,则116238,43r r ⨯⨯=⇒=所以米堆的体积为 2111632035,4339⎛⎫⨯⨯⨯⨯= ⎪⎝⎭故堆放的米约为320 1.6222,9÷≈故选B . 【考点】圆锥体积.【提示】根据圆锥的体积公式计算出对应的体积即可. 7.【答案】A【解析】由题知1114()3333AD AC CD AC BC AC AC AB AB AC =+=+=+-=-+【提示】将向量AD 利用向量的三角形法则首先表示为AC CD +,然后结合已知表示为AC AC ,的形式.【考点】向量运算. 8.【答案】D【解析】由五点作图知,1π42,53π42ωϕωϕ⎧+=⎪⎪⎨⎪+=⎪⎩解得ππ,4ωϕ==,所以π()cos π,4f x x ⎛⎫=+ ⎪⎝⎭令2ππ2ππ,,4k x k k π<+<+∈Z 解得1322,,44k x k k -<<+∈Z故()f x 的单调递减区间为132,2,44k k k ⎛⎫-+∈ ⎪⎝⎭Z ,故选D .【提示】由周期求出ω,由五点法作图求出ϕ,可得()f x 的解析式,再根据余弦函数的单调性,求得()f x 的减区间. 【考点】三角函数运算. 9.【答案】C【解析】执行第1次,0.01,1,t S ==10,0.5,2n m === 0.5,0.25,2mS S m m =-===1,0.50.01n S t ==>=,是,循环,执行第2次, 0.25,0.125,2mS S m m =-===2,0.250.01n S t ==>=,是,循环,执行第3次,0.125,0.0625,2mS S m m =-===3,0.1250.01n S t ==>=,是,循环,执行第4次,0.0625,0.03125,2mS S m m =-===4,0.06250.01n S t ==>=,是,循环,执行第5次,0.03125,0.015625,2mS S m m =-===5,0.031250.01n S t ==>=,是,循环,执行第6次,0.015625,0.0078125,2mS S m m =-===6,0.0156250.01n S t ==>=,是,循环,执行第7次,0.0078125,S S m =-=2mm =0.00390625=, 7,0.00781250.01n S t ==>=,否,输出7,n =故选C .【提示】由题意依次计算,当7,0.00781250.01,n S t ==>=停止由此可得结论. 【考点】程序框图. 10.【答案】C【解析】在25()x x y ++的五个因式中,2个取因式中2x 剩余的3个因式中1个取x ,其余因式取y ,故52x y 的系数为212532C C C 30,=故选C .【提示】利用展开式的通项进行分析,即可得出结论. 【考点】二项式展开式. 11.【答案】B【解析】由正视图和俯视图知,该几何体是半球和半个圆柱的组合体,圆柱和球的半径都是r ,圆柱的高为2r ,其表面积为222214ππ2π225π41620π2r r r r r r r r ⨯+⨯++⨯=+=+,解得r=2,故选B .【提示】通过三视图可知该几何体是一个半球拼接半个圆柱,计算即可. 【考点】空间几何体的表面积. 12.【答案】D【解析】设()()e 21,,xg x x y ax a =-=-由题知存在唯一的整数0x ,使得0()g x 在直线y ax a =-的下方.因为()e (21)xg'x x =+,所以当12x <-时,'()0g x <,当12x >-,()0,g'x >所以当12x =-时,12min [()]2e g x -=-.当0x =时(0)1g =-,(1)e 0g =>,直线y ax a =-恒过(1,0)且斜率a ,故(0)1a g ->=-,且1(1)3e g a a --=-≥--,解得312ea ≤<,故选D .【提示】设()()e 21,,xg x x y ax a =-=-,问题转化为存在唯一的整数0x 使得0()g x 在直线y ax a =-的下方,由导数可得函数的极值,数形结合可得(0)1a g ->=-且1(1)3e g a a --=-≥--,解关于a 的不等式组可得.【考点】带参函数.第Ⅱ卷二、填空题 13.【答案】1【解析】由题知ln(y x =是奇函数,所以22ln(ln(ln()ln 0x x a x x a +-=+-==,解得 1.a =【提示】由题意可得,()()f x f x -=,代入根据对数的运算性质即可求解 【考点】函数奇偶性.14.【答案】2232524x y ⎛⎫±+= ⎪⎝⎭【解析】设圆心为(,0)a ,则半径为4a -,则222(4)2,a a -=+解得32a =±, 故圆的标准方程为2232524x y ⎛⎫±+= ⎪⎝⎭.【提示】利用椭圆的方程求出顶点坐标,然后求出圆心坐标,求出半径即可得到圆的方程. 【考点】圆的标准方程. 15.【答案】3【解析】做出可行域如图中阴影部分所示,由斜率的意义知,yx是可行域内一点与原点连线的斜率,由图可知,点(1,3)与原点连线的斜率最大,故yx的最大值3.【提示】作出不等式组对应的平面区域,利用目标函数的几何意义,利用数形结合确定y x的最大值.【考点】线性规划问题.16.【答案】【解析】如下图所示:延长BACD ,交于点E ,则可知在△ADE 中,105DAE ∠=︒,45ADE ∠=︒,30,E ∠=︒∴设12AD x =,2AE x =,4DE x =,CD m =,2BC =,sin151m ⎫∴+︒=⎪⎪⎝⎭⇒m +=∴04x <<,而2AB m x +-,2x∴AB的取值范围是.【提示】如图所示,延长BACD ,交于点,设12AD x =,2AE x =,4DE x =,CD m =m +=AB 的取值范围. 【考点】平面几何问题. 三.解答题17.【答案】(Ⅰ)21n + (Ⅱ)11646n -+ 【解析】(Ⅰ)当1n =时,211112434+3a a S a +=+=,因为0n a >,所以1a =3,当2n ≥时,221122n n n n a a a a --+--=14343n n S S -+--=4n a ,即111()()2()n n n n n n a a a a a a ---+-=+,因为0n a >,所以1n n a a --=2,所以数列{}n a 是首项为3,公差为2的等差数列,所以n a =21n +; (Ⅱ)由(1)知,1111(21)(23)22123n b n n n n ⎛⎫==- ⎪++++⎝⎭,所以数列{}n b 前n 项和为121111111=235572123n b b b n n ⎡⎤⎛⎫⎛⎫⎛⎫+++-+-++- ⎪ ⎪ ⎪⎢⎥++⎝⎭⎝⎭⎝⎭⎣⎦=11646n -+. 【提示】(Ⅰ)根据数列的递推关系,利用作差法即可求{}n a 的通项公式:(Ⅱ)求出11n n n b a a +=,利用裂项法即可求数列{}n b 的前n 项和.【考点】数列前n 项和与第n 项的关系,等差数列定义与通项公式. 18.【答案】(Ⅰ)答案见解析 【解析】(Ⅰ)连接BD ,设,BDAC G =连接EG FG EF ,,,在菱形ABCD 中,不妨设1GB =,由∠ABC=120°,可得AG GC ==由BE ⊥平面ABCD ,AB BC =,可知AE EC =, 又∵AE EC ⊥,∴EG EG AC =⊥,在Rt EBG △中,可得BE,故DF =在Rt FDG △中,可得FG =在直角梯形BDEF 中,由2BD =,BE,2DF =,可得2EF =, ∴222EG FG EF +=, ∴EG FG ⊥, ∵ACFG G =,∴EG ⊥平面AFC , ∵EG ⊂平面AEC , ∴平面AFC ⊥平面AEC .(Ⅱ)如图,以G 为坐标原点,分别以,GB GC 的方向为x 轴,y 轴正方向,||GB 为单位长度,建立空间直角坐标系G xyz -,由(Ⅰ)可得0,A (,(E,2F ⎛- ⎝⎭,C ,∴AE =,1,CF ⎛=- ⎝⎭.故cos ,3||||AE CFAE CF AE CF <>==-,所以直线AE 与CF .【提示】(Ⅰ)连接BD ,设BD AC G =,连接EG EF FG ,,,运用线面垂直的判定定理得到EG ⊥平面AFC ,再由面面垂直的判定定理,即可得到.(Ⅱ)以G 为坐标原点,分别以GB GC ,为x 轴,y 轴,GB 为单位长度,建立空间直角坐标系G xyz -,求得AE F C ,,,的坐标,运用向量的数量积的定义,计算即可得到所求角的余弦值.【考点】空间垂直判定与性质,异面直线所成角的计算.19.【答案】(Ⅰ)答案见解析 (Ⅱ)答案见解析 (Ⅲ)(i )66.32 (ii )46.24【解析】(Ⅰ)由散点图可以判断,y c =+y 关于年宣传费用x 的回归方程类型.(Ⅱ)令w =先建立y 关于w 的线性回归方程,由于81821()()108.8=68,16()iii ii w w yy d w w ==--==-∑∑ ∴56368 6.8100.6.==c y d w -⨯=-∴y 关于w 的线性回归方程为=100.6+68y w ,y ∴关于x 的回归方程为y (Ⅲ)(i )由(Ⅱ)知,当49x =时,年销量y的预报值576.6y =, 年利润z 的预报值=576.60.249=66.32z ⨯-(ii )根据(Ⅱ)的结果知,年利润z 的预报值20.12z x =x +--,∴13.66.8,2=即46.24x =,z 取得最大值,故宣传费用为46.24千元时,年利润的预保值最大.【提示】(Ⅰ)根据散点图,即可判断出.(Ⅱ)先建立中间量w =y 关于w 的线性回归方程,根据公式求出w ,问题得以解决.(Ⅲ)(Ⅰ)年宣传费49x =时,代入到回归方程,计算即可. (ii )求出预报值得方程,根据函数的性质,即可求出.【考点】线性回归方程求法,利用回归方程进行预报预测. 20.【答案】0y a --=0y a ++=(Ⅱ)答案见解析【解析】(Ⅰ)由题设可得)Ma ,()N a -,或()M a-,)N a .∵12yx '=,故24x y =在x =C在)a 处的切线方程为y a x -=-0y a --=,故24x y =在x =-处的导数值为,C 在()a -处的切线方程为y a x -=+,0y a ++=0y a --=0y a ++=. (Ⅱ)存在符合题意的点,证明如下:设(0,)P b 为符合题意得点,11(,)M x y ,22(,)N x y ,直线PM PN ,的斜率分别为12k k ,.将y kx a =+代入C 得方程整理得2440x kx a --=.∴12124,4x x k x x a +==-.∴1212121212122()()()=y b y b kx x a b x x k a b k k x x x x a--+-+++=+. 当b a =-时,有12k k + =0,则直线PM 的倾斜角与直线PN 的倾斜角互补,故OPM OPN ∠=∠,所以(0,)P a -符合题意.【提示】(Ⅰ)求出C在)a 处的切线方程,故24x y =在x =-即可求出方程.(Ⅱ)存在符合条件的点(0,)P b ,11(,)M x y,22(,)N x y ,直线PM PN ,的斜率分别为12k k ,直线方程与抛物线方程联立化为2440x kx a --=,利用根与系数的关系,斜率计算公式可得12()=k a b k k a++=即可证明. 【考点】抛物线的切线,直线与抛物线位置关系. 21.【答案】(Ⅰ)34a =- (Ⅱ)答案见解析【解析】(Ⅰ)设曲线()y f x =与x 轴相切于点0(,0)x ,则0()0f x =,0()0f x '=,即3002010430x ax x a ⎧++=⎪⎨⎪+=⎩,解得013,24x a ==-,因此,当34a =-时,x 轴是曲线()y f x =的切线. (Ⅱ)当(1,)x ∈+∞时,()ln 0g x x =-<,从而()min{(),()}()0h x f x g x g x =≤<, ∴()h x 在(1,)+∞无零点. 当1x =时,若54a ≥-,则5(1)04f a =+≥,(1)min{(1),(1)}(1)0h f g g ===,故1x =是()h x 的零点;若54a <-,则5(1)04f a =+<,(1)min{(1),(1)}(1)0h f g f ==<,故x =1不是()h x 的零点.当(0,1)x ∈时,()ln 0g x x =->,所以只需考虑()f x 在(0,1)的零点个数.(ⅰ)若3a ≤-或0a ≥,则2()3f x x a '=+在(0,1)无零点,故()f x 在(0,1)单调,而1(0)4f =,5(1)4f a =+,所以当3a ≤-时,()f x 在(0,1)有一个零点;当a ≥0时,()f x 在(0,1)无零点.(ⅱ)若30a -<<,则()f x在⎛ ⎝单调递减,在⎫⎪⎪⎭单调递增,故当x =()f x取的最小值,最小值为14f =.①若0f >,即304x -<<,()f x 在(0,1)无零点.②若0f =,即34a =-,则()f x 在(0,1)有唯一零点;③若0f <,即334a -<<-,由于1(0)4f =,5(1)4f a =+,所以当5344a -<<-时, ()f x 在(0,1)有两个零点;当534a -<≤-时,()f x 在(0,1)有一个零点.综上,当34a >-或54a <-时,()h x 有一个零点;当34a =-或54a =-时,()h x 有两个零点;当5344a -<<-时,()h x 有三个零点.【提示】(Ⅰ)设曲线()y f x =与x 轴相切于点0(,0)x ,则0()0f x =,0()0f x '=解出即可. (Ⅱ)对x 分类讨论:当(1,)x ∈+∞时,()ln 0g x x =-<,可得函数(1)min{(1),(1)}(1)0h f g g ===,即可得出零点的个数.当1x =时,对a 分类讨论利用导数研究其单调性极值即可得出.【考点】利用导数研究曲线的切线,分段函数的零点. 22.【答案】(Ⅰ)答案见解析 (Ⅱ)60ACB ∠=【解析】(Ⅰ)连接AE ,由已知得,AE BC AC AB ⊥⊥,,在Rt AEC △中,由已知得DE DC =,∴DEC DCE ∠=∠,连接OE ,OBE OEB ∠=∠, ∵90ACB ABC ∠+∠=, ∴90DEC OEB ∠+∠=,∴90OED ∠=,∴DE 是圆O 的切线.(Ⅱ)设1CE AE x ==,,由已知得AB =,BE =,由射影定理可得,2AE CE BE =,∴2x =x = ∴60ACB ∠=.【提示】(Ⅰ)连接AE 和OE ,由三角形和圆的知识易得90OED ∠=,可得DE 是O 的切线.(Ⅱ)设1CE AE x ==,,由射影定理可得关于x的方程2x =,解方程可得x 值,可得所求角度.【考点】圆的切线判定与性质,圆周角定理,直角三角形射影定理. 23.【答案】(Ⅰ)22cos 4sin 40ρρθρθ--+= (Ⅱ)12【解析】(Ⅰ)因为cos ,sin x y ρθρθ==, ∴1C 的极坐标方程为cos 2ρθ=-,2C 的极坐标方程为22cos 4sin 40ρρθρθ--+=.(Ⅱ)将=4θπ代入22cos 4sin 40ρρθρθ--+=,得240ρ-+=,解得1ρ=2ρ12=MN ρρ-,因为2C 的半径为1,则2C MN △的面积111sin 45=22⨯.【提示】(Ⅰ)由条件根据cos sin x y ρθρθ==,求得12C C ,的极坐标方程.(Ⅱ)把直线3C 的极坐标方程代入22cos 4sin 40ρρθρθ--+=,求得12ρρ,的值,从而求出2C MN △的面积.【考点】直角坐标方程与极坐标互化,直线与圆的位置关系.24.【答案】(Ⅰ)22.3x x ⎧⎫<<⎨⎬⎩⎭(Ⅱ)(2)+∞,【解析】(Ⅰ)当1a =时,不等式()1f x >化为1211x x +-->,等价于11221x x x ≤⎧⎨--+->⎩或111221x x x -<<⎧⎨++->⎩或11221x x x ≥⎧⎨+-+>⎩,解得223x <<,∴不等式()1f x >的解集为22.3x x ⎧⎫<<⎨⎬⎩⎭(Ⅱ)由题设可得,12,1()312,112,x a x f x x a x a x a x a --<-⎧⎪=+--≤≤⎨⎪-++>⎩,所以函数()f x 的图像与x 轴围成的三角形的三个顶点分别为21,03a A -⎛⎫⎪⎝⎭,(21,0)B a +,(,+1)C a a ,所以ABC △的面积为22(1)3a +, 由题设得22(1)63a +>,解得2a >,所以a 的取值范围为(2)+∞,. 【提示】(Ⅰ)当1a =时,把原不等式去掉绝对值,转化为与之等价的三个不等式组,分别求得每个不等式组的解集,再取并集,即得所求.(Ⅱ)化简函数()f x 的解析式,求得它的图像与x 轴围成的三角形的三个顶点的坐标,从而求得()f x 的图像与x 轴围成的三角形面积;再根据()f x 的图像与x 轴围成的三角形面积大于6,从而求得a 的取值范围.【考点】含绝对值不等式解法,分段函数,一元二次不等式解法.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
江苏2015高三上学期数学周测试题(1)
1、 设集合{}R x x x x A ∈+≤-=,112)2(2,则集合*⋂N A 中有 个元素。
2、若()35cos =+απ且⎪⎭
⎫ ⎝⎛∈ππα,2,则()απ-2sin =__________ 3、已知正项等比数列{}n a 的前n 项和为n S ,若137a S =,则等比数列{}n a 的公比等于 _____
4、 复数200922
12,11i z i i z -=⎪⎭
⎫ ⎝⎛+-=分别对应复平面上的点Q P ,,则向量对应的复数为_______ 5、 已知直线1l :32+=x y ,直线2l 与直线1l 关于直线x y -=对称,则直线2l 的斜率
为_______
6、 已知函数x be ax x f +=)(图象上在点)2,1(-P 处的切线与直线x y 3-=平行,则函
数)(x f 的解析式为_____
7、 已知等差数列{}n a 的前n 项和为()21,n S a n a =++某三角形三边之比为234::a a a ,则该三角形最大角为 ____
8、 已知直线2310x y ++=与圆032-2
2=-+x y x 交于N M ,两点,则弦MN 的
垂直平分线方程为_____
9、 过点P ()0,1可以作曲线23ax x y -=的两条切线,则a 的值为________.
10、已知向量a ,b ,c 满足++=0a b c ,且a 与c 的夹角为60︒,|||=b a ,则a 与b
的夹角为 .
11、已知数列{}n a 满足11a =,12n n n a a +⋅=()n *∈N ,则2012S = .
12定义在R 上的奇函数()f x 对任意x ∈R 都有()(4)f x f x =+,当(20)x ∈-,时,
()2x f x =,则(2012)(2011)f f -= .
13、在锐角ABC ∆中,角A 、B 、C 的对边分别为a 、b 、c ,且满足(2)cos cos a c B b C -=.
(1)求角B 的大小; (2)设(sin ,1),(3,cos 2)m A n A ==u r r ,试求m n ⋅u r r 的取值范围.
14.如图,四棱锥P ABCD -中,PA ⊥底面ABCD ,PC ⊥AD .底面ABCD 为梯形,//AB DC ,AB BC ⊥,PA AB BC ==,点E 在棱PB 上,且2PE EB =.
(1)求证:平面PAB ⊥平面PCB ; (2)求证:PD ∥平面EAC .
(理科学生做)在极坐标系中,曲线2cos C ρθ=:.以极点为原点,极轴为x 轴的正半轴建立平面直角坐标系,
直线的参数方程为x y ⎧=⎪⎪⎨⎪=⎪⎩
,(为参数),直线与曲线C 分别交于点M N ,.写出曲线C 的直角坐标方程并求出线段MN 的长度.
参考答案 1.7 2. 2
3
- 3.2 4. 3-i 5. 0.5 6. 12.50.5x y x e +=-- 10、 7. 120 8. 3x-2y-3=0 9. 9, 0. 10.
.1006323⨯-. 12.12
-. P
A D
B C
E
13.(1)60B =, (2)17(2,]8
14.解析:(1)∵P A ⊥底面ABCD ,∴PA BC ⊥,
又AB ⊥BC ,PA AB A =,∴BC ⊥平面PAB .
又BC ⊂平面PCB ,
∴平面PAB ⊥平面PCB . ----------------------7分
(2)∵P A ⊥底面ABCD ,∴AC 为PC 在平面ABCD 内的射影.
又∵PC ⊥AD ,∴AC ⊥AD .
在梯形ABCD 中,由AB ⊥BC ,AB =BC ,得4BAC π∠=
, ∴4DCA BAC π∠=∠=
.又AC ⊥AD ,故DAC ∆为等腰直角三角形.
∴)2DC AB ===.
连接BD ,交AC 于点M ,则
2.DM DC MB AB == 在BPD ∆中,2PE DM EB MB
==, ∴//PD EM
又PD ⊄平面EAC ,EM ⊂平面EAC ,
∴PD ∥平面EAC .
C.解:曲线2cos C ρθ=:可化为22cos ρρθ=,由222cos x y x ρρθ=+=,
得曲线C 的直角坐标方程为222x y x +=, ………………4分
直线的参数方程为x y ⎧=⎪⎪⎨⎪=⎪⎩
,代入222x y x +=
可得2222t t +即0t =
, 由的几何意义可得线段MN
. ………………10分。