小学数学典型应用题追及问题
小学数学之追及问题专项练习30题(有答案过程)

小学数学之追及问题专项练习30题(有答案过程)---------------------------------------小学奥数之追及问题专项练习30题(有答案)1.甲以每小时4千米的速度步行去学校,乙比甲晚4小时骑自行车从同一地点出发去追甲,乙每小时行12千米,乙几小时可追上甲.2.小张从家到公园,原打算每分钟走50米,为了提早10分钟到,他把速度加快,每分钟走75米.小张家到公园有多少米.3.父亲和儿子都在某厂工作,他们从家里出发步行到工厂,父亲用40分钟,儿子用30分钟.如果父亲比儿子早5分钟离家,问儿子用几分钟可赶上父亲?4.解放军某部小分队,以每小时6千米的速度到某地执行任务,途中休息30分后继续前进,在出发5.5小时后,通讯员骑摩托车以56千米的速度追赶他们.几小时可以追上他们?5.甲、乙二人练习跑步,若甲让乙先跑10米,则甲跑5秒钟可追上乙.若乙比甲先跑2秒钟,则甲跑4秒钟能追上乙.问甲、乙两人每秒钟各跑多少米.6.小明以每分钟50米的速度从学校步行回家,12分钟后小强从学校出发骑自行车去追小明,结果在距学校1000米处追上小明,求小明骑自行车的速度是多少?7.甲、乙两匹马在相距50米的地方同时出发,出发时甲马在前乙马在后.如果甲马每秒跑10米,乙马每秒跑12米,几秒钟后两马相距70米?8.上午8时8分,小明骑自行车从家里出发.8分后,爸爸骑摩托车去追他,在离家4千米的地方追上了他,然后爸爸立刻回家,到家后又立刻回头去追小明,再追上他的时候,离家恰是8千米,这时是几时几分.9.从时针指向4点开始,再过几分,时针正好与分钟重合?10.一队自行车运动员以每小时24千米的速度骑车从甲地到乙地,两小时后一辆摩托车以每小时56千米的速度也从甲地到乙地,在甲地到乙地距离的二分之一处追上了自行车运动员.问:甲乙两地相距多少千米?11.一只狗追赶一只野兔,狗跳5次的时间兔子能跳6次,狗跳4次的距离与兔子7次的距离相等.兔子跳出550米后狗子才开始追赶.问狗跳了多远才能追上兔子?12.当甲在60米赛跑中冲过终点线时,比乙领先10米、比丙领先20,如果乙和丙按原来的速度继续冲向终点,那么当乙到达终点时将比乙领先多少米?13.一架敌机侵犯我领空,我机立即起飞迎击,在两机相距50千米时,敌机扭转机头以每分15千米的速度逃跑,我机以每分22千米的速度追击,当我机追至敌机1千米时与敌机激战,只用了半分就将敌机击落.敌机从扭头逃跑到被击落共用了多少分?14.甲、乙两人环绕周长是400米的跑道跑步,如果两人从同一地点出发背向而行, 那么经过2分钟相遇;如果两人从同一地点出发同向而行,那么经过20 分钟两人相遇,已知甲的速度比乙快,求甲、乙两人跑步的速度各是多少?15、甲、乙二人绕周长为1200米的环形广场竞走,已知甲每分钟走125米,乙的速度是甲的1.2倍,现在甲在乙的后面400米,问:乙追上甲还需几分钟?16、一种导弹以音速(每秒330米)前进,已知两架飞机相距1500米同向飞行,前面一架飞机的速度是每秒210米,后面一架飞机的速度是每秒180米.当后面的飞机发出导弹时,多少秒可以击中前一架飞机?17、小明在铁路旁边沿铁路方向的公路上散步,他散步的速度是每秒2米,这时从他后面开过来一列火车,从车头到车尾经过他身旁共用了21秒,已知火车全长336米,求火车每秒行多少米.18、铁路线旁边有一条沿铁路方向的公路,公路上一辆拖拉机正以每小时20千米的速度行驶,这时,一列火车以每小时56千米的速度从后面开过来,火车从车头到车尾经过拖拉机身旁用了37秒钟,求火车的全长是多少米.19、.一只猎狗正在追赶前方20米处的兔子,已知狗一跳前进3米.兔子一跳前进2.1米,狗跳3次的时间兔子可以跳4次.问:兔子跑多少米后被猎狗追上?20、一列快车长64米,一列慢车长56米,两车相向而行,从相遇到离开要4秒钟;如果同向而行,从快车追及慢车到离开需16秒钟,快车每秒行多少米,慢车每秒行多少米.感谢阅读,欢迎大家下载使用!。
五年级奥数追及问题应用题

五年级奥数追及问题应用题一、追及问题应用题20题。
1. 甲、乙两人分别从相距18千米的A村和B村同时向东而行,甲骑车每小时行14千米,乙步行每小时走5千米。
几小时后甲可以追上乙?- 解析:甲、乙两人的路程差是18千米,甲每小时比乙多行14 - 5=9千米(速度差)。
根据追及时间 = 路程差÷速度差,可得追及时间为18÷(14 - 5)=2小时。
2. 一辆汽车和一辆摩托车同时从甲、乙两地出发,向同一个方向前进,摩托车在前,每小时行28千米,汽车在后,每小时行65千米,经过4小时汽车追上摩托车,甲乙两地相距多少千米?- 解析:汽车每小时比摩托车多行65 - 28 = 37千米,经过4小时追上,那么4小时汽车比摩托车多行驶的路程就是甲乙两地的距离,即37×4 = 148千米。
3. 甲、乙两人相距4千米,乙在前,甲在后,两人同时同向出发,2小时后甲追上乙,乙每小时行6千米,甲每小时行多少千米?- 解析:甲2小时比乙多走了4千米,那么甲每小时比乙多走4÷2 = 2千米。
乙每小时行6千米,所以甲每小时行6+2 = 8千米。
4. 甲、乙两架飞机同时从一个机场起飞,向同一方向飞行,甲机每小时行300千米,乙机每小时行340千米,飞行4小时后它们相隔多少千米?这时候甲机提高速度用2小时追上乙机,甲机每小时要飞行多少千米?- 解析:- 开始飞行4小时后,乙机每小时比甲机多行340 - 300 = 40千米,4小时后相隔40×4 = 160千米。
- 甲机要在2小时内追上乙机,这2小时内乙机又飞行了340×2 = 680千米,甲机总共要比乙机多飞行160千米,所以甲机2小时要飞行680 + 160=840千米,那么甲机每小时要飞行840÷2 = 420千米。
5. 小明以每分钟50米的速度从学校步行回家,12分钟后小强从学校出发骑自行车去追小明,结果在距学校1000米处追上小明,求小强骑自行车的速度。
应用题追及问题

应用题——追及问题100道1、两辆汽车同时从甲、乙两地相对开出,一辆汽车每小时行56千米,另一辆汽车每小时行63千米,经过4小时后相遇。
甲乙两地相距多少千米?(适于五年级程度)2、两列火车同时从相距480千米的两个城市出发,相向而行,甲车每小时行驶40千米,乙车每小时行驶42千米。
5小时后,两列火车相距多少千米?(适于五年级程度)3、甲、乙二人分别从A、B两地同时相向而行,甲每小时行5千米,乙每小时行4千米。
二人第一次相遇后,都继续前进,分别到达B、A两地后又立即按原速度返回。
从开始走到第二次相遇,共用了6小时。
A、B两地相距多少千米?(适于五年级程度)4、两列火车从甲、乙两地同时出发对面开来,第一列火车每小时行驶60千米,第二列火车每小时行驶55千米。
两车相遇时,第一列火车比第二列火车多行了20千米.求甲、乙两地间的距离.(适于五年级程度)5、甲、乙二人同时从A、B两地相向而行,甲每小时走6千米,乙每小时走5千米,两个人在距离中点1。
5千米的地方相遇。
求A、B两地之间的距离。
(适于五年级程度)6、两地相距37。
5千米,甲、乙二人同时从两地出发相向而行,甲每小时走3。
5千米,乙每小时走4千米。
相遇时甲、乙二人各走了多少千米?(适于五年级程度)7、甲、乙二人从相距40千米的两地同时相对走来,甲每小时走4千米,乙每小时走6千米.相遇后他们又都走了1小时.两人各走了多少千米?(适于五年级程度)8、两列火车分别从甲、乙两个火车站相对开出,第一列火车每小时行48。
65千米,第二列火车每小时行47。
35千米.在相遇时第一列火车比第二列火车多行了5。
2千米。
到相遇时两列火车各行了多少千米?(适于五年级程度)9、东、西两车站相距564千米,两列火车同时从两站相对开出,经6小时相遇。
第一列火车比第二列火车每小时快2千米.相遇时这两列火车各行了多少千米?(适于五年级程度)10、两个城市之间的路程是500千米,一列客车和一列货车同时从两个城市相对开出,客车的平均速度是每小时55千米,货车的平均速度是每小时45千米.两车开了几小时以后相遇?(适于五年级程度)11、在一次战役中,敌我双方原来相距62.75千米.据侦察员报告,敌人已向我处前进了11千米。
四年级数学思维训练——追及问题有答案

1、甲乙两人分别从相距18千米的西城和东城向东而行,甲骑自行车每小时行14千米,乙步行每小时行5千米,几小时后甲可以追上乙?2、哥哥和弟弟去人民公园参观菊花展,弟弟每分钟走50米,走了10分钟后,哥哥以每分钟70米的速度去追弟弟,问:经过多少分钟以后哥哥可以追上弟弟?3、小红和小明分别从西村和东村同时向西而行,小明骑自行车每小时行16千米,小红步行每小时行5千米,2小时后小明追上小红,求东西村相距多少千米?4、一辆汽车从甲地开往乙地,每小时行40千米,开出5小时后,一列火车以每小时90千米的速度也从甲地开往乙地。
在甲乙两地的中点处火车追上汽车,甲乙两地相距多少千米?5、一列慢车在早晨6:30以每小时40千米的速度由甲城开往乙城,另一列快车在早晨7:30以每小时56千米的速度也由甲城开往乙城。
铁路部门规定,向相同方向的两列火车之间的距离不能小于8千米。
那么,这列慢车最迟应该在什么时候停车让快车超过?6、小云以每分钟40米的速度从家去商店买东西,5分钟后,小英去追小云,结果在离家600米的地方追上小云,小英的速度是多少?7、一队中学生到某地进行军事训练,他们以每小时5千米的速度前进,走了6小时后,学校派秦老师骑自行车以每小时15千米的速度追赶学生队伍,传达学校通知。
秦老师几小时可追上队伍?追上时队伍已经行了多少路?8、小明步行上学,每分钟行70米,离家12分钟后,爸爸发现小明的文具盒忘记在家里,立即骑自行车以每分钟280米的速度去追小明,那么爸爸出发后几分钟追上小明?9、一条环形跑道长400米,小强每分钟跑300米,小星每分钟跑250米,两人同时同地同向出发,经过多长时间,小强第一次追上小星?10、在一条长300米的环形跑道上,甲乙两人同时从一起点出发,同向而跑,甲每秒跑9米,乙每秒跑7米,现在乙在甲后面100米,问:甲追上乙要多少时间?追及问题【基础篇】1、甲乙两人分别从相距18千米的西城和东城向东而行,甲骑自行车每小时行14千米,乙步行每小时行5千米,几小时后甲可以追上乙?18÷(14-5)=2(小时)2、哥哥和弟弟去人民公园参观菊花展,弟弟每分钟走50米,走了10分钟后,哥哥以每分钟70米的速度去追弟弟,问:经过多少分钟以后哥哥可以追上弟弟?(50×10)÷(70-50)=25(分钟)3、小红和小明分别从西村和东村同时向西而行,小明骑自行车每小时行16千米,小红步行每小时行5千米,2小时后小明追上小红,求东西村相距多少千米?(16-5)×2=22(千米)4、一辆汽车从甲地开往乙地,每小时行40千米,开出5小时后,一列火车以每小时90千米的速度也从甲地开往乙地。
小学1-6年级【追及问题】思维训练解析

1.阿派、欧拉两人在同一条路上相距200米,阿派在前,欧拉在后,阿派每分钟走60米,欧拉每分钟走70米,两人同时向东出发,多少分钟后欧拉追上阿派?
路程差速度差
200÷(70 - 60)
=200÷10
=20(分钟)
答:20分钟后欧拉追上阿派。
2.欧拉与阿派分别开车从沈阳到天津,欧拉开车每小时行驶55千米,阿派开车每小时行驶65千米,欧拉先行2小时后,阿派才出发,问阿派出发后几小时追上欧拉?
路程差 速度差
55×2÷(65 - 55)
=110÷10
=11(小时)
答:阿派出发后11小时追上欧拉。
小学1-6年级【追及问题】思维训练解析
3.米德、卡尔两人围绕一条长400米的环形跑道练习长跑。米德每分钟跑300米,卡尔每分钟跑200米。两人从起跑线同方向出发,经过多长时间米德第一次追上卡尔?
路程差速度差
400÷(300 - 200)
=400÷100
=4(分钟)
答:经过4分钟米德第一次追上卡尔。
4.卡尔与米德在相距50米的地方同时同向出发,出发时卡尔在前,米德在后,如果卡尔每秒跑3米,米德每秒跑5米,多少秒后两人相距70米?
路程差 速度差
(50+70)÷(5 - 3)
=120÷2
=60(秒)
答:60秒后两人相距70米。
含解析小学数学《追及问题》应用题30道专题训练(精)

含解析小学数学《追及问题》应用题30道专题训练(精)含解析小学数学《追及问题》应用题30道专题训练(精)1.甲乙两人沿着400米的环形跑道跑步,他们同时从同一地点出发,同向而行。
甲的速度是190米/分,乙的速度是150米/分。
经过多少分钟甲第一次追上乙?【答案】10分钟【解析】【分析】经过多少分钟甲第一次追上乙,属于追击问题,用一圈相差400米除以速度差,得出所要答案。
【详解】(分)答:经过10分钟甲第一次追上乙。
【点睛】解答此题的关键是明确路程差和速度差之间的关系,考查学生分析问题的能力。
2.狗跑5步的时间,马跑3步,马跑4步的距离狗跑7步,现在狗已跑了30米,马开始追它,那么狗再跑多远,马可以追到它?【答案】600米【解析】【分析】因为马跑4步的距离狗跑7步,所以,可设马跑一步为7,则狗跑一步为4;又因为狗跑5步的时间马跑3步,所以可以再设马跑3步的时间为1,则狗跑5步的时间为1;由此可知,狗的速度为5×4=20,马的速度为7×3=21,根据追及距离除以速度差等于追及时间,可算出马可追上狗的时间;然后再进一步解答即可。
【详解】(5×4)×[30÷(7×3-5×4)]=20×30=600(米)答:狗再跑600米,马可以追到它。
【点睛】考查了追及问题,对于这类题目,利用赋值法比较简便。
3.甲、乙、丙三人都从A地出发到B地。
乙比丙晚出发10分钟,40分钟后追上丙;甲比乙晚出发20分钟,100分钟追上乙。
甲出发多少分钟后追上丙?【答案】60分钟【解析】【分析】乙比丙晚出发10分钟,经过40分钟追上丙,即乙行40分钟的路程与丙行(10+40)分钟的路程相等;同理,甲比乙晚出发20分钟,经过100分钟追上乙,即甲行100分钟的路程与乙行(20+100)分钟的路程相等;据此可知,行驶相同的路程乙所用时间是甲的(120÷100)倍,丙所行时间是乙的(50÷40)倍。
小学数学应用题典型详解-追及问题

例4 一辆客车从甲站开往乙站,每小时行48千米;一辆货车同 时从乙站开往甲站,每小时行40千米,两车在距两站中点16千米 处相遇,求甲乙两站的距离。 解 这道题可以由相遇问题转化为追及问题来解决。从题中可知 客车落后于货车(16×2)千米,客车追上货车的时间就是前面 所说的相遇时间, 这个时间为 16×2÷(48-40)=4(小时) 所以两站间的距离为 (48+40)×4=352(千米) 列成综合算式 (48+40)×[16×2÷(48-40)] =88×4 =352(千米) 答:甲乙两站的距离是352千米。
例3 我人民解放军追击一股逃窜的敌人,敌人在下 午16点开始从甲地以每小时10千米的速度逃跑,解放 军在晚上22点接到命令,以每小时30千米的速度开始 从乙地追击。已知甲乙两地相距60千米,问解放军几 个小时可以追上敌人? 解 敌人逃跑时间与解放军追击时间的时差是(22- 16)小时,这段时间敌人逃跑的路程是[10×(22- 6)]千米,甲乙两地相距60千米。由此推知 追及时间=[10×(22-6)+60]÷(30-10) =220÷20=11(小时) 答:解放军在11小时后可以追上敌人。
追及问题
追及问题
【含义】 两个运动物体在不同地点同 时出发(或者在同一地点而不是同时出 发,或者在不同地点又不是同时出发) 作同向运动,在后面的,行进速度要快 些,在前面的,行进速度较慢些,在一 定时间之内,后面的追上前面的物体。 这类应用题就叫做追及问题。
【数量关系】 追及时间=追及路程÷ (快速-慢速) 追及路程=(快速-慢速)× 追及时间 【解题思路和方法】 简单的题目直接利 用公式,复杂的题目变通后利用公式。
小学生数学追及问题练习题

小学生数学追及问题练习题1. 题目描述:小明和小华在同一起点开始进行长跑比赛。
已知小明的速度为5米/秒,小华的速度为4米/秒。
他们同时出发,小明一直跑到了终点后立即返回起点再追赶小华。
请计算在小明追上小华之前,小明和小华在起点和终点各跑了多少时间和距离?2. 解题思路:首先,我们需要计算小明和小华分别从起点到终点的所需时间和距离。
当小明跑到终点后,他需要再次回到起点才能开始追赶小华。
在小明追上小华之前,我们可以通过以下公式来计算:时间 = 距离 / 速度距离 = 速度 ×时间3. 解答步骤:步骤1:计算小明从起点到终点所需的时间和距离。
时间 = 距离 / 速度由题目中给出,小明的速度为5米/秒,起点到终点的距离为100米(假设起点和终点之间的距离为100米)。
小明从起点到终点的时间 = 100米 / 5米/秒 = 20秒小明从起点到终点的距离 = 5米/秒 × 20秒 = 100米步骤2:计算小明从终点返回起点所需的时间和距离。
小明从终点返回起点的时间 = 100米 / 5米/秒 = 20秒小明从终点返回起点的距离 = 5米/秒 × 20秒 = 100米步骤3:计算小华从起点到终点所需的时间和距离。
时间 = 距离 / 速度由题目中给出,小华的速度为4米/秒。
小华从起点到终点的时间 = 100米 / 4米/秒 = 25秒小华从起点到终点的距离 = 4米/秒 × 25秒 = 100米步骤4:计算小明追上小华时两者在起点和终点各跑了多少时间和距离。
根据题意,在小明追上小华时,小明已经跑了200米的距离(100米去程和100米回程),而小华已经跑了125米的距离。
小明追上小华时,两者在起点和终点各跑了20秒的时间。
综上所述,小明在起点和终点各跑了20秒的时间,距离为200米;小华在起点和终点各跑了25秒的时间,距离为125米。
4. 答案总结:小明在起点和终点各跑了20秒的时间,距离为200米。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
小学数学典型应用题追
及问题
Document serial number【KK89K-LLS98YT-SS8CB-SSUT-SST108】
小学数学典型应用题8
8追及问题
【含义】两个运动物体在不同地点同时出发(或者在同一地点而不是同时出发,或者在不同地点又不是同时出发)作同向运动,在后面的,行进速度要快些,在前面的,行进速度较慢些,在一定时间之内,后面的追上前面的物体。
这类应用题就叫做追及问题。
【数量关系】追及时间=追及路程÷(快速-慢速)
追及路程=(快速-慢速)×追及时间
【解题思路和方法】简单的题目直接利用公式,复杂的题目变通后利用公式。
例1好马每天走120千米,劣马每天走75千米,劣马先走12天,好马几天能追上劣马?
解(1)劣马先走12天能走多少千米?75×12=900(千米)
(2)好马几天追上劣马?900÷(120-75)=20(天)
列成综合算式75×12÷(120-75)=900÷45=20(天)
答:好马20天能追上劣马。
例2小明和小亮在200米环形跑道上跑步,小明跑一圈用40秒,他们从同一地点同时出发,同向而跑。
小明第一次追上小亮时跑了500米,求小亮的速度是每秒多少米。
解小明第一次追上小亮时比小亮多跑一圈,即200米,此时小亮跑了(500-200)米,要知小亮的速度,须知追及时间,即小明跑500米所用的时间。
又知小明跑200米用40秒,则跑500米用[40×(500÷200)]秒,所以小亮的速度是
(500-200)÷[40×(500÷200)]
=300÷100=3(米)
答:小亮的速度是每秒3米。
例3我人民解放军追击一股逃窜的敌人,敌人在下午16点开始从甲地以每小时10千米的速度逃跑,解放军在晚上22点接到命令,以每小时30千米的速度开始从乙地追击。
已知甲乙两地相距60千米,问解放军几个小时可以追上敌人?
解敌人逃跑时间与解放军追击时间的时差是(22-16)小时,这段时间敌人逃跑的路程是[10×(22-6)]千米,甲乙两地相距60千米。
由此推知追及时间=[10×(22-6)+60]÷(30-10)
=220÷20=11(小时)
答:解放军在11小时后可以追上敌人。
例4一辆客车从甲站开往乙站,每小时行48千米;一辆货车同时从乙站开往甲站,每小时行40千米,两车在距两站中点16千米处相遇,求甲乙两站的距离。
解这道题可以由相遇问题转化为追及问题来解决。
从题中可知客车落后于货车(16×2)千米,客车追上货车的时间就是前面所说的相遇时间,这个时间为16×2÷(48-40)=4(小时)
所以两站间的距离为(48+40)×4=352(千米)
列成综合算式(48+40)×[16×2÷(48-40)]
=88×4
=352(千米)
答:甲乙两站的距离是352千米。
例5兄妹二人同时由家上学,哥哥每分钟走90米,妹妹每分钟走60米。
哥哥到校门口时发现忘记带课本,立即沿原路回家去取,行至离校180米处和妹妹相遇。
问他们家离学校有多远?
解要求距离,速度已知,所以关键是求出相遇时间。
从题中可知,在相同时间(从出发到相遇)内哥哥比妹妹多走(180×2)米,这是因为哥哥比妹妹每分钟多走(90-60)米,
那么,二人从家出走到相遇所用时间为
180×2÷(90-60)=12(分钟)
家离学校的距离为90×12-180=900(米)
答:家离学校有900米远。
例6孙亮打算上课前5分钟到学校,他以每小时4千米的速度从家步行去学校,当他走了1千米时,发现手表慢了10分钟,因此立即跑步前进,到学校恰好准时上课。
后来算了一下,如果孙亮从家一开始就跑步,可比原来步行早9分钟到学校。
求孙亮跑步的速度。
解手表慢了10分钟,就等于晚出发10分钟,如果按原速走下去,就要迟到(10-5)分钟,后段路程跑步恰准时到学校,说明后段路程跑比走少用了(10-5)分钟。
如果从家一开始就跑步,可比步行少9分钟,由此可知,行1千米,跑步比步行少用[9-(10-5)]分钟。
所以
步行1千米所用时间为1÷[9-(10-5)]
=0.25(小时)
=15(分钟)
跑步1千米所用时间为15-[9-(10-5)]=11(分钟)
跑步速度为每小时1÷11/60=5.5(千米)
答:孙亮跑步速度为每小时5.5千米。