高中数学《新课程标准》考试试题及答案(三)

合集下载

最新高中数学新课程标准考试模拟试卷及答案(三套)

最新高中数学新课程标准考试模拟试卷及答案(三套)

高中教师数学新课程标准考试模拟试卷(一)附答案一、填空题(每小题4分,共40分)1. 数学教育在学校教育中占有特殊的地位,它使学生掌握数学的____________,___________, ______________, 使学生表达清晰、思考有条理,使学生具有_____________,______________________, 使学生会用数学的思考方式__________、____________。

2.高中数学课程对于认识数学与自然界、数学与人类社会的关系,认识数学的___________、_____________,提高提出问题、分析和解决问题的能力, 形成___________, 发展_____________________具有基础性的作用。

3. 高中数学课程标准最突出的特点就是体现了_______、________和_________。

4. 高中数学课程应力求通过各种不同形式的__________、____________, 让学生体验数学___________________的历程, 发展他们的____________。

5, 高中数学课程应注重提高学生的数学思维能力,这是数学教育的基本目标之一。

人们在学习数学和运用数学解决问题时,不断地经历__________、_________、_________、___________、_________、__________、__________、__________、___________、___________等思维过程。

6, 为了适应信息时代发展的需要,高中数学课程应增加______的内容,把最基本的________、________等作为新的数学基础知识和基本技能;同时,应删减繁琐的计算、人为技巧化的难题和过分强调细枝末节的内容,克服"_________"的倾向。

7, 普高中数学课程的总目标是:___________________________________________________________ ________。

数学新课标试题及答案2022

数学新课标试题及答案2022

数学新课标试题及答案2022一、选择题(每题3分,共30分)1. 下列哪个选项是最小的正整数?A. 0B. 1C. -1D. 2答案:B2. 已知一个数列的前三项分别为2, 4, 6,这个数列是一个:A. 等差数列B. 等比数列C. 既不是等差数列也不是等比数列D. 几何数列答案:A3. 函数f(x) = x^2 + 3x + 2的顶点坐标是:A. (-1, 1)B. (-2, -2)C. (1, 1)D. (2, 2)答案:A4. 如果一个三角形的三条边长分别为3, 4, 5,那么这个三角形是:A. 等边三角形B. 等腰三角形C. 直角三角形D. 一般三角形答案:C5. 以下哪个表达式的结果是一个整数?A. √2B. πC. 2/3D. 4^2答案:D6. 一个长方体的长、宽、高分别是10cm,8cm,6cm,其体积是:A. 480cm³B. 600cm³C. 720cm³D. 800cm³答案:A7. 下列哪个选项是分数的加减运算法则?A. 同分母分数相加减,分母不变,分子相加减B. 异分母分数相加减,先通分,再按同分母分数加减法的法则进行运算C. 分子相加减,分母不变D. 分母相加减,分子不变答案:B8. 一个数除以1/2等于这个数乘以:A. 1/2B. 2C. 3/2D. 4答案:B9. 下列哪个选项是正确的因式分解?A. x² - 1 = (x + 1)(x - 1)B. x² - 1 = (x - 1)²C. x² + 1 = (x + 1)(x - 1)D. x² + 1 = (x - 1)²答案:A10. 一个圆的直径是14cm,那么它的半径是:A. 7cmB. 14cmC. 28cmD. 21cm答案:A二、填空题(每题4分,共20分)11. 一个数的1/4加上它的1/2等于______。

2020年高考新课标Ⅲ理科数学试卷及答案

2020年高考新课标Ⅲ理科数学试卷及答案
则直线 的方程为 ,即 .
故选:D.
【点睛】本题主要考查了导数的几何意义的应用以及直线与圆的位置的应用,属于中档题.
11.设双曲线C: (a>0,b>0)的左、右焦点分别为F1,F2,离心率为 .P是C上一点,且F1P⊥F2P.若△PF1F2的面积为4,则a=()
A. 1B. 2C. 4D. 8
【答案】A
由 ,得 ,由 ,得 , ,可得 .
综上所述, .
故选:A.
【点睛】本题考查对数式的大小比较,涉及基本不等式、对数式与指数式的互化以及指数函数单调性的应用,考查推理能力,属于中等题.
所以满足 的有 ,
故 中元素的个数为4.
故选:C.
【点晴】本题主要考查集合的交集运算,考查学生对交集定义的理解,是一道容易题.
2.复数 的虚部是()
A. B. C. D.
【答案】D
利用复数的除法运算求出z即可.
【详解】因为 ,
所以复数 的虚部为 .
故选:D.
【点晴】本题主要考查复数的除法运算,涉及到复数的虚部的定义,是一道基础题.
A.y=2x+1B.y=2x+ C.y= x+1D.y= x+
【答案】D
根据导数的几何意义设出直线 的方程,再由直线与圆相切的性质,即可得出答案.
【详解】设直线 在曲线 上的切点为 ,则 ,
函数 的导数为 ,则直线 的斜率 ,
设直线 的方程为 ,即 ,
由于直线 与圆 相切,则 ,
两边平方并整理得 ,解得 , (舍),
2020年高考新课标Ⅲ理科数学试卷及答案
一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的

高中数学新课程标准的标准测试题目(附解答)

高中数学新课程标准的标准测试题目(附解答)

高中数学新课程标准的标准测试题目(附解答)第一部分:选择题1. 以下哪个不是三角函数的基本关系式?- A. $\sin^2 x + \cos^2 x = 1$- B. $\tan x = \frac{{\sin x}}{{\cos x}}$- C. $\cot x = \frac{{\cos x}}{{\sin x}}$- D. $\sec x = \frac{1}{{\cos x}}$解答:C2. 函数 $y = 2x^3 - 3x^2 - 12x + 5$ 的导数是什么?解答:$y' = 6x^2 - 6x - 12$3. 若 $\sin x = \frac{1}{2}$,则 $\cos x$ 的值为多少?解答:$\cos x = \frac{\sqrt{3}}{2}$第二部分:填空题1. 设直线 $y = 3x + 2$ 和直线 $y = -\frac{1}{3}x + 4$ 的交点为$A$,则 $A$ 的坐标是(,)。

解答:(-1, 1)2. 已知等差数列的首项为 5,公差为 3,若要使第10项为 32,则通项公式为 $a_n = $ 。

解答:$a_n = 5 + 3(n-1)$第三部分:解答题1. 求函数 $y = x^3 - 2x^2 + x$ 的极值点及极值。

解答:极值点为 $x = \frac{1}{3}$,极值为 $y = -\frac{4}{27}$。

2. 某商店有两种型号的电脑,价格分别为 $x$ 元和 $y$ 元。

已知该商店上个月销售了 $a$ 台电脑,总销售额为 $b$ 元,其中型号为第一种的电脑销售了 $c$ 台。

根据以上信息,列出一个方程。

解答:$ax + (c-a)y = b$以上是高中数学新课程标准的标准测试题目及其解答。

希望对您有所帮助!。

普通高中新数学课程标准题库(含答案)

普通高中新数学课程标准题库(含答案)

普通高中新数学课程标准题库(含答案)普通高中新数学课程标准题库(含答案)1. 课程标准题库的目的和意义普通高中新数学课程标准题库的建设是为了帮助教师和学生更好地理解和掌握新数学课程标准中的知识和能力要求。

通过提供一系列符合课程标准的题目和答案,可以帮助学生进行针对性的练习和复习,提高数学学科的学习效果。

2. 题库的组成和结构普通高中新数学课程标准题库主要包括选择题、填空题、计算题和证明题等多种题型。

每个题型都根据课程标准中的知识点和能力要求设计,涵盖全面而有针对性。

题库的结构按照课程标准的章节和知识点进行划分,每个章节下包含若干相关的题目。

每个题目都标注了难度级别,以帮助学生有针对性地选择适合自己的练习题目。

同时,每个题目都有详细的答案和解析,方便学生进行自我评估和纠正。

3. 使用题库的建议- 学生可以根据自己的学习进度和需求选择相应章节和题目进行练习。

建议从易到难地进行练习,逐渐提升自己的解题能力和思维能力。

- 在做题过程中,可以参考题目的答案和解析,了解解题思路和方法。

如果遇到困难或疑惑,可以向老师或同学寻求帮助。

- 做完一套题后,可以进行自我评估,查漏补缺。

对于有错误的题目,可以重新理解和解答,直到完全掌握。

- 建议学生定期使用题库进行练习,巩固和提高数学知识和技能。

4. 题库的更新和维护为了保持题库的时效性和准确性,建议定期对题库进行更新和维护。

根据教育部发布的最新数学课程标准,对题库中的题目进行修订和调整,删除过时的内容,增加新的知识点。

同时,鼓励教师和学生积极参与题库的建设和完善,提供有针对性的题目和解析,共同促进数学教育的发展。

结论普通高中新数学课程标准题库的建设对于提高学生的数学学习效果和能力水平具有重要意义。

通过合理使用题库,学生可以有针对性地进行练习和复习,提高解题能力和思维能力。

同时,题库的更新和维护也需要教师和学生的共同努力,为数学教育的发展做出贡献。

参考资料:- 教育部. (年份). 《普通高级中学数学课程标准》. 中国教育出版社.。

普高数学新课程标准的练习题(包含答案)

普高数学新课程标准的练习题(包含答案)

普高数学新课程标准的练习题(包含答案)普高数学新课程标准的练习题(包含答案)一、选择题1. 下列选项中,哪个是普高数学新课程标准中要求的必修内容?A. 微积分B. 线性代数C. 概率论与数理统计D. 立体几何{答案:D}二、填空题2. 在普高数学新课程标准中,__________是数学探究的基本方法。

{答案:推理}三、解答题3. 请简述普高数学新课程标准中数学核心素养的概念及包含内容。

{答案:普高数学新课程标准中数学核心素养包括:逻辑推理、数学建模、数据分析、空间想象、数学运算和直观想象。

}4. 解下列方程:2x - 5 = 3{答案:x = 4}5. 已知函数f(x) = x² - 2x + 1,求f(3)。

{答案:f(3) = 4}6. 某班级有50名学生,其中有25名男生,求该班级男生的百分比。

{答案:50%}四、应用题7. 小明购买了一辆汽车,已知汽车每年的折旧率为10%,小明计划使用该汽车5年,求5年后汽车的残值。

{答案:假设汽车原价为100万元,则5年后汽车的残值为100×(1-10%)⁵=47.62万元。

}8. 某商店进行打折活动,原价为1000元的商品打8折,求折后价格。

{答案:折后价格为1000×0.8=800元。

}9. 请编写一个程序,实现计算1到100之间所有整数的和。

{答案:程序代码(Python)}sum = 0for i in range(1, 101):sum += iprint(sum){答案解释:该程序通过循环语句计算1到100之间所有整数的和,最终输出结果为5050。

}以上就是普高数学新课程标准的练习题及答案,希望能帮助您更好地理解和掌握新课程标准下的数学知识。

2020学年普通高等学校招生全国统一考试(新课标Ⅲ卷)数学理及答案解析

2020学年普通高等学校招生全国统一考试(新课标Ⅲ卷)数学理及答案解析

2020年普通高等学校招生全国统一考试(新课标Ⅲ卷)数学理一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合A={x|x﹣1≥0},B={0,1,2},则A∩B=( )A.{0}B.{1}C.{1,2}D.{0,1,2}解析:∵A={x|x﹣1≥0}={x|x≥1},B={0,1,2},∴A∩B={x|x≥1}∩{0,1,2}={1,2}.答案:C2.(1+i)(2﹣i)=( )A.﹣3﹣iB.﹣3+iC.3﹣iD.3+i解析:(1+i)(2﹣i)=3+i.答案:D3.中国古建筑借助榫卯将木构件连接起来.构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是( )A.B.C.D.解析:由题意可知,如图摆放的木构件与某一带卯眼的木构件咬合成长方体,小的长方体,是榫头,从图形看出,轮廓是长方形,内含一个长方形,并且一条边重合,另外3边是虚线,所以木构件的俯视图是A.答案:A4.若sinα=13,则cos2α=( ) A.89 B.79C.﹣79D.﹣89解析:∵sinα=13,∴cos2α=1﹣2sin 2α=192719-⨯=. 答案:B5.(x 2+2x )5的展开式中x 4的系数为( )A.10B.20C.40D.80解析:由二项式定理得(x 2+2x )5的展开式的通项为:()()5210315522rrr rr rr xT Cx C x--+==,由10﹣3r=4,解得r=2,∴(x 2+2x )5的展开式中x 4的系数为5222C =40.答案:C6.直线x+y+2=0分别与x 轴,y 轴交于A ,B 两点,点P 在圆(x ﹣2)2+y 2=2上,则△ABP 面积的取值范围是( ) A.[2,6] B.[4,8]232,D.[2232,] 解析:∵直线x+y+2=0分别与x 轴,y 轴交于A ,B 两点, ∴令x=0,得y=﹣2,令y=0,得x=﹣2,∴A(﹣2,0),B(0,﹣2),4+4=22∵点P 在圆(x ﹣2)2+y 2=2上,∴设P ()2co 2s sin 2θθ+,,∴点P 到直线x+y+2=0的距离:()2sin 42cos sin 242222d πθθθ+++++==,∵()sin 4πθ+∈[﹣1,1],∴d= ()22sin 44πθ++∈[232,], ∴△ABP 面积的取值范围是:[11222223222⨯⨯⨯⨯,,6].答案:A7.函数y=﹣x 4+x 2+2的图象大致为( )A.B.C.D.解析:函数过定点(0,2),排除A ,B.函数的导数f′(x)=﹣4x 3+2x=﹣2x(2x 2﹣1),由f′(x)>0得2x(2x 2﹣1)<0,得x <﹣或0<x <,此时函数单调递增,排除C.答案:D8.某群体中的每位成员使用移动支付的概率都为p ,各成员的支付方式相互独立.设X 为该群体的10位成员中使用移动支付的人数,DX=2.4,P(x=4)<P(X=6),则p=( ) A.0.7 B.0.6 C.0.4 D.0.3 解析:某群体中的每位成员使用移动支付的概率都为p ,看做是独立重复事件,满足X ~B(10,p),P(x=4)<P(X=6),可得()()644466101011C p p C p p --<,可得1﹣2p <0.即12p >. 因为DX=2.4,可得10p(1﹣p)=2.4,解得p=0.6或p=0.4(舍去). 答案:B9.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c.若△ABC 的面积为2224a b c +-,则C=( )A.2πB.3πC.4πD.6π解析:∵△ABC 的内角A ,B ,C 的对边分别为a ,b ,c.△ABC 的面积为2224a b c +-,∴S △ABC =222s 1in 42a b c ab C +-=,∴sinC=2222a b c bc +-=cosC ,∵0<C <π,∴C=4π.答案:C10.设A ,B ,C ,D 是同一个半径为4的球的球面上四点,△ABC 为等边三角形且面积为则三棱锥D ﹣ABC 体积的最大值为( )A.B.C.D.543解析:△ABC 为等边三角形且面积为93,可得2393AB ⨯=,解得AB=6,球心为O ,三角形ABC 的外心为O′,显然D 在O′O 的延长线与球的交点如图:()222362342323O C OO '=='=-=,,则三棱锥D ﹣ABC 高的最大值为:6,则三棱锥D ﹣ABC 体积的最大值为:31361833=答案:B11.设F 1,F 2是双曲线C :22221y x a b -=(a >0.b >0)的左,右焦点,O 是坐标原点.过F 2作C的一条渐近线的垂线,垂足为P ,若|PF 1|=6|OP|,则C 的离心率为( )A.5B.2C.3D.2解析:双曲线C :22221y x a b -=(a >0.b >0)的一条渐近线方程为b y x a =, ∴点F 2到渐近线的距离22bcd b a b ==+,即|PF 2|=b ,∴2222222cos bOP OF PF c b a PF O c =-=-=∠=,, ∵|PF 16|OP|,∴|PF 16a ,在三角形F 1PF 2中,由余弦定理可得|PF 1|2=|PF 2|2+|F 1F 2|2﹣2|PF 2|·|F 1F 2|COS ∠PF 2O ,∴6a 2=b 2+4c 2﹣2×b ×2c ×bc =4c 2﹣3b 2=4c 2﹣3(c 2﹣a 2),即3a 2=c 2, 即3a=c ,∴3c e a ==.答案:C12.设a=log 0.20.3,b=log 20.3,则( ) A.a+b <ab <0 B.ab <a+b <0 C.a+b <0<ab D.ab <0<a+b解析:∵a=log 0.20.3=lg 0.3lg 5-,b=log 20.3=lg 0.3lg 2,∴()5lg 0.3lg lg 0.3lg 5lg 2lg 0.3lg 0.32lg 2lg 5lg 2lg 5lg 2lg 5a b -+-===,10lg 0.3lg lg 0.3lg 0.33lg 2lg 5lg 2lg 5ab ⋅-⋅==,∵105lg lg 32>,lg 0.3lg 2lg 5<,∴ab <a+b <0.答案:B二、填空题:本题共4小题,每小题5分,共20分.13.已知向量a =(1,2),b =(2,﹣2),c =(1,λ).若c ∥(2a b +),则λ=____. 解析:∵向量a =(1,2),b =(2,﹣2), ∴2a b +=(4,2),∵c =(1,λ),c ∥(2a b +),∴142λ=, 解得λ=12.答案: 1214.曲线y=(ax+1)e x在点(0,1)处的切线的斜率为﹣2,则a=____.解析:曲线y=(ax+1)e x ,可得y′=ae x +(ax+1)e x,曲线y=(ax+1)e x在点(0,1)处的切线的斜率为﹣2, 可得:a+1=﹣2,解得a=﹣3. 答案:﹣315.函数f(x)=cos(3x+6π)在[0,π]的零点个数为____.解析:∵f(x)=cos(3x+6π)=0, ∴362x k πππ+=+,k ∈Z ,∴x=193k ππ+,k ∈Z ,当k=0时,x=9π,当k=1时,x=49π,当k=2时,x=79π,当k=3时,x=109π,∵x ∈[0,π],∴x=9π,或x=49π,或x=79π,故零点的个数为3. 答案:316.已知点M(﹣1,1)和抛物线C :y 2=4x ,过C 的焦点且斜率为k 的直线与C 交于A ,B 两点.若∠AMB =90°,则k=____.解析:∵抛物线C :y 2=4x 的焦点F(1,0), ∴过A ,B 两点的直线方程为y=k(x ﹣1),联立()241y x y k x ⎪-⎧⎪⎨⎩==可得,k 2x 2﹣2(2+k 2)x+k 2=0, 设A(x 1,y 1),B(x 2,y 2),则212242k x x k ++=,x 1x 2=1, ∴y 1+y 2=k(x 1+x 2﹣2)=4k ,y 1y 2=k 2(x 1﹣1)(x 2﹣1)=k 2[x 1x 2﹣(x 1+x 2)+1]=﹣4,∵M(﹣1,1),∴MA =(x 1+1,y 1﹣1),MB =(x 2+1,y 2﹣1), ∵∠AMB=90°=0,∴0MA MB ⋅= ∴(x 1+1)(x 2+1)+(y 1﹣1)(y 2﹣1)=0,整理可得,x 1x 2+(x 1+x 2)+y 1y 2﹣(y 1+y 2)+2=0,∴24124420k k ++--+=,即k 2﹣4k+4=0,∴k=2. 答案:2三、解答题:共70分。

2020年全国新课标卷三(理科数学)_参考答案

2020年全国新课标卷三(理科数学)_参考答案
人次≤400
人次>400
空气质量好
空气质量不好
附: ,
P(K2≥k)
0.050
0.010
0.001kBiblioteka 3.8416.635
10.828
19.如图,在长方体 中,点 分别在棱 上,且 , .
(1)证明:点 在平面 内;
(2)若 , , ,求二面角 的正弦值.
20.已知椭圆 的离心率为 , , 分别为 的左、右顶点.
15.已知圆锥的底面半径为1,母线长为3,则该圆锥内半径最大的球的体积为_________.
16.关于函数f(x)= 有如下四个命题:
①f(x)的图像关于y轴对称.
②f(x)的图像关于原点对称.
③f(x)的图像关于直线x= 对称.
④f(x)的最小值为2.
其中所有真命题的序号是__________.
三、解答题
3.B
【解析】
【分析】
计算出四个选项中对应数据的平均数和方差,由此可得出标准差最大的一组.
【详解】
对于A选项,该组数据的平均数为 ,
方差为 ;
对于B选项,该组数据的平均数为 ,
方差为 ;
对于C选项,该组数据的平均数为 ,
方差为 ;
对于D选项,该组数据的平均数为 ,
方差为 .
因此,B选项这一组的标准差最大.
17.设数列{an}满足a1=3, .
(1)计算a2,a3,猜想{an}的通项公式并加以证明;
(2)求数列{2nan}的前n项和Sn.
18.某学生兴趣小组随机调查了某市100天中每天的空气质量等级和当天到某公园锻炼的人次,整理数据得到下表(单位:天):
锻炼人次
空气质量等级
[0,200]
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学《新课程标准》考试试题及答案(三)
一、选择题(20个题,每题1.5分,共30分)
1.高中数学课程的基础性是指(B)
A. 只有必修课程是基础
B.必修和选修课程是所有高中生的基础
C.高中数学课程为全体高中学生提供必要的数学基础,高中数学课程为不同学生提供不同的基础
D.必修课程是基础,选修课程不是基础
2.培养学生的学习习惯对今后发展至关重要,下面说法中不正确的是( A )
A.自学成才,无需培养
B. 培养学生会提问题、勤于思考的习惯
C.培养学生用图形描述、刻画和解决问题的习惯
D.培养学生及时反思和总结的习惯
3.对于函数的教学以下说法不正确的是( C )
A.对函数的学习不能停留在抽象的讨论,要突出函数图形的地位
B. 函数是最重要、最基本的数学模型,要加深对函数思想的理解与应用
C.在学生头脑中留下几个具体的最基本的函数模型就可以了
D. 结合具体的数学内容采用多种模式,让学生经历函数知识的形式与应用过程
4.整体把握高中数学课程是理解高中数学课程的基点。

请根据培训内容说说看高中数学课程内容的主线可大致分为(A )
A.函数思想、几何思想、算法思想、运算思想、随机思想与统计思想
B. 数形结合思想、分类讨论思想、函数与方程思想、概率与统计思想
C.函数与方程的思想、数形结合思想、向量和坐标思想
D.函数思想、算法思想、数形结合思想、分类讨论思想
5.高中课程改革追求基本的目标是由应试教育向素质教育的转轨,真正实施(C)
A. 全民教育
B.大众教育
C. 素质教育
D. 精英教育
6.《普通高中数学课程标准》提出的新课程基本理念,下面各组选项中说法不正确的是(B)
①构建共同基础,提供发展平台②提供针对课程,适应个性选择③倡导积极主动、勇于探索的学习方式④注重提高学生的数学思维能力⑤发展学生的数学思维能力⑥与时俱进地认识双基⑦强调本质,注意适度形式化⑧体现数学的文化价值;
⑨注重信息技术与数学课程的整合;⑩建立合理、科学的评价体系;
A.①③④⑦
B.②④⑤⑧
C.③⑤⑥⑨
D.①⑤⑨⑩
7.运算与推理的关系是( C )
A.运算与推理无关
B.运算与推理是不同的思维形式
C.运算本身就是一种推理,推理是运算的一种
D. 推理是运算
8.任何新课程的研制,一般都要经过哪几个阶段进行( D )
A.准备、研制、编写、推广
B.研制、编写、实验、推广
C.准备、研制、实验、推广
D.准备、研制、编写、实验、推广
9.从以下选项看,确定教学目标和教学要求的主要依据是( A )
A. 课程标准
B. 教科书
C. 考试大纲
D.教辅资料
10.与社会、科技的进步紧密相连,体现时代精神的课程时代性的选择是指( B)
A.课程安排
B. 课程内容
C.课程管理
D. 课程评价
二、填空题(15个题)
1.算法是一个全新的课题,已经成为计算机科学的重要基础,它在科学技术和社会发展中起着越来起重要的作用。

2.课程目标要求学生具有一定的数学视野,逐步认识数学的科学价值、应用价值和文化价值,形成批判性的思维习惯,崇尚数学的理性精神,体会数学的美学意义,从而进一步树立辩证唯物主义和历史唯物主义世界观。

3.新课程标准的目标要求包括三个方面:知识与技能,过程与方法和情感、态度、价值观
4.高中数学选修2-2的内容包括导数及其应用、推理与证明、数系的扩充与复数的引入。

5.向量是近代数学中重要和基本的数学概念之一,它是沟通代数、几何与_三
角函数的一种工具,有着极其丰富的实际背景。

6.用空间向量处理立体几何问题,提供了新的视角。

空间向量的引入,为解决三维空间中图形的位置关系与度量问题提供了一个十分有效的工具。

7.数学是研究空间形式和数量关系空间形式和数量关系的科学,是刻画自然规律和社会规律的科学语言和有效工具。

8.普通高中数学课程的总目标是:使学生在九年义务教育数学课程的基础上,进一步提高作为未来公民所必要的数学素养,以满足个人发展与社会进步的需要。

12.高中数学课程要求把数学探究、数学建模的思想以不同的形式渗透在各个模块和专题内容之中。

13.选修课程系列1是为希望在人文、社会科学等方面发展的学生设置的,系列2是为希望在理工、经济等方面发展的学生设置的
14.数学探究即数学探究性课题学习,是指学生围绕某个数学问题,自主探究、学习的过程。

15.选修课程系列1 是为希望在人文、社会科学等方面发展的学生设置的,系列2是为希望在理工、经济等方面发展的学生设置的。

三、解答题(2个题,每题20分,共40分)
1.简述高中数学课程标准课程的基本理念。

答1.构建共同基础,提供发展平台2.提供多样课程,适应个性选择3.倡导积极主动、勇于探索的学习方式4.注重提高学生的数学思维能力5.发展学生的数学应用意识 6.与时俱进地认识“双基”7.强调本质,注意适度形式化8.体现数学的文化价值9.注重信息技术与数学课程的整合10. 建立合理、科学的评价体系
2. 数学教学要体现课程改革的基本理念,请您结合自己的教学经验,谈谈在教学中应该把握好哪几个方面的问题。

答:应把握好以下几个方面:
(1)以学生发展为本,指导学生合理选择课程、制定学习计划;
(2)帮助学生打好基础,发展能力;
(3)注重联系,提高对数学整体的认识;
(4)注重数学知识与实际的联系,发展学生的应用意识和能力;
(5)关注数学的文化价值,促进学生科学观的形成;
(6)改善教与学的方式,使学生主动地学习;
(7)恰当运用现代信息技术,提高教学质量。

3、高中数学课程的总目标是什么?
答:使学生在九年制义务教育数学课程的基础上,进一步提高作为未来公民所必要的数学素养,以满足个人发展与社会进步的需要。

4、高中数学新课程设置的原则是什么?
答:必修课内容确定的原则是:满足未来公民的基本数学需求,为学生进一步的学习提供必要的数学准备;
选修课内容确定的原则是:满足学生的兴趣和对未来发展的需求,为学生进一步学习、获得较高数学素养奠定基础。

5、评价学生在数学建模中的表现时,评价内容应关注哪几个方面?
答:评价内容应关注以下几个方面:
创新性——问题的提出和解决的方案有新意。

现实性——问题来源于学生的现实。

真实性——确实是学生本人参与制作的,数据是真实的。

合理性——建模过程中使用的数学方法得当,求解过程合乎常理。

有效性——建模的结果有一定的实际意义。

相关文档
最新文档