动量守恒之滑块、子弹打木块模型

合集下载

子弹打木块模型知识点总结

子弹打木块模型知识点总结

子弹打木块模型知识点总结
1.动量守恒:根据牛顿力学,系统内部的总动量在碰撞前后是守恒的。

在子弹打木块模型中,子弹和木块碰撞后,它们的总动量保持不变。

2.能量守恒:在碰撞中,系统内部的总能量是守恒的。

根据能量守恒
定律,子弹和木块碰撞后将会消耗一部分能量。

3.碰撞力:在子弹打木块的过程中,子弹与木块之间会产生碰撞力。

碰撞力的大小取决于子弹和木块之间的相互作用力。

4.碰撞时间:碰撞时间是子弹和木块碰撞的持续时间。

它是一个关键
变量,会影响碰撞力的大小和作用时间。

5.碰撞类型:子弹打木块模型中常见的碰撞类型有弹性碰撞和非弹性
碰撞。

在弹性碰撞中,子弹和木块之间没有能量损失,而在非弹性碰撞中,会有一部分能量损失。

6.飞行轨迹:子弹的飞行轨迹取决于其速度、发射角度和重力等因素。

可以通过运动学和动力学的知识来分析子弹的飞行轨迹。

7.摩擦力:子弹和木块之间的摩擦力会对碰撞产生影响。

摩擦力越大,碰撞力越小。

摩擦力的大小取决于物体的材料和表面特性。

8.速度变化:子弹和木块在碰撞后,它们的速度会发生变化。

速度变
化的大小和方向取决于碰撞力的大小和作用时间。

9.模拟方法:为了模拟子弹打木块的过程,可以使用数值计算方法,
如欧拉法或龙格-库塔法等。

这些方法根据已知的物理量和假设模拟碰撞
的过程。

以上是子弹打木块模型中的一些关键知识点。

通过理解和应用这些知识,可以对子弹与木块碰撞的行为进行模拟和分析。

动量守恒中几种常见的模型

动量守恒中几种常见的模型

解:(1)物块A从坡道顶端由静止滑至O点的过程,
由机械能守恒定律,得:m1gh 1 m1v2
代入数据得:v 2gh
2
(2)A、B在碰撞过程中内力远大于外力,系统动量
守恒,以向左为正方向,由动量守恒定律得:
m1v m1 m2v'
A、B克服摩擦力所做的功:W μ m1 m2 gd
从AB碰撞到弹簧压缩最短过程:
随堂练习
1、一木块置于光滑水平地面上,一子弹以初速v0射入 静止的木块,子弹的质量为m,打入木块的深度为d, 木块向前移动S后以速度v与子弹一起匀速运动,此过 程中转化为内能的能量为(AC )
A.
1 m v02 v0v
2
C. mv0 vvd
2S
B. mv 0v0 v
D. mv0 vvd
S
2、如图所示,在光滑水平面上有一辆质量为M=4.00㎏的平 板小车,车上放一质量为m=1.96㎏的木块,木块到平板小 车左端的距离L=1.5m,车与木块一起以v=0.4m/s的速度向 右行驶,一颗质量为m0=0.04㎏的子弹以速度v0从右方射入 木块并留在木块内,已知子弹与木块作用时间很短,木块与 小车平板间动摩擦因数μ=0.2,取g=10m/s2。问:若要让木 块不从小车上滑出,子弹初速度应 满足什么条件?
模型一: 子弹击打木块模型
1、动力学规律:子弹和木块组成的系统受到大小相等方 向相反的一对相互作用力,故加速度的大小和质量成反比, 方向相反。
2、运动学及热量计算:子弹穿过木块的过程可以看作是 两个做匀变速直线运动的物体间的追及问题,在一段时间 内子弹射入木块的深度,就是二者相对位移的大小。而整 个过程产生的热量等于滑动摩擦力和相对位移的乘积。即 Q=Ff*s

专题九 “子弹打木块”模型和“滑块—木板”模型

专题九 “子弹打木块”模型和“滑块—木板”模型
(3)结合第(2)问,若物块与右侧挡板之间的距离 ,物块与挡板发生碰撞后不再分离,求碰撞过程中物块对挡板的冲量 与 的关系式.
[答案] 见解析
[解析] 由(2)可知,若撤去力 前物块与挡板间距为 ,从撤去力 到停止的运动时间
内物块位移大小为 时物块与挡板间距离为 若 ,设从撤去力 到长木板和物块发生碰撞所需的时间为 ①当 ,即 时,长木板停止运动后二者发生碰撞碰撞前瞬间对物块有 碰撞过程有 根据动量定理有 联立解得
(3)匀减速滑行过程中受到的平均阻力大小.
[答案]
[解析] 将减速过程当成逆向的加速过程,有 解得一起减速运动的加速度大小 根据牛顿第二定律可得,匀减速滑行过程中受到的平均阻力大小
3.如图所示,质量为 的物块(可视为质点)放在质量为 的木板左端,足够长的木板静止在光滑水平面上,物块与木板间的动摩擦因数为 .质量为 的子弹以速度 沿水平方向射入物块并留在其中(时间极短), 取 .子弹射入后,求:
第七单元 动量
专题九 “子弹打木块”模型和“滑块—木板”模型
热点题型探究
教师备用习题
作业ห้องสมุดไป่ตู้册
题型一 “子弹打木块”模型物理建模
1.模型图示
2.模型特点
(1)子弹水平打进木块的过程中,系统的动量守恒.
(2)系统的机械能有损失.
3.两种情景
(1)子弹嵌入木块中,两者速度相等,机械能损失最多(完全非弹性碰撞)动量守恒: 能量守恒:
[答案]
[解析] 女运动员停止发力后,以 的水平速度滑向静止的男运动员,瞬间被男运动员接住,根据动量守恒定律得 解得男女运动员一起匀速运动的速度大小
(2)男女运动员一起运动的总时间;
[答案]
[解析] 一起匀速运动的时间 根据 可得,一起减速运动的时间 一起运动的总时间

专题21子弹打木块模型和板块模型(精讲)

专题21子弹打木块模型和板块模型(精讲)

专题21子弹打木块模型和板块模型1.子弹打木块模型分类模型特点示例子弹嵌入木块中(1)子弹水平打进木块的过程中,系统的动量守恒.(2)系统的机械能有损失.两者速度相等,机械能损失最多(完全非弹性碰撞) 动量守恒:m v0=(m+M)v能量守恒:Q=F f·s=12m v02-12(M+m)v2子弹穿透木块(1)子弹水平打进木块的过程中,系统的动量守恒.(2)系统的机械能有损失.动量守恒:m v0=m v1+M v2能量守恒:Q=F f·d=12m v02-(12M v22+12m v12)2.子板块模型分类模型特点示例滑块未滑离木板木板M放在光滑的水平地面上,滑块m以速度v0滑上木板,两者间的摩擦力大小为f。

①系统的动量守恒;②系统减少的机械能等于摩擦力与两者相对位移大小的乘积,即摩擦生成的热量。

类似于子弹打木块模型中子弹未穿出的情况。

①系统动量守恒:mv0=(M+m)v;②系统能量守恒:Q=f·x=12m v02-12(M+m)v2。

滑块滑离木板M放在光滑的水平地面上,滑块m以速度v0滑上木板,两者间的摩擦力大小为f。

模型归纳木板 ①系统的动量守恒;②系统减少的机械能等于摩擦力与两者相对位移大小的乘积,即摩擦生成的热量。

类似于子弹穿出的情况。

①系统动量守恒:mv 0=mv 1+Mv 2; ②系统能量守恒:Q =fl =12m v 02-(12mv 12+12Mv 22)。

1.三个角度求解子弹打木块过程中损失的机械能 (1)利用系统前、后的机械能之差求解; (2)利用Q =f ·x 相对求解;(3)利用打击过程中子弹克服阻力做的功与阻力对木块做的功的差值进行求解。

2.板块模型求解方法(1)求速度:根据动量守恒定律求解,研究对象为一个系统; (2)求时间:根据动量定理求解,研究对象为一个物体;(3)求系统产生的内能或相对位移:根据能量守恒定律Q =F f Δx 或Q =E 初-E 末,研究对象为一个系统.模型1 子弹击木块模型【例1】(2023秋•渝中区校级月考)如图所示,木块静止在光滑水平面上,子弹A 、B 从两侧同时水平射入木块,木块始终保持静止,子弹A 射入木块的深度是B 的3倍。

动量定理、动能定理专题-子弹打木块模型

动量定理、动能定理专题-子弹打木块模型

动量定理、动能定理专题----子弹打木块模型一、模型描述:此模型主要是指子弹击中未固定的光滑木块的物理场景,如图所示。

其本质是子弹和木块在一对力和反作用力(系统内力)的作用下,实现系统内物体动量和能量的转移或转化。

二、方法策略:(1) 运动性质:在该模型中,默认子弹撞击木块过程中的相互作用力是恒恒力,则子弹在阻力的作用下会做匀减速直线性运动;木块将在动力的作用下做匀加速直线运动。

这会存在两种情况:(1)最终子弹尚未穿透木块,(2)子弹穿透木块。

(2) 基本规律:如图所示,研究子弹未穿透木块的情况:三、图象描述:在同一个v-t坐标中,两者的速度图线如图甲所示。

图线的纵坐标给出各时刻两者的速度,图线的斜率反映了两者的加速度。

两图线间阴影部分面积则对应了两者间的相对位移:d=s1-s2。

如果打穿图象如图乙所示。

点评:由此可见图象可以直观形象反映两者的速度的变化规律,也可以直接对比出物块的对地位移和子弹的相对位移,从而从能量的角度快速分析出系统产生的热量一定大于物块动能的大小。

四、模型迁移子弹打木块模型的本质特征是物体在一对作用力与反作用力(系统内力)的冲量作用下,实现系统内物体的动量、能量的转移或转化。

故物块在粗糙木板上滑动、一静一动的同种电荷追碰运动,一静一动的导体棒在光滑导轨上切割磁感线运动、小球从光滑水平面上的竖直平面内弧形光滑轨道最低点上滑等等,如图所示。

(1)典型例题:例1.如图所示,质量为M的木块静止于光滑的水平面上,一质量为m、速度为的子弹水平射入木块且未穿出,设木块对子弹的阻力恒为F,求:(1)子弹与木块相对静止时二者共同速度为多大?(2)射入过程中产生的内能和子弹对木块所做的功分别为多少?(3)木块至少为多长时子弹才不会穿出?1. 一颗速度较大的子弹,以速度v 水平击穿原来静止在光滑水平面上的木块,设木块对子弹的阻力恒定,则当子弹入射速度增大为2v 时,下列说法正确的是( )A. 子弹对木块做的功不变B. 子弹对木块做的功变大C. 系统损耗的机械能不变D. 系统损耗的机械能增加解析:子弹的入射速度越大,子弹击中木块所用的时间越短,木块相对地面的位移越小,子弹对木块做的功W =fs 变小,选项AB 错误;子弹相对木块的位移不变,由Q =f s 相对知Q 不变,系统损失的机械能等于产生的热量,则系统损耗的机械能不变,选项C 正确,D 错误。

动量守恒之滑块子弹打木块模型

动量守恒之滑块子弹打木块模型

lv 0 v S动量守恒定律的应用1—— 子弹打木块模型模型:质量为M 、长为l 的木块静止在光滑水平面上,现有一质量为m 的子弹以水平初速v 0射入木块,穿出时子弹速度为v ,求子弹与木块作用过程中系统损失的机械能。

解:如图,设子弹穿过木块时所受阻力为f ,突出时木块速度为V ,位移为S ,则子弹位移为(S+l)。

水平方向不受外力,由动量守恒定律得:mv 0=mv+MV ①由动能定理,对子弹 -f(s+l )=2022121mv mv - ②对木块 fs=0212-MV ③由①式得 v=)(0v v M m - 代入③式有 fs=2022)(21v v Mm M -• ④ ②+④得 f l =})]([2121{2121212120220222v v Mm M mv mv MV mv mv -+-=-- 结论:系统损失的机械能等于因摩擦而产生的内能,且等于摩擦力与两物体相对位移的乘积。

即Q=ΔE 系统= fS 相问题:①若要子弹刚好能(或刚好不能)穿出木块,试讨论需满足什么条件②作出作用过程中二者的速度-时间图像,你会有什么规律发现例题:一木块置于光滑水平地面上,一子弹以初速v 0射入静止的木块,子弹的质量为m ,打入木块的深度为d ,木块向前移动S 后以速度v 与子弹一起匀速运动,此过程中转化为内能的能量为A .)(2102v v v m - B.)(00v v mv - C.s vd v v m 2)(0- D.vd S v v m )(0-v 0A Bv 0 AB v 0 lA 2v 0 v 0B C滑块、子弹打木块模型练习1.在光滑水平面上并排放两个相同的木板,长度均为L=1.00m ,一质量与木板相同的金属块,以v 0=2.00m/s 的初速度向右滑上木板A ,金属块与木板间动摩擦因数为μ=,g 取10m/s 2。

求两木板的最后速度。

2.如图示,一质量为M 长为l 的长方形木块B 放在光滑水平面上,在其右端放一质量为m 的小木块A ,m <M ,现以地面为参照物,给A 和B 以大小相等、方向相反的初速度使A 开始向左运动,B 开始向右运动,但最后A 刚好没有滑离B 板。

物理 性必修第一册第1章 动量守恒定律专题课:“子弹打木块”模型和“滑块—木板”模型导学案含答案

物理 性必修第一册第1章  动量守恒定律专题课:“子弹打木块”模型和“滑块—木板”模型导学案含答案

2023-2024(上)全品学练考高中物理选择性必修第一册第1章动量守恒定律专题课:“子弹打木块”模型和“滑块—木板”模型学习任务一“子弹打木块”模型[模型建构]模型图示模型特点(1)子弹水平打进木块的过程中,系统的动量守恒.(2)系统的机械能有损失.两种情景(1)子弹嵌入木块中,两者速度相等,机械能损失最多(完全非弹性碰撞)动量守恒:mv0=(m+M)v能量守恒:Q=F f·x=12m v02-12(M+m)v2(2)子弹穿透木块动量守恒:mv0=mv1+Mv2能量守恒:Q=F f·d=12m v02-(12M v22+12m v12)例1一质量为M的木块放在光滑的水平面上,一质量为m的子弹以初速度v0水平打进木块并留在其中.设子弹与木块之间的相互作用力大小为F f.(1)子弹、木块相对静止时的速度为多大?(2)子弹在木块内运动的时间为多长?(3)子弹、木块相互作用过程中,子弹、木块发生的位移以及子弹打进木块的深度分别为多少?(4)系统损失的机械能、系统增加的内能分别为多少?(5)要使子弹不射出木块,木块至少为多长?变式1如图所示,木块静止在光滑水平面上,两颗不同的子弹A、B从木块两侧同时射入木块,最终都停在木块内,这一过程中木块始终保持静止.若子弹A射入的深度大于子弹B射入的深度,则()A .子弹A 的质量一定比子弹B 的质量大B .入射过程中子弹A 受到的阻力比子弹B 受到的阻力大C .子弹A 在木块中运动的时间比子弹B 在木块中运动的时间长D .子弹A 射入木块时的初动能一定比子弹B 射入木块时的初动能大变式2 如图所示,A 、B 两个木块用弹簧连接,它们静止在光滑水平面上,A 和B 的质量分别为99m 和100m.一颗质量为m 的子弹以速度v 0水平射入木块A 内没有穿出,则在之后的运动过程中弹簧的最大弹性势能为多少?学习任务二 “滑块—木板”模型[模型建构]模型 图示模型 特点(1)系统的动量守恒,但机械能不守恒,摩擦力与两者相对位移的乘积等于系统减少的机械能.(2)若滑块未从木板上滑下,当两者速度相同时,木板速度最大,相对位移最大. 求解 方法 (1)求速度:根据动量守恒定律求解,研究对象为一个系统;(2)求时间:根据动量定理求解,研究对象为一个物体;(3)求系统产生的内能或相对位移:根据能量守恒定律Q=F f Δx 或Q=E 初-E 末,研究对象为一个系统.例2 如图所示,质量m=4 kg 的物体,以水平速度v 0=5 m/s 滑上静止在光滑水平面上的平板小车,小车质量M=6 kg,物体与小车车面之间的动摩擦因数μ=0.3,g 取10 m/s 2,设小车足够长,求:(1)小车和物体的共同速度; (2)物体在小车上滑行的时间;(3)在物体相对小车滑动的过程中,系统产生的摩擦热.变式3 如图所示,在光滑水平地面上固定足够高的挡板,距离挡板s=3 m 处静止放置质量M=1 kg 、长L=4 m 的小车,一质量m=2 kg 的滑块(可视为质点)以v 0=6 m/s的初速度滑上小车左端,带动小车向右运动,小车与挡板碰撞时被粘住不动,已知滑块与小车表面间的动摩擦因数μ=0.2,g取10 m/s2.(1)求滑块与小车的共同速度大小;(2)当滑块与小车共速时,小车与挡板的距离和滑块与小车右端的距离分别为多少?(3)若滑块与挡板碰撞时为弹性碰撞,求全过程中滑块克服摩擦力做的功.例3 (多选)[2022·浙江学军中学月考] 如图所示,质量为8m,长度一定的长木板放在光滑的水平面上,质量为m,可视为质点的物块放在长木板的最左端,质量为m的子弹以水平向右的速度v0射入物块且未穿出(该过程的作用时间极短可忽略不计),经时间t0物块以v0的速度离开5长木板的最右端,重力加速度为g,则下列说法正确的是()A.长木板最终的速度大小为v010B.长木板的长度为5v0t016m v02C.子弹射入物块的过程中损失的机械能为920D.物块与长木板间的动摩擦因数为3v010gt01.(子弹打木块模型)(多选)矩形滑块由不同材料的上、下两层粘合在一起组成,将其放在光滑的水平面上,质量为m的子弹以速度v水平射向滑块,若射击下层,子弹刚好不射出.若射击上层,则子弹刚好能射进一半厚度,如图所示,上述两种情况相比较()A.子弹损失的动能一样多B.子弹射击上层时,从射入到共速所经历时间较长C.系统产生的热量一样多D.子弹与上层摩擦力较大2.(滑块—木板模型)(多选)[2022·厦门双十中学月考] 如图甲所示,一长木板静止于光滑水平桌面上,t=0时,小物块以速度v0滑到长木板上,图乙为物块与木板运动的v-t图像,图中t1、v0、v1已知,重力加速度大小为g,由此可求得()A.木板的长度B.物块与木板的质量之比C.物块与木板之间的动摩擦因数D.从t=0开始到t1时刻,木板获得的动能3.(动量综合应用)如图所示,一质量m1=0.45 kg的平顶小车静止在光滑的水平轨道上.质量m2=0.5 kg的小物块(可视为质点)静止在车顶的右端.一质量为m0=0.05 kg的子弹、以水平速度v0=100 m/s射中小车左端并留在车中,最终小物块相对地面以2 m/s的速度滑离小车.已知子弹与车的作用时间极短,物块与车顶面的动摩擦因数μ=0.8,认为最大静摩擦力等于滑动摩擦力.g取10 m/s2,求:(1)子弹相对小车静止时小车速度的大小;(2)小车的长度L.[反思感悟]专题课:“子弹打木块”模型和“滑块—木板”模型例1(1)mM+m v0(2)Mmv0F f(M+m)(3)Mm(M+2m)v022F f(M+m)2Mm2v022F f(M+m)2Mmv022F f(M+m)(4)Mmv022(M+m)Mmv022(M+m)(5)Mmv022F f(M+m)[解析] (1)设子弹、木块相对静止时的速度为v,以子弹初速度的方向为正方向,由动量守恒定律得mv0=(M+m)v解得v=mM+mv0(2)设子弹在木块内运动的时间为t,对木块,由动量定理得F f t=Mv-0解得t=Mmv0F f(M+m)(3)设子弹、木块发生的位移分别为x 1、x 2,如图所示.对子弹,由动能定理得-F f x 1=12mv 2-12m v 02解得x 1=Mm (M+2m )v 022F f (M+m )2对木块,由动能定理得F f x 2=12Mv 2 解得x 2=Mm 2v 022F f (M+m )2子弹打进木块的深度等于相对位移的大小,即x 相=x 1-x 2=Mmv 022F f(M+m ) (4)系统损失的机械能为E损=12m v 02-12(M+m )v 2=Mmv 022(M+m )系统增加的内能为Q=F f ·x 相=Mmv 022(M+m )系统增加的内能等于系统损失的机械能(5)假设子弹恰好不射出木块,有F f L=12m v 02-12(M+m )v 2解得L=Mmv 022F f(M+m )因此木块的长度至少为Mmv 022F f(M+m )变式1 D [解析] 由于木块始终保持静止状态,则两子弹对木块的推力大小相等,即两子弹所受的阻力大小相等,设为F f ,根据动能定理得,对子弹A 有-F f d A =0-E k A ,得E k A =F f d A ,对子弹B 有-F f d B =0-E k B ,得E k B =F f d B ,由于d A >d B ,则有子弹射入时的初动能E k A >E k B ,故B 错误,D 正确.两子弹和木块组成的系统动量守恒,则有√2m A E kA =√2m B E kB ,而E k A >E k B ,则m A <m B ,故A 错误.子弹A 、B 从木块两侧同时射入木块,木块始终保持静止,分析得知,两子弹在木块中运动的时间必定相等,否则木块就会运动,故C 错误. 变式21400m v 02[解析] 子弹射入木块A 的极短时间内,弹簧未发生形变(实际上是形变很小,忽略不计),设子弹和木块A 获得共同速度v ,由动量守恒定律得mv 0=(m+99m )v之后木块A (含子弹)开始压缩弹簧推动B 前进,当A 、B 速度相等时,弹簧的压缩量最大,设此时弹簧的弹性势能为E p ,A 、B 的共同速度为v 1,对A (含子弹)、B 组成的系统,由动量守恒定律得(m+99m )v=(m+99m+100m )v 1由机械能守恒定律得12(m+99m )v 2=12(m+99m+100m )v 12+E p联立解得E p =1400m v 02.例2 (1)2 m/s (2)1 s (3)30 J[解析] (1)小车和物体组成的系统动量守恒,规定向右为正方向,则mv 0=(m+M )v解得v=mv 0m+M =4×54+6 m/s =2 m/s(2)物体在小车上做匀减速直线运动 根据牛顿第二定律可知-μmg=ma 解得a=-μg=-3 m/s 2则物体在小车上滑行的时间为t=v -v 0a=2-5-3s =1 s(3)根据能量守恒定律,系统产生的摩擦热为ΔQ=12m v 02-12(m+M )v 2=12×4×52 J -12×(4+6)×22 J =30 J变式3 (1)4 m/s (2)1 m 1 m (3)36 J[解析] (1)设滑块与小车的共同速度为v 1,二者相对运动过程中根据动量守恒定律,有mv 0=(M+m )v 1 解得v 1=4 m/s(2)设达到共速时小车移动的距离为s 1,对小车,根据动能定理有μmgs 1=12M v 12-0代入数据解得s 1=2 m小车与挡板的距离s 2=s-s 1=1 m设滑块与小车的相对位移为L 1,对系统,根据能量守恒定律,有μmgL 1=12m v 02-12(m+M )v 12代入数据解得L 1=3 m滑块与小车右端的距离L 2=L-L 1=1 m 其位置情况如图乙所示(3)共速后小车未碰撞挡板时小车与滑块间的摩擦力消失而没有做功,如图丙所示.直到小车碰撞挡板被粘住静止,滑块又开始在小车上继续向右做初速度v 1=4 m/s 的匀减速直线运动,由于与挡板发生弹性碰撞,滑块速度大小不变,设返回的路程为L 3,由动能定理,有-μmg (L 2+L 3)=0-12m v 12解得L 3=3 m,说明滑块不会从车左端掉下 全过程中滑块克服摩擦力做的功 W=μmg (L+s 1-L 2)+μmg (L 2+L 3)=36 J .例3 BD [解析] 子弹、物块、木板整个系统,整个过程根据动量守恒定律,有mv 0=2m ·v 05+8m ·v ,求得长木板最终的速度大小为v=340v 0,故A 错误;子弹射入物块的过程中,时间极短.子弹及物块根据动量守恒定律有mv 0=2m ·v',求得v'=v02,该过程系统损失的机械能为ΔE=12m v 02-12·2mv'2,联立两式可求得ΔE=14m v 02,故C 错误;子弹射入物块后到从长木板滑离时,运动的位移大小为x 1=v t 0=v '+25v 02=(v 02+v 05)2t 0=720v 0t 0,长木板滑动位移大小为x 2=v2t 0=340v 02t 0=380v 0t 0,则长木板的长度为L=x 1-x 2=516v 0t 0,故B 正确;对长木板,整个过程根据动量定理有μ·2mgt 0=8mv ,可求得物块与长木板间的动摩擦因数为μ=3v10gt 0,故D 正确.随堂巩固1.ACD [解析] 子弹射入滑块的过程中,将子弹和滑块看成一个整体,合外力为0,动量守恒,所以两种情况下子弹和滑块的最终速度相同,所以末动能相同,故系统损失的动能一样多,产生的热量一样多,A 、C 正确;子弹射击滑块上层能射进一半厚度,射击滑块下层刚好不射出,说明在上层所受的摩擦力比下层大,根据动量定理可知,两种情况下滑块对子弹的冲量相同,子弹射击上层所受摩擦力大,所以从入射到共速经历的时间短,B 错误,D 正确.2.BC [解析] 木板在光滑水平桌面上,物块滑上木板后,系统动量守恒,由图像可知,最终物块与木板以共同速度v 1运动,有mv 0=(M+m )v 1,-μmg Δx=12(M+m )v 12-12m v 02,Δx=(v 0+v 12-v 12)t 1,可求出物块与木板的质量之比及物块与木板之间的动摩擦因数,但求不出木板的长度,A 错误,B 、C 正确;由于木板质量未知,故不能求出木板获得的动能,D 错误. 3.(1)10 m/s (2)2 m[解析] (1)子弹进入小车的过程中,子弹与小车组成的系统动量守恒,由动量守恒定律得 m 0v 0=(m 0+m 1)v 1 解得v 1=10 m/s .(2)三物体组成的系统动量守恒,由动量守恒定律得 (m 0+m 1)v 1=(m 0+m 1)v 2+m 2v 3 解得v 2=8 m/s由能量守恒可得12(m 0+m 1)v 12=μm 2gL+12(m 0+m 1)v 22+12m 2v 32解得L=2 m .专题课:“子弹打木块”模型和“滑块—木板”模型建议用时:40分钟1.(多选)[2022·北京西城区期中] 如图,一表面光滑的平板小车放在光滑水平面上,木块和轻弹簧置于小车表面,轻弹簧一端与固定在小车上的挡板连接,整个装置静止.一颗子弹以一定速度水平射入木块,留在木块中并与木块一起向前滑行,与弹簧接触后压缩弹簧.不计挡板与弹簧质量,弹簧始终在弹性限度内.下列说法正确的是 ( )A .子弹射入木块过程中,子弹与木块组成的系统动量及机械能均守恒B .子弹和木块一起压缩弹簧过程中,子弹、木块、小车组成的系统动量及机械能均守恒C .整个过程,子弹、木块、小车组成的系统所损失的机械能等于子弹与木块摩擦产生的热量及弹簧的弹性势能之和D .其他条件不变时,若增大小车的质量,弹簧的最大压缩量增大2.(多选)如图所示,小车在光滑的水平面上向左运动,木块水平向右在小车的水平车板上运动,且未滑出小车.下列说法中正确的是 ( )A .若小车的初动量大于木块的初动量,则木块先减速运动再加速运动后匀速运动B .若小车的初动量大于木块的初动量,则小车先减速运动再加速运动后匀速运动C .若小车的初动量小于木块的初动量,则木块先减速运动后匀速运动D .若小车的初动量小于木块的初动量,则小车先减速运动后匀速运动 3.(多选)[2022·湖南常德期中] 质量为M 、内壁间距为L 的箱子静止于光滑的水平面上,箱子中间有一质量为m 的小物块,小物块与箱子底板间的动摩擦因数为μ.初始时小物块停在箱子正中间,如图所示.现给小物块一水平向右的初速度v ,小物块与箱壁碰撞N 次后恰又回到箱子正中间,并与箱子保持相对静止.重力加速度为g ,设碰撞都是弹性的,则整个过程中,系统损失的动能为 ( )A .12mv 2B .12·mMm+Mv 2C .12NμmgLD .NμmgL4.如图所示,质量为2 kg 的小车以2.5 m/s 的速度沿光滑的水平面向右运动,现在小车上表面上方1.25 m 高度处将一质量为0.5 kg 的可视为质点的物块由静止释放,经过一段时间物块落在小车上,最终两者一起水平向右匀速运动.重力加速度g 取10 m/s 2,忽略空气阻力,下列说法正确的是 ( )A .物块释放0.3 s 后落到小车上B .若只增大物块的释放高度,则物块与小车的共同速度变小C .物块与小车相互作用的过程中,物块和小车的动量守恒D.物块与小车相互作用的过程中,系统损失的能量为7.5 J5.长木板A放在光滑的水平面上,质量为m=2 kg的另一物体B以水平速度v0=2 m/s滑上原来静止的长木板A的上表面,由于A、B间存在摩擦,之后A、B速度随时间变化情况如图所示,重力加速度g取10 m/s2.则下列说法正确的是()A.木板获得的动能为2 JB.系统损失的机械能为4 JC.木板A的最小长度为2 mD.A、B间的动摩擦因数为0.16.[2022·江苏镇江期中] 质量为m的子弹以某一初速度v0击中静止在水平地面上质量为M的木块,并陷入木块一定深度后与木块相对静止,甲、乙两图表示了这一过程开始和结束时子弹和木块可能的相对位置,设地面粗糙程度均匀,木块对子弹的阻力大小恒定,则下列说法中正确的是()A.无论m、M、v0的大小和地面粗糙程度如何,都只可能是甲图所示的情形B.若M较大,则可能是甲图所示情形;若M较小,则可能是乙图所示情形C.若v0较小,则可能是甲图所示情形;若v0较大,则可能是乙图所示情形D.若地面较粗糙,则可能是甲图所示情形;若地面较光滑,则可能是乙图所示情形7.[2022·石家庄二中月考] 如图所示,一轻质弹簧两端分别连着质量均为m的滑块A和的子弹以水平速度v0射入A中不再穿出B,两滑块都置于光滑的水平面上.今有质量为m4(时间极短),则弹簧在什么状态下滑块B具有最大动能?其值是多少?8.[2022·杭二中月考] 如图所示,质量为m=245 g的物块(可视为质点)放在质量为M=0.5 kg的木板左端,足够长的木板静止在光滑水平面上,物块与木板间的动摩擦因数为μ=0.4.质量为m0=5 g的子弹以速度v0=300 m/s沿水平方向射入物块并留在其中(时间极短),重力加速度g取10 m/s2.子弹射入后,求:(1)子弹和物块一起向右滑行的最大速度v1;(2)木板向右滑行的最大速度v2;(3)物块在木板上滑行的时间t.专题课:“子弹打木块”模型和“滑块—木板”模型建议用时:40分钟1.(多选)[2022·北京西城区期中] 如图,一表面光滑的平板小车放在光滑水平面上,木块和轻弹簧置于小车表面,轻弹簧一端与固定在小车上的挡板连接,整个装置静止.一颗子弹以一定速度水平射入木块,留在木块中并与木块一起向前滑行,与弹簧接触后压缩弹簧.不计挡板与弹簧质量,弹簧始终在弹性限度内.下列说法正确的是()A.子弹射入木块过程中,子弹与木块组成的系统动量及机械能均守恒B.子弹和木块一起压缩弹簧过程中,子弹、木块、小车组成的系统动量及机械能均守恒C.整个过程,子弹、木块、小车组成的系统所损失的机械能等于子弹与木块摩擦产生的热量及弹簧的弹性势能之和D.其他条件不变时,若增大小车的质量,弹簧的最大压缩量增大2.(多选)如图所示,小车在光滑的水平面上向左运动,木块水平向右在小车的水平车板上运动,且未滑出小车.下列说法中正确的是()A.若小车的初动量大于木块的初动量,则木块先减速运动再加速运动后匀速运动B.若小车的初动量大于木块的初动量,则小车先减速运动再加速运动后匀速运动C.若小车的初动量小于木块的初动量,则木块先减速运动后匀速运动D .若小车的初动量小于木块的初动量,则小车先减速运动后匀速运动 3.(多选)[2022·湖南常德期中] 质量为M 、内壁间距为L 的箱子静止于光滑的水平面上,箱子中间有一质量为m 的小物块,小物块与箱子底板间的动摩擦因数为μ.初始时小物块停在箱子正中间,如图所示.现给小物块一水平向右的初速度v ,小物块与箱壁碰撞N 次后恰又回到箱子正中间,并与箱子保持相对静止.重力加速度为g ,设碰撞都是弹性的,则整个过程中,系统损失的动能为 ( )A .12mv 2B .12·mMm+Mv 2C .12NμmgLD .NμmgL4.如图所示,质量为2 kg 的小车以2.5 m/s 的速度沿光滑的水平面向右运动,现在小车上表面上方1.25 m 高度处将一质量为0.5 kg 的可视为质点的物块由静止释放,经过一段时间物块落在小车上,最终两者一起水平向右匀速运动.重力加速度g 取10 m/s 2,忽略空气阻力,下列说法正确的是 ( )A .物块释放0.3 s 后落到小车上B .若只增大物块的释放高度,则物块与小车的共同速度变小C .物块与小车相互作用的过程中,物块和小车的动量守恒D .物块与小车相互作用的过程中,系统损失的能量为7.5 J5.长木板A 放在光滑的水平面上,质量为m=2 kg 的另一物体B 以水平速度v 0=2 m/s 滑上原来静止的长木板A 的上表面,由于A 、B 间存在摩擦,之后A 、B 速度随时间变化情况如图所示,重力加速度g 取10 m/s 2.则下列说法正确的是( )A .木板获得的动能为2 JB .系统损失的机械能为4 JC .木板A 的最小长度为2 mD.A、B间的动摩擦因数为0.16.[2022·江苏镇江期中] 质量为m的子弹以某一初速度v0击中静止在水平地面上质量为M的木块,并陷入木块一定深度后与木块相对静止,甲、乙两图表示了这一过程开始和结束时子弹和木块可能的相对位置,设地面粗糙程度均匀,木块对子弹的阻力大小恒定,则下列说法中正确的是()A.无论m、M、v0的大小和地面粗糙程度如何,都只可能是甲图所示的情形B.若M较大,则可能是甲图所示情形;若M较小,则可能是乙图所示情形C.若v0较小,则可能是甲图所示情形;若v0较大,则可能是乙图所示情形D.若地面较粗糙,则可能是甲图所示情形;若地面较光滑,则可能是乙图所示情形7.[2022·石家庄二中月考] 如图所示,一轻质弹簧两端分别连着质量均为m的滑块A和的子弹以水平速度v0射入A中不再穿出B,两滑块都置于光滑的水平面上.今有质量为m4(时间极短),则弹簧在什么状态下滑块B具有最大动能?其值是多少?8.[2022·杭二中月考] 如图所示,质量为m=245 g的物块(可视为质点)放在质量为M=0.5 kg的木板左端,足够长的木板静止在光滑水平面上,物块与木板间的动摩擦因数为μ=0.4.质量为m0=5 g的子弹以速度v0=300 m/s沿水平方向射入物块并留在其中(时间极短),重力加速度g取10 m/s2.子弹射入后,求:(1)子弹和物块一起向右滑行的最大速度v1;(2)木板向右滑行的最大速度v2;(3)物块在木板上滑行的时间t.专题课:“子弹打木块”模型和“滑块—木板”模型1.CD [解析] 子弹射入木块并留在木块中,子弹与木块组成的系统受合外力等于零,因此动量守恒,因子弹与木块是完全非弹性碰撞,机械能减少最多,即机械能不守恒,A 错误;子弹和木块一起压缩弹簧过程中,子弹、木块、小车组成的系统受合外力等于零,动量守恒,由于压缩弹簧,即对弹簧做功,弹簧的弹性势能增加,子弹、木块、小车组成的系统机械能减少,机械能不守恒,B 错误;由能量守恒定律可知,整个过程,子弹、木块、小车组成的系统所损失的机械能等于子弹与木块摩擦产生的热量及弹簧的弹性势能之和,C 正确;设子弹的质量为m 1,速度为v 0,木块的质量为m ,小车的质量为M ,子弹射入木块后速度为v 1,向右为正方向,由动量守恒定律可得m 1v 0=(m 1+m )v 1,解得v 1=m 1vm 1+m ,此后对子弹、木块、小车组成的系统,规定向右为正方向,由动量守恒定律可得(m 1+m )v 1=(m 1+m+M )v 2,由机械能守恒定律可得12(m 1+m )v 12-12(m 1+m+m )v 22=E pm ,联立解得弹簧的弹性势能为E pm =m 12v 022(m 1+mM+1)(m 1+m ),由此可见其他条件不变时,若增大小车的质量,弹簧的弹性势能增大,弹簧的最大压缩量增大,D 正确.2.AC [解析] 小车和木块组成的系统在水平方向上不受外力,系统在水平方向上动量守恒,若小车的初动量大于木块的初动量,则最后相对静止时整体的动量方向向左,木块先减速运动再反向加速运动后匀速运动,小车先减速运动再匀速运动,故A 正确,B 错误;同理若小车的初动量小于木块的初动量,则最后相对静止时整体的动量方向向右,则木块先减速运动后匀速运动,小车先减速运动再加速运动后匀速运动,C 正确,D 错误.3.BD [解析] 设物块与箱子相对静止时共同速度为v 1,则由动量守恒定律得mv=(M+m )v 1,得v 1=mvM+m ,系统损失的动能为ΔE k 系=12mv 2-12(M+m )v 12=Mmv 22(M+m ),A错误,B 正确.根据能量守恒定律得知,系统产生的内能等于系统损失的动能,根据功能关系得知,系统产生的内能等于系统克服摩擦力做的功,则有Q=ΔE k 系=NμmgL.C 错误,D 正确. 4.D [解析] 物块下落的时间为t=√2ℎg =√2×1.2510s=0.5 s,A 错误;物块与小车相互作用的过程中,物块与小车组成的系统在水平方向的动量守恒,在竖直方向的动量不守恒,由水平方向动量守恒得Mv 0=(M+m )v ,可知,释放高度变大,水平方向的共同速度不变,B 、C 错误;在整个过程中,由能量守恒定律得系统损失的机械能ΔE=mgh+12M v 02-12(M+m )v 2,代入数据可得ΔE=7.5 J,D 正确.5.D [解析] 由题图可知,最终木板获得的速度为v=1 m/s,A 、B 组成的系统动量守恒,以B 的初速度方向为正方向,由动量守恒定律得mv 0=(M+m )v ,解得M=2 kg,则木板获得的动能为E k =12Mv 2=12×2×12 J =1 J,故A 错误;系统损失的机械能ΔE=12m v 02-12(m+M )v 2,代入数据解得ΔE=2 J,故B 错误;v-t 图像中图线与t 轴所围的面积表示位移,由题图得到0~1 s 内B 的位移为x B =12×(2+1)×1 m =1.5 m,A 的位移为x A =12×1×1 m =0.5 m,则木板A 的最小长度为L=x B -x A =1 m,故C 错误;由题图可知,B 的加速度a=Δv Δt=1-21m/s 2=-1 m/s 2,负号表示加速度的方向,由牛顿第二定律得-μmg=ma ,解得μ=0.1,故D 正确.6.A [解析] 在子弹射入木块的瞬间,子弹与木块间的摩擦力远远大于木块与地面间的摩擦力,故地面光滑与粗糙效果相同,子弹和木块构成一系统,在水平方向上合外力为零,在水平方向上动量守恒,规定向右为正方向,设子弹与木块的共同速度为v ,根据动量守恒定律有mv 0=(m+M )v ,木块在水平面上滑行的距离为s ,子弹射入并穿出木块的过程中对木块运用动能定理得F f s=12Mv 2=Mm 2v 022(m+M )2,根据能量守恒定律得Q=F f d=12m v 02-12(m+M )v 2=Mmv 022(M+m ),则d>s ,不论速度、质量大小关系和地面粗糙程度如何,都只可能是甲图所示的情形,故选A . 7.当弹簧第一次恢复原长时281m v 02[解析] 子弹射入A 中时,因时间极短,且A 与B 用弹簧相连,故可认为B 未参与此过程,则子弹与A 组成的系统动量守恒.设子弹与A 的共同速度为v A ,则有m4v 0=(m +m4)v A 解得v A =v05此后,弹簧被压缩,B 加速,当弹簧再次恢复原长时,弹簧的弹性势能为零,B 有最大速度v B m ,即有最大动能E km .此过程相当于以速度v A 运动的滑块A (内含子弹)与静止滑块B 发生弹性碰撞,应用弹性正碰的结论,有v B m =2(m+m4)m+m+m 4·v05=29v 0 E km =12m (29v 0)2=281m v 02.8.(1)6 m/s (2)2 m/s (3)1 s[解析] (1)子弹射入物块后和物块一起向右滑行的初速度即最大速度,由动量守恒定律得m 0v 0=(m 0+m )v 1, 解得v 1=6 m/s .(2)当子弹、物块、木板三者共速时,木板的速度最大,由动量守恒定律得(m 0+m )v 1=(m 0+m+M )v 2, 解得v 2=2 m/s .(3)对物块和子弹组成的系统,由动量定理得-μ(m 0+m )gt=(m 0+m )v 2-(m 0+m )v 1, 解得t=1 s .。

动量守恒定律中的典型模型

动量守恒定律中的典型模型

动量守恒定律中的典型模型1、子弹打木块模型包括木块在长木板上滑动的模型,其实是一类题型,解决方法基本相同。

一般要用到动量守恒、动量定理、动能定理及动力学等规律,综合性强、能力要求高,是高中物理中常见的题型之一,也是高考中经常出现的题型。

例1:质量为2m、长为L的木块置于光滑的水平面上,质量为m的子弹以初速度V0水平向右射穿木块后,速度为V0/2。

设木块对子弹的阻力F恒定。

求:(1)子弹穿过木块的过程中木块的位移(2)若木块固定在传送带上,使木块随传送带始终以恒定速度u<V0水平向右运动,则子弹的最终速度是多少例2、如图所示,在光滑水平面上放有质量为2m的木板,木板左端放一质量为m的可视为质点的木块。

两者间的动摩擦因数为μ,现让两者以V0的速度一起向竖直墙向右运动,木板和墙的碰撞不损失机械能,碰后两者最终一起运动。

求碰后:(1)木块相对木板运动的距离s(2)木块相对地面向右运动的最大距离L2、人船模型例3、一条质量为M,长为L的小船静止在平静的水面上,一个质量为m的人站立在船头.如果不计水对船运动的阻力,那么当人从船头走到船尾时,船的位移多大?例4、载人气球原静止于高h的高空,气球质量为M,人的质量为m,若人沿绳梯滑至地面,则绳梯至少为多长?3、弹簧木块模型例5、质量为m 的物块甲以3m/s 的速度在光滑水平面上运动,有一轻弹簧固定其上,另一质量也为m 的物体乙以4m/s 的速度与甲相向运动,如图所示。

则( )A .甲、乙两物块在弹簧压缩过程中,由于弹力作用,动量不守恒 B .当两物块相距最近时,甲物块的速率为零C .当甲物块的速率为1m/s 时,乙物块的速率可能为2m/s ,也可能为0D .甲物块的速率可能达到5m/s例6、如图所示,光滑的水平面上有m A =2kg ,m B = m C =1kg 的三个物体,用轻弹簧将A 与B 连接.在A 、C 两边用力使三个物体靠近,A 、B 间的弹簧被压缩,此过程外力做功72 J ,然后从静止开始释放,求:(1)当物体B 与C 分离时,B 对C 做的功有多少?(2)当弹簧再次恢复到原长时,A 、B 的速度各是多大?例7、如图所示,光滑水平地面上静止放置两由弹簧相连木块A 和B,一质量为m 子弹,以速度v 0,水平击中木块A,并留在其中,A 的质量为3m,B 的质量为4m.(1)求弹簧第一次最短时的弹性势能(2)何时B 的速度最大,最大速度是多少?4、碰撞、爆炸、反冲Ⅰ、碰撞分类(两物体相互作用,且均设系统合外力为零)(1)按碰撞前后系统的动能损失分类,碰撞可分为弹性碰撞、非弹性碰撞和完全非弹性碰撞. (2)弹性碰撞前后系统动能相等.其基本方程为① m 1v 1+m 2v 2=m 1 v 1'+m 2 v 2' ②222211222211'21'212121v m v m v m v m +=+ . (3)A 、B 两物体发生弹性碰撞,设碰前A 初速度为v 0,B 静止,则基本方程为 ① m A v 0=m A v A +m B v B ,②2220212121BB A A A v m v m v m += 可解出碰后速度0v m m m m v B A B A A +-=,C B Amv oBAv B =02v m m m BA A+.若m A =m B ,则v A = 0 ,v B = v 0 ,即质量相等的两物体发生弹性碰撞的前后,两物体速度互相交换(这一结论也适用于B 初速度不为零时).(4)完全非弹性碰撞有两个主要特征.①碰撞过程中系统的动能损失最大.②碰后两物体速度相等. Ⅱ、形变与恢复(1)在弹性形变增大的过程中,系统中两物体的总动能减小,弹性势能增大,在形变减小(恢复)的过程中,系统的弹性势能减小,总动能增大.在系统形变量最大时,两物体速度相等.(2)若形变不能完全恢复,则相互作用过程中产生的内能增量等于系统的机械能损失. Ⅲ、反冲(1)物体向同一方向抛出(冲出)一部分时(通常一小部分),剩余部分将获得相反方向的动量增量,这一过程称为反冲.(2)若所受合外力为零或合外力的冲量可以忽略,则反冲过程动量守恒.反冲运动中,物体的动能不断增大,这是因为有其他形式能转化为动能.例如火箭运动中,是气体燃烧释放的化学能转化为火箭和喷出气体的动能.例8、一个不稳定的原子核质量为M ,处于静止状态,放出一个质量为m 的粒子后反冲。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

lv 0 v S动量守恒定律的应用1—— 子弹打木块模型模型:质量为M 、长为l 的木块静止在光滑水平面上,现有一质量为m 的子弹以水平初速v 0射入木块,穿出时子弹速度为v ,求子弹与木块作用过程中系统损失的机械能。

解:如图,设子弹穿过木块时所受阻力为f ,突出时木块速度为V ,位移为S ,则子弹位移为(S+l)。

水平方向不受外力,由动量守恒定律得:mv 0=mv+MV ①由动能定理,对子弹 -f(s+l )=2022121mv mv - ②对木块 fs=0212-MV ③由①式得 v=)(0v v M m - 代入③式有 fs=2022)(21v v Mm M -∙ ④ ②+④得 f l =})]([2121{21212121202202220v v Mm M mv mv MV mv mv -+-=--结论:系统损失的机械能等于因摩擦而产生的内能,且等于摩擦力与两物体相对位移的乘积。

即Q=ΔE 系统= fS 相问题:①若要子弹刚好能(或刚好不能)穿出木块,试讨论需满足什么条件?②作出作用过程中二者的速度-时间图像,你会有什么规律发现?例题:一木块置于光滑水平地面上,一子弹以初速v 0射入静止的木块,子弹的质量为m ,打入木块的深度为d ,木块向前移动S 后以速度v 与子弹一起匀速运动,此过程中转化为内能的能量为 A .)(21020v v v m - B.)(00v v mv - C.s vd v v m 2)(0- D.vdS v v m )(0-v 0A Bv 0 AB v 0 lA 2v 0 v 0B C滑块、子弹打木块模型练习1.在光滑水平面上并排放两个相同的木板,长度均为L=1.00m ,一质量与木板相同的金属块,以v 0=2.00m/s 的初速度向右滑上木板A ,金属块与木板间动摩擦因数为μ=0.1,g 取10m/s 2。

求两木板的最后速度。

2.如图示,一质量为M 长为l 的长方形木块B 放在光滑水平面上,在其右端放一质量为m 的小木块A ,m <M ,现以地面为参照物,给A 和B 以大小相等、方向相反的初速度使A 开始向左运动,B 开始向右运动,但最后A 刚好没有滑离B 板。

以地面为参照系。

⑴若已知A 和B 的初速度大小为v 0,求它们最后速度的大小和方向; ⑵若初速度的大小未知,求小木块A 向左运动到最远处(从地面上看) 到出发点的距离。

3.一平直木板C 静止在光滑水平面上,今有两小物块A 和B 分别以2v 0和v 0的初速度沿同一直线从长木板C 两端相向水平地滑上长木板。

如图示。

设物块A 、B 与长木板C 间的动摩擦因数为μ,A 、B 、C 三者质量相等。

⑴若A 、B 两物块不发生碰撞,则由开始滑上C 到A 、B 都静止在C 上为止,B 通过的总路程多大?经历的时间多长?⑵为使A 、B 两物块不发生碰撞,长木板C 至少多长?L v 0 m vv 0A v 0 5mB4.在光滑水平面上静止放置一长木板B ,B 的质量为M=2㎏同,B 右端距竖直墙5m ,现有一小物块 A ,质量为m=1㎏,以v 0=6m/s 的速度从B 左端水平地滑上B 。

如图所示。

A 、B 间动摩擦因数为μ=0.4,B 与墙壁碰撞时间极短,且碰撞时无能量损失。

取g=10m/s 2。

求:要使物块A 最终不脱离B 木板,木板B 的最短长度是多少?5.如图所示,在光滑水平面上有一辆质量为M=4.00㎏的平板小车,车上放一质量为m=1.96㎏的木块,木块到平板小车左端的距离L=1.5m ,车与木块一起以v=0.4m/s 的速度向右行驶,一颗质量为m 0=0.04㎏的子弹以速度v 0从右方射入木块并留在木块内,已知子弹与木块作用时间很短,木块与小车平板间动摩擦因数μ=0.2,取g=10m/s 2。

问:若要让木块不从小车上滑出,子弹初速度应满足什么条件?6.一质量为m 、两端有挡板的小车静止在光滑水平面上,两挡板间距离为1.1m ,在小车正中放一质量为m 、长度为0.1m 的物块,物块与小车间动摩擦因数μ=0.15。

如图示。

现给物块一个水平向右的瞬时冲量,使物块获得v 0 =6m/s 的水平初速度。

物块与挡板碰撞时间极短且无能量损失。

求:⑴小车获得的最终速度; ⑵物块相对小车滑行的路程; ⑶物块与两挡板最多碰撞了多少次; ⑷物块最终停在小车上的位置。

参考答案 AC A :⎪⎩⎪⎨⎧+-=+=2200)(2121)(v m M mv Q v m M mv C :⎪⎩⎪⎨⎧⋅=-==df Q v m vmv Mv fS 202)(2121 1. 金属块在板上滑动过程中,统动量守恒。

金属块最终停在什么位置要进行判断。

假设金属块最终停在A 上。

三者有相同速度v ,相对位移为x ,则有⎪⎩⎪⎨⎧⋅-==2200321213mv mv mgx mv mv μ 解得:L m x 34=,因此假定不合理,金属块一定会滑上B 。

设x 为金属块相对B 的位移,v 1、v 2表示A 、B 最后的速度,v 0′为金属块离开A 滑上B 瞬间的速度。

有:在A上⎪⎩⎪⎨⎧⋅-'-=+'=21201010022121212mv v m mv mgL mv v m mv μ 全过程⎪⎩⎪⎨⎧⋅--=++=2221202102212121)(2mv mv mv x L mg mv mv mv μ联立解得:⎪⎪⎪⎩⎪⎪⎪⎨⎧=='='=s m s m v s m v v s m s m v /65/21/34)(0/31/12001或或舍或 ∴ ⎪⎪⎪⎩⎪⎪⎪⎨⎧===m x s m v sm v 25.0/65/3121 *解中,整个物理过程可分为金属块分别在A 、B 上滑动两个子过程,对应的子系统为整体和金属块与B 。

可分开列式,也可采用子过程→全过程列式,实际上是整体→部分隔离法的一种变化。

2.⑴A 恰未滑离B 板,则A 达B 最左端时具有相同速度v ,有 Mv 0-mv 0=(M+m)v ∴ 0v mM mM v +-=M >m, ∴ v >0,即与B 板原速同向。

⑵A 的速度减为零时,离出发点最远,设A 的初速为v 0,A 、B 摩擦力为f ,向左运动对地最远位移为S ,则 02120-=mv fS 而v 0最大应满足 Mv 0-mv 0=(M+m)v 220)(21)(21v m M v m M fl +-+= 解得:l MmM s 4+=3.⑴由A 、B 、C 受力情况知,当B 从v 0减速到零的过程中,C 受力平衡而保持不动,此子过程中B 的位移S 1和运动时间t 1分别为:gvt g v S μμ01201,2== 。

然后B 、C 以μg 的加速度一起做加速运动。

A 继续减速,直到它们达到相同速度v 。

对全过程:m A ·2v 0-m B v 0=(m A +m B +m C )v ∴ v=v 0/3B 、C 的加速度 g m m gm a C B A μμ21=+= ,此子过程B 的位移 gv g v t g v g v S μμμ32292022022====运动时间∴ 总路程gvt t t g v S S S μμ35,181********=+==+=总时间 ⑵A 、B 不发生碰撞时长为L ,A 、B 在C 上相对C 的位移分别为L A 、LB ,则 L=L A +L Bgv L v m m m v m v m gL m gL m C B A B A B B A A μμμ37)(2121)2(212022020=++-+=+解得: *对多过程复杂问题,优先考虑钱过程方程,特别是ΔP=0和Q=fS 相=ΔE 系统。

全过程方程更简单。

4.A 滑上B 后到B 与墙碰撞前,系统动量守恒,碰前是否有相同速度v 需作以下判断:mv 0=(M+m)v, ①v=2m/s此时B 对地位移为S 1,则对B :2121Mv mgS =μ ②S=1m <5m,故在B 与墙相撞前与A 已达到相同速度v ,设此时A 在B 上滑行L 1距离,则 2201)(2121v m M mv mgL +-=μ ③ L 1=3m 【以上为第一子过程】此后A 、B 以v 匀速向右,直到B 与墙相碰(此子过程不用讨论),相碰后,B 的速度大小不变,方向变为反向,A 速度不变(此子过程由于碰撞时间极短且无能量损失,不用计算),即B 以v 向左、A 以v 向右运动,当A 、B 再次达到相同速度v ′时:Mv-mv=(M+m)v ′ ④ v ′=2/3 m/s 向左,即B 不会再与墙相碰,A 、B 以v ′向左匀速运动。

设此过程(子过程4)A 相对B 移动L 2,则 222)(21)(21v m M v m M mgL '+-+=μ ⑤ L 2=1、33m L=L 1+L 2=4.33m 为木板的最小长度。

*③+⑤得 220)(2121v m M mv mgL '+-=μ实际上是全过程方程。

与此类问题相对应的是:当P A 始终大于P B 时,系统最终停在墙角,末动能为零。

5.子弹射入木块时,可认为木块未动。

子弹与木块构成一个子系统,当此系统获共同速度v 1时,小车速度不变,有 m 0v 0-mv=(m 0+m)v 1 ① 此后木块(含子弹)以v 1向左滑,不滑出小车的条件是:到达小车左端与小车有共同速度v 2,则 (m 0+m)v 1-Mv=(m 0+m+M)v 2 ②22022100)(2121)(21)(v M m m Mv v m m gL m m ++-++=+μ ③ 联立化简得: v 02+0.8v 0-22500=0 解得 v 0=149.6m/s 为最大值, ∴v 0≤149.6m/s6. ⑴当物块相对小车静止时,它们以共同速度v 做匀速运动,相互作用结束,v 即为小车最终速度mv 0=2mv v=v 0/2=3m/s ⑵22022121mv mv mgS ⋅-=μ S=6m ⑶次65.615.0==+--=dl S n ⑷物块最终仍停在小车正中。

*此解充分显示了全过程法的妙用。

相关文档
最新文档