高中物理模型-子弹打木块
高中物理模型-子弹打木块模型

模型组合讲解——子弹打木块模型赵胜华[模型概述]子弹打木块模型:包括一物块在木板上滑动等。
Q E s F k N =∆=系统相μ,Q 为摩擦在系统中产生的热量;小球在置于光滑水平面上的竖直平面内弧形光滑轨道上滑动;一静一动的同种电荷追碰运动等。
[模型讲解]例. 如图1所示,一个长为L 、质量为M 的长方形木块,静止在光滑水平面上,一个质量为m 的物块(可视为质点),以水平初速度0v 从木块的左端滑向右端,设物块与木块间的动摩擦因数为μ,当物块与木块达到相对静止时,物块仍在长木块上,求系统机械能转化成内能的量Q 。
图1解析:可先根据动量守恒定律求出m 和M 的共同速度,再根据动能定理或能量守恒求出转化为内能的量Q 。
对物块,滑动摩擦力f F 做负功,由动能定理得:2022121)(mv mv s d F t f -=+- 即f F 对物块做负功,使物块动能减少。
对木块,滑动摩擦力f F 对木块做正功,由动能定理得221Mv s F f =,即f F 对木块做正功,使木块动能增加,系统减少的机械能为:><=-+=--1)(2121212220d F s F s d F Mv mv mv f f f t本题中mg F f μ=,物块与木块相对静止时,v v t =,则上式可简化为:><+-=2)(2121220t v M m mv mgd μ又以物块、木块为系统,系统在水平方向不受外力,动量守恒,则:><+=3)(0tv M m mv联立式<2>、<3>得:)(220m M g Mv d +=μ故系统机械能转化为内能的量为:)(2)(22020m M Mmv m M g Mv mg d F Q f +=+⋅==μμ点评:系统内一对滑动摩擦力做功之和(净功)为负值,在数值上等于滑动摩擦力与相对位移的乘积,其绝对值等于系统机械能的减少量,即E s F f ∆=。
动量定理、动能定理专题-子弹打木块模型

动量定理、动能定理专题-⼦弹打⽊块模型动量定理、动能定理专题----⼦弹打⽊块模型⼀、模型描述:此模型主要是指⼦弹击中未固定的光滑⽊块的物理场景,如图所⽰。
其本质是⼦弹和⽊块在⼀对⼒和反作⽤⼒(系统内⼒)的作⽤下,实现系统内物体动量和能量的转移或转化。
⼆、⽅法策略:(1) 运动性质:在该模型中,默认⼦弹撞击⽊块过程中的相互作⽤⼒是恒恒⼒,则⼦弹在阻⼒的作⽤下会做匀减速直线性运动;⽊块将在动⼒的作⽤下做匀加速直线运动。
这会存在两种情况:(1)最终⼦弹尚未穿透⽊块,(2)⼦弹穿透⽊块。
(2) 基本规律:如图所⽰,研究⼦弹未穿透⽊块的情况:三、图象描述:在同⼀个v-t坐标中,两者的速度图线如图甲所⽰。
图线的纵坐标给出各时刻两者的速度,图线的斜率反映了两者的加速度。
两图线间阴影部分⾯积则对应了两者间的相对位移:d=s1-s2。
如果打穿图象如图⼄所⽰。
点评:由此可见图象可以直观形象反映两者的速度的变化规律,也可以直接对⽐出物块的对地位移和⼦弹的相对位移,从⽽从能量的⾓度快速分析出系统产⽣的热量⼀定⼤于物块动能的⼤⼩。
四、模型迁移⼦弹打⽊块模型的本质特征是物体在⼀对作⽤⼒与反作⽤⼒(系统内⼒)的冲量作⽤下,实现系统内物体的动量、能量的转移或转化。
故物块在粗糙⽊板上滑动、⼀静⼀动的同种电荷追碰运动,⼀静⼀动的导体棒在光滑导轨上切割磁感线运动、⼩球从光滑⽔平⾯上的竖直平⾯内弧形光滑轨道最低点上滑等等,如图所⽰。
(1)典型例题:例1.如图所⽰,质量为M的⽊块静⽌于光滑的⽔平⾯上,⼀质量为m、速度为的⼦弹⽔平射⼊⽊块且未穿出,设⽊块对⼦弹的阻⼒恒为F,求:(1)⼦弹与⽊块相对静⽌时⼆者共同速度为多⼤?(2)射⼊过程中产⽣的内能和⼦弹对⽊块所做的功分别为多少?(3)⽊块⾄少为多长时⼦弹才不会穿出?1. ⼀颗速度较⼤的⼦弹,以速度v ⽔平击穿原来静⽌在光滑⽔平⾯上的⽊块,设⽊块对⼦弹的阻⼒恒定,则当⼦弹⼊射速度增⼤为2v 时,下列说法正确的是( )A. ⼦弹对⽊块做的功不变B. ⼦弹对⽊块做的功变⼤C. 系统损耗的机械能不变D. 系统损耗的机械能增加解析:⼦弹的⼊射速度越⼤,⼦弹击中⽊块所⽤的时间越短,⽊块相对地⾯的位移越⼩,⼦弹对⽊块做的功W =fs 变⼩,选项AB 错误;⼦弹相对⽊块的位移不变,由Q =f s 相对知Q 不变,系统损失的机械能等于产⽣的热量,则系统损耗的机械能不变,选项C 正确,D 错误。
子弹打木块

1.一轻质弹簧,两端连接两滑块A和B,已知 mA=0.99kg , mB=3kg,放在光滑水平桌面上, 开始时弹簧处于原长。现滑块A被水平飞来的质 量为mc=10g,速度为400m/s的子弹击中,且没有 穿出,如图所示,试求: (1)子弹击中A的瞬间A和B的速度 (2)以后运动过程中弹簧的最大弹性势能 (3)B可获得的最大动能 (1)4m/s; 0 (2)6J (3)6J
第36题图
7.如图所示,一质量为M的平板车B放在光滑水平 面上,在其右端放一质量为m的小木块A,M=3m, A、B间动摩擦因数为μ,现给A和B以大小相等、 方向相反的初速度v0,使A开始向左运动,B开始 向右运动,最后A不会滑离B,求:①A、B最后的 速度大小和方向;m②要使A最终不脱离B,平板 车B的最短长度为多少。
v0水平向右射入木块,穿出木块时速度为 v0,设木块对子弹的阻力始终保持不变.
2 5
(1)求子弹穿透木块后,木块速度的大小; (2)求子弹穿透木块的过程中,木块滑行 L 的距离s;
v0 m 3m
2 mv 0 m v0 3mv (1)由动量守恒定律, , 5 v0 v 解得木块的速度大小为 5
二、穿透类 特点:在某一方向动量守恒,子弹有 初动量,木块有或无初动量,击穿时间很 短,击穿后二者分别以某一速度度运动. 规律:选子弹和木块为一个系统,因 系统水平守恒定律
总结:子弹打木块的模型 1.运动性质:子弹对地在滑动摩擦力作 用下匀减速直线运动;木块在滑动摩擦力 作用下做匀加速运动。 2.符合的规律:子弹和木块组成的系统 动量守恒,机械能不守恒。 3.共性特征:一物体在另一物体上,在 恒定的阻力作用下相对运动,系统动量守 恒,机械能不守恒,ΔEK=Q = f 滑d相对
解:以子弹m和木块M组成的物体系统为研究对象,运用动量守恒定律,则有
高中物理模型:子弹打木块模型

模型/题型:子弹打木块模型一.模型概述子弹射击木块的两种典型情况1.木块放置在光滑的水平面上运动性质:子弹对地在滑动摩擦力作用下做匀减速直线运动;木块在滑动摩擦力作用下做匀加速运动。
处理方法:把子弹和木块看成一个系统,①系统水平方向动量守恒;②系统的机械能不守恒;③对木块和子弹分别利用动能定理。
2.木块固定在水平面上运动性质:子弹对地在滑动摩擦力作用下做匀减速直线运动;木块静止不动。
处理方法:对子弹应用动能定理或牛顿第二定律。
两种类型的共同点:(1)系统内相互作用的两物体间的一对滑动摩擦力做功的总和恒为负值(因为有一部分机械能转化为内能);系统损失的动能等于系统增加的内能.(2)摩擦生热的条件:必须存在滑动摩擦力和相对滑行的路程,大小为Q =F f ·x 相,其中f 是滑动摩擦力的大小,x 是两个物体的相对路程(在一段时间内“子弹”射入“木块”的深度,就是这段时间内两者的相对路程,所以说是一个相对运动问题)。
(3)系统产生的内能,即两物体由于相对运动而摩擦产生的热(机械能转化为内能),等于摩擦力大小与两物体相对滑动的路程的乘积.(4)当子弹速度很大时,可能射穿木块,这时末状态子弹和木块的速度大小不再相等,但穿透过程中系统的动量仍守恒,系统损失的动能为ΔE k =F f ·L (L 为木块的长度).二、标准模型标准模型:一质量为M 的木块放在光滑的水平面上,一质量为m 的子弹以初速度v 0水平打进木块并留在其中,设子弹与木块之间的相互作用力为F f .则:(1)子弹、木块相对静止时的速度是多少?(2)子弹在木块内运动的时间为多长?(3)子弹、木块相互作用过程中子弹、木块发生的位移以及子弹打进木块的深度分别是多少?(4)系统损失的机械能、系统增加的内能分别是多少?(5)要使子弹不射出木块,木块至少多长?答案 (1)m M +m v 0 (2)Mm v 0F f (M +m ) (3)Mm (M +2m )v 022F f (M +m )2 Mm 2v 022F f (M +m )2 Mm v 022F f (M +m ) (4)Mm v 022(M +m ) Mm v 022(M +m ) (5)Mm v 022F f (M +m )解析(1)设子弹、木块相对静止时的速度为v ,以子弹初速度的方向为正方向,由动量守恒定律得 mv 0=(M +m )v 解得v =mM +mv 0 (2)设子弹在木块内运动的时间为t ,由动量定理得对木块:F f t =Mv -0 解得t =Mmv 0F f (M +m )(3)设子弹、木块发生的位移分别为x 1、x 2,如图所示,由动能定理得对子弹:-F f x 1=12mv 2-12mv 02 解得:x 1=Mm (M +2m )v 022F f (M +m )2 对木块:F f x 2=12Mv 2 解得:x 2=Mm 2v 022F f (M +m )2子弹打进木块的深度等于相对位移,即x 相=x 1-x 2=Mmv 022F f (M +m ) (4)系统损失的机械能为E 损=12mv 02-12(M +m )v 2=Mmv 022(M +m )系统增加的内能为Q =F f ·x 相=Mmv 022(M +m ),系统增加的内能等于系统损失的机械能 (5)假设子弹恰好不射出木块,此时有F f L =12mv 02-12(M +m )v 2 解得L =Mmv 022F f (M +m ) 因此木块的长度至少为Mmv 022F f (M +m ).三、典型例题1.(子弹打木块的能量) (多选)如图所示,质量为m 的子弹水平射入质量为M 、放在光滑水平地面上静止的木块,子弹未穿透木块,则从子弹接触木块到随木块一起匀速运动的过程中木块动能增加了5 J ,那么此过程中系统产生的内能可能为( )A .16 JB .11.2 JC .4.8 JD .3.4 J答案 AB.解析法二:本题也可用图象法,画出子弹和木块的v -t 图象如图所示,根据v -t 图象与坐标轴所围面积表示位移,ΔOAt 的面积表示木块的位移s ,ΔOAv 0的面积表示子弹相对木块的位移d ,系统产生的内能Q =fd ,木块得到的动能E k1=fs ,从图象中很明显可以看出d >s ,故系统产生的内能大于木块得到的动能.2.一质量为M 、长为l 的长方形木板B 放在光滑的水平地面上,在其右端放一质量为m 的小木块A ,m <M 。
子弹打木块模型知识点总结

子弹打木块模型知识点总结
1.动量守恒:根据牛顿力学,系统内部的总动量在碰撞前后是守恒的。
在子弹打木块模型中,子弹和木块碰撞后,它们的总动量保持不变。
2.能量守恒:在碰撞中,系统内部的总能量是守恒的。
根据能量守恒
定律,子弹和木块碰撞后将会消耗一部分能量。
3.碰撞力:在子弹打木块的过程中,子弹与木块之间会产生碰撞力。
碰撞力的大小取决于子弹和木块之间的相互作用力。
4.碰撞时间:碰撞时间是子弹和木块碰撞的持续时间。
它是一个关键
变量,会影响碰撞力的大小和作用时间。
5.碰撞类型:子弹打木块模型中常见的碰撞类型有弹性碰撞和非弹性
碰撞。
在弹性碰撞中,子弹和木块之间没有能量损失,而在非弹性碰撞中,会有一部分能量损失。
6.飞行轨迹:子弹的飞行轨迹取决于其速度、发射角度和重力等因素。
可以通过运动学和动力学的知识来分析子弹的飞行轨迹。
7.摩擦力:子弹和木块之间的摩擦力会对碰撞产生影响。
摩擦力越大,碰撞力越小。
摩擦力的大小取决于物体的材料和表面特性。
8.速度变化:子弹和木块在碰撞后,它们的速度会发生变化。
速度变
化的大小和方向取决于碰撞力的大小和作用时间。
9.模拟方法:为了模拟子弹打木块的过程,可以使用数值计算方法,
如欧拉法或龙格-库塔法等。
这些方法根据已知的物理量和假设模拟碰撞
的过程。
以上是子弹打木块模型中的一些关键知识点。
通过理解和应用这些知识,可以对子弹与木块碰撞的行为进行模拟和分析。
专题九 “子弹打木块”模型和“滑块—木板”模型

[答案] 见解析
[解析] 由(2)可知,若撤去力 前物块与挡板间距为 ,从撤去力 到停止的运动时间
内物块位移大小为 时物块与挡板间距离为 若 ,设从撤去力 到长木板和物块发生碰撞所需的时间为 ①当 ,即 时,长木板停止运动后二者发生碰撞碰撞前瞬间对物块有 碰撞过程有 根据动量定理有 联立解得
(3)匀减速滑行过程中受到的平均阻力大小.
[答案]
[解析] 将减速过程当成逆向的加速过程,有 解得一起减速运动的加速度大小 根据牛顿第二定律可得,匀减速滑行过程中受到的平均阻力大小
3.如图所示,质量为 的物块(可视为质点)放在质量为 的木板左端,足够长的木板静止在光滑水平面上,物块与木板间的动摩擦因数为 .质量为 的子弹以速度 沿水平方向射入物块并留在其中(时间极短), 取 .子弹射入后,求:
第七单元 动量
专题九 “子弹打木块”模型和“滑块—木板”模型
热点题型探究
教师备用习题
作业ห้องสมุดไป่ตู้册
题型一 “子弹打木块”模型物理建模
1.模型图示
2.模型特点
(1)子弹水平打进木块的过程中,系统的动量守恒.
(2)系统的机械能有损失.
3.两种情景
(1)子弹嵌入木块中,两者速度相等,机械能损失最多(完全非弹性碰撞)动量守恒: 能量守恒:
[答案]
[解析] 女运动员停止发力后,以 的水平速度滑向静止的男运动员,瞬间被男运动员接住,根据动量守恒定律得 解得男女运动员一起匀速运动的速度大小
(2)男女运动员一起运动的总时间;
[答案]
[解析] 一起匀速运动的时间 根据 可得,一起减速运动的时间 一起运动的总时间
专题21子弹打木块模型和板块模型(精讲)

专题21子弹打木块模型和板块模型1.子弹打木块模型分类模型特点示例子弹嵌入木块中(1)子弹水平打进木块的过程中,系统的动量守恒.(2)系统的机械能有损失.两者速度相等,机械能损失最多(完全非弹性碰撞) 动量守恒:m v0=(m+M)v能量守恒:Q=F f·s=12m v02-12(M+m)v2子弹穿透木块(1)子弹水平打进木块的过程中,系统的动量守恒.(2)系统的机械能有损失.动量守恒:m v0=m v1+M v2能量守恒:Q=F f·d=12m v02-(12M v22+12m v12)2.子板块模型分类模型特点示例滑块未滑离木板木板M放在光滑的水平地面上,滑块m以速度v0滑上木板,两者间的摩擦力大小为f。
①系统的动量守恒;②系统减少的机械能等于摩擦力与两者相对位移大小的乘积,即摩擦生成的热量。
类似于子弹打木块模型中子弹未穿出的情况。
①系统动量守恒:mv0=(M+m)v;②系统能量守恒:Q=f·x=12m v02-12(M+m)v2。
滑块滑离木板M放在光滑的水平地面上,滑块m以速度v0滑上木板,两者间的摩擦力大小为f。
模型归纳木板 ①系统的动量守恒;②系统减少的机械能等于摩擦力与两者相对位移大小的乘积,即摩擦生成的热量。
类似于子弹穿出的情况。
①系统动量守恒:mv 0=mv 1+Mv 2; ②系统能量守恒:Q =fl =12m v 02-(12mv 12+12Mv 22)。
1.三个角度求解子弹打木块过程中损失的机械能 (1)利用系统前、后的机械能之差求解; (2)利用Q =f ·x 相对求解;(3)利用打击过程中子弹克服阻力做的功与阻力对木块做的功的差值进行求解。
2.板块模型求解方法(1)求速度:根据动量守恒定律求解,研究对象为一个系统; (2)求时间:根据动量定理求解,研究对象为一个物体;(3)求系统产生的内能或相对位移:根据能量守恒定律Q =F f Δx 或Q =E 初-E 末,研究对象为一个系统.模型1 子弹击木块模型【例1】(2023秋•渝中区校级月考)如图所示,木块静止在光滑水平面上,子弹A 、B 从两侧同时水平射入木块,木块始终保持静止,子弹A 射入木块的深度是B 的3倍。
动量定理、动能定理专题-子弹打木块模型

动量定理、动能定理专题----子弹打木块模型一、模型描述:此模型主要是指子弹击中未固定的光滑木块的物理场景,如图所示。
其本质是子弹和木块在一对力和反作用力(系统内力)的作用下,实现系统内物体动量和能量的转移或转化。
二、方法策略:(1) 运动性质:在该模型中,默认子弹撞击木块过程中的相互作用力是恒恒力,则子弹在阻力的作用下会做匀减速直线性运动;木块将在动力的作用下做匀加速直线运动。
这会存在两种情况:(1)最终子弹尚未穿透木块,(2)子弹穿透木块。
(2) 基本规律:如图所示,研究子弹未穿透木块的情况:三、图象描述:在同一个v-t坐标中,两者的速度图线如图甲所示。
图线的纵坐标给出各时刻两者的速度,图线的斜率反映了两者的加速度。
两图线间阴影部分面积则对应了两者间的相对位移:d=s1-s2。
如果打穿图象如图乙所示。
点评:由此可见图象可以直观形象反映两者的速度的变化规律,也可以直接对比出物块的对地位移和子弹的相对位移,从而从能量的角度快速分析出系统产生的热量一定大于物块动能的大小。
四、模型迁移子弹打木块模型的本质特征是物体在一对作用力与反作用力(系统内力)的冲量作用下,实现系统内物体的动量、能量的转移或转化。
故物块在粗糙木板上滑动、一静一动的同种电荷追碰运动,一静一动的导体棒在光滑导轨上切割磁感线运动、小球从光滑水平面上的竖直平面内弧形光滑轨道最低点上滑等等,如图所示。
(1)典型例题:例1.如图所示,质量为M的木块静止于光滑的水平面上,一质量为m、速度为的子弹水平射入木块且未穿出,设木块对子弹的阻力恒为F,求:(1)子弹与木块相对静止时二者共同速度为多大?(2)射入过程中产生的内能和子弹对木块所做的功分别为多少?(3)木块至少为多长时子弹才不会穿出?1. 一颗速度较大的子弹,以速度v 水平击穿原来静止在光滑水平面上的木块,设木块对子弹的阻力恒定,则当子弹入射速度增大为2v 时,下列说法正确的是( )A. 子弹对木块做的功不变B. 子弹对木块做的功变大C. 系统损耗的机械能不变D. 系统损耗的机械能增加解析:子弹的入射速度越大,子弹击中木块所用的时间越短,木块相对地面的位移越小,子弹对木块做的功W =fs 变小,选项AB 错误;子弹相对木块的位移不变,由Q =f s 相对知Q 不变,系统损失的机械能等于产生的热量,则系统损耗的机械能不变,选项C 正确,D 错误。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中物理模型——“子弹打木块”模型符合的规律:子弹和木块组成的系统动量守恒,机械能不守恒。
重要结论:系统损失的机械能等于阻力乘以相对位移,即:∆E fd =相对。
共性特征:一物体在另一物体上,在恒定的阻力作用下相对运动,系统动量守恒,机械能不守恒,满足动量守恒定律和∆E f d =滑相对。
例1. 子弹质量为m ,以速度v 0水平打穿质量为M ,厚为d 的放在光滑水平面上的木块,子弹的速度变为v ,求此过程系统损失的机械能。
解析:mv mv Mv 0=+' ① 对子弹用动能定理: -+=-F s d mv mv f ()1212202②②式中s 为木块的对地位移对木块用动能定理: F s Mv f =-1202' ③由②③两式得:F d mv mv Mv f =-+1212120222(')④ 由①④两式解得:F d m MM m v M m v mv v f =--++220220[()()]例2. 如图1所示,一个长为L 、质量为M 的长方形木块,静止在光滑水平面上,一个质量为m 的物块(可视为质点),以水平初速度v 0从木块的左端滑向右端,设物块与木块间的动摩擦因数为μ,当物块与木块达到相对静止时,物块仍在长木块上,求系统机械能转化成内能的量Q 。
图1解析:可先根据动量守恒定律求出m 和M 的共同速度,再根据动能定理或动量守恒求出转化为内能的量Q 。
对物块,滑动摩擦力F f 做负功,由动能定理得: -+=-F d s mv mv f t ()1212202 即F f 对物块做负功,使物块动能减少。
对木块,滑动摩擦力F f 对木块做正功,由动能定理得:F s Mv f =122 即F f 对木块做正功,使木块动能增加,系统减少的机械能为:F d s F s F d mv mv Mv f f f t ()+-==--1212120222 ① 本题中F mg f =μ,物块与木块相对静止时,v v t =,则上式可简化为:μmgd mv m M v t =-+1212022() ②又以物块、木块为系统,系统在水平方向不受外力,动量守恒,则:mv m M v t 0=+() ③联立式②、③得:d Mv g M m =+022μ()故系统机械能转化为内能的量为:Q F d mg Mv g M m Mmv M m f ==⋅+=+μμ020222()()点评:系统内一对滑动摩擦力做功之和(净功)为负值,在数值上等于滑动摩擦力与相对位移的乘积,其绝对值等于系统机械能的减少量,即F s E f 相=∆。
例3. 如图2所示,两个小球A 和B 质量分别为m kg A =20.,m kg B =16.。
球A 静止在光滑水平面上的M 点,球B 在水平面上从远处沿两球的中心连线向着球A 运动。
假设两球相距L m ≤18时存在着恒定的斥力F ,L m >18时无相互作用力。
当两球相距最近时,它们间的距离为d m =2,此时球B 的速度是4m/s 。
求: (1)球B 的初速度;(2)两球之间的斥力大小;(3)两球从开始相互作用到相距最近时所经历的时间。
图2解析:(1)设两球之间的斥力大小是F ,两球从开始相互作用到两球相距最近时所经历的时间是t ,当两球相距最近时球B 的速度是v m s B =4/,此时球A 的速度v A 与球B 的速度大小相等,v v m s A B ==4/。
由动量守恒定律可得: m v m v m v B B A A B B 0=+①代入数据解得v m s B 09=/(2)两球从开始相互作用到它们之间距离最近时,它们之间的相对位移s L d =-,由功能关系可得:Fs m v m v m v B B A A B B =-+1212120222() ②代入数据解得F N =225.(3)根据动量定理,对A 球有: Ft m v t m v FA A A A=-=0, 代入数值解得t s s ==8225356..例4. 要发生核聚变反应12132401H H He n +→+,需使氘核和氚核具有足够的能量,用以克服原子核之间的库仑斥力做功,从而达到核力的作用距离(1015-m )。
常用的方法是将这些氘和氚加热到几千万度以上的高温,在这种超高温状态下,原子中的电子很快游离出来,原子核处于离子状态。
已知中子的质量为m ,氘核、氚核的质量分别为m 1和m 2,氘核、氚核的质量分别为m 1和m 2,具有m m m 21323≈≈,氘核和氚核的电荷量都为q 。
(1)假设氘核和氚核以相等的速率在相距较远处沿同一直线相向运动,当两核距离最近为r 0时核力发生了作用,则两核的初动能分别为多大?(已知两点电荷相距无穷远时电势能为零,相距r 时的电势能为E kq q rp =12)。
(2)若两核反应后先形成动能为E 0的复合核,然后沿复合核运动方向放出中子和γ光子(不计γ光子的动量)转变成氦核。
设放出中子和γ光子后产生的氦核的速度为零,质量为m 3,求γ光子的频率。
解析:(1)设氘核和氚核的初速大小都为v 0,则当两核距离最小时,它们的速度相等,设都为v 1,则由动量守恒3232001mv mv m m v -=+() 解得v v 105=由动量守恒知,两核动能的减少等于增加的电势能:12321232021220()()m m v m m v k q r +-+=解得v kq mr 022512=所以氘核和氚核的动能分别为:E kq r E kq r k k 1202251258==, (2)设中子的速度大小为v 2,则由动量守恒得: 32002mv mv mv -= 所以v v 20=则中子的动能:E mv kq r 1222012524==光子的能量为:E h 2=ν反应过程中由质量亏损产生的能量为: E m m m m c 31232=+--() 由能量守恒得:E E E E 0312+=+解得ν=++---E h m m m m c h kq r h0123220524()例5. 一根不可伸长的长为l 的细绳一端固定在O 点,另一端连接一个质量为M 的沙摆,沙摆静止。
如图3所示,一个质量为m 的子弹以初速度v 0沿水平方向射入沙摆而未穿出,若子弹射入时间忽略不计,求沙摆上摆的最大高度。
图3错解:子弹射入沙摆过程中,子弹沙摆组成的系统动量守恒,设两者共同速度为v 1,因此有mv M m v 01=+()所以子弹、沙摆的共同速度为v mv M m10=+此后子弹、沙摆一起上摆,由机械能守恒定律知:1212()()M m v M m gh +=+ 所以沙摆上摆的最大高度:h v g m v M m g==+12202222() 解析:本题的物理过程并不复杂,前面的解答思路基本正确,但结果不完整,因为沙摆上摆以后所能达到的最大摆角可能在90 以内,也可能超过90 ,甚至可以在竖直平面内做完整的圆周运动。
前面的解答只默认了最大摆角小于90这一情况,因而造成漏解。
子弹射入沙摆过程中,子弹、沙摆组成的系统动量守恒,因此: mv M m v 01=+()得到子弹、沙摆的共同速度为:v mv M m10=+1. 若v gl 12≤,沙摆的最大摆角不超过90,由机械能守恒定律知:1212()()M m v M m gh +=+所以沙摆上摆的最大高度:h v g m v M m g==+12202222() ①2. 若v gl 15≥,沙摆可以在竖直平面内做完整的圆周运动(在最高点速度不小于gl ),沙摆上摆的最大高度: h l =2②3. 若251gl v gl <<,沙摆的最大摆角超过了90,但又不能在竖直平面内做完整的圆周运动。
实际上当沙摆摆动到某一位置时,绳子会松弛。
设沙摆的速度为v 2,如图4所示,因此由机械能守恒,有:121121222()()(sin )()M m v M m gl M m v +=++++θ图4由重力的径向分力提供向心力,有:()sin ()M m g M m v l+=+θ22解得:v v gl v glgl2212122323=-=-,sin θ 以后沙摆将以v 2为初速做斜上抛运动,其竖直向上的分速度v v y =2cos θ,所以沙摆还能上升的高度为:h v g v gy==222222cos θ因此沙摆一共能上升的高度为:H l h =++(sin )1θ=+---l v gl g v gl g l ()[()]121222226329③其中v mv M m10=+综合以上①②③三式,才是本题的完整答案。
【巩固练习】矩形滑块由不同材料的上下两层粘结在一起组成,将其放在光滑的水平面上,质量为m 的子弹以速度v 水平射向滑块,若射击上层,则子弹恰好不射出;若射击下层,则子弹整个儿恰好嵌入,则上述两种情况相比较( ) A. 两次子弹对滑块做的功一样多; B. 两次滑块所受冲量一样大;C. 子弹嵌入下层过程中,系统产生的热量较多D. 子弹击中上层过程中,系统产生的热量较多图5【参考答案】A B。